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Magnetic monopoles may be produced by the dual Schwinger effect in strong magnetic fields. Today, the
strongest known magnetic fields in the Universe are produced fleetingly in heavy-ion collisions. We use the
complex worldline instanton method to calculate the momentum distribution of magnetic monopoles
produced in heavy-ion collisions, in an approximation that includes the effect of the magnetic field to all
orders but neglects monopole self-interactions. The result saturates the preparation time-energy uncertainty
principle, and yields a necessary ingredient for experimental monopole searches in heavy-ion collisions.
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I. INTRODUCTION

The search for magnetic monopoles has a long history,
going back at least to Petrus Peregrinus who, in the 13th
century searched for isolated magnetic poles in fragments
of lodestone. In modern particle physics, the search is
motivated by the possibility to explain the quantization of
electric charge [1,2], and because magnetic monopoles are
predicted by broad classes of models, including grand
unified theories [3–5] and semiclassical gravity with top-
ology change [6,7]. More recently, there has been a revival
of interest in models containing low-mass solitonic mag-
netic monopoles, which may in principle be probed by
terrestrial collider experiments [8–11]. Further, monopoles
may exist as elementary particles, in which case their mass
would be a free parameter.
Interpreting the results of collider searches for magnetic

monopoles requires theoretical predictions of cross sections;
experiment and theory should go hand in hand. However,
theory is sorely lagging behind, chiefly because of the strong
coupling of magnetic monopoles [1]. The magnetic charge
must be an integer multiple of the Dirac charge gD ¼ 2π=e,
which is inversely related to the fundamental electric charge
e. This implies that perturbation theory, based on the loop

expansion of Feynman diagrams, completely fails for
magnetic monopoles.
A loophole to this dilemma exists, in that calculations

can be performed at strong coupling for certain semi-
classical production processes. In particular, monopole
production via the dual Schwinger effect is computationally
tractable. This is the electromagnetic dual of the usual
Schwinger effect [12], in which a strong magnetic field
decays via quantum tunneling to form a magnetic monop-
ole-antimonopole pair. The probability of pair production
per unit spacetime volume is given by [13–15]

P ∼ exp

�
−
πm2

gB
þ g2

4

�
; ð1Þ

where B is the magnetic field strength, m is the monopole
mass, and g is the magnetic charge. Here and henceforth we
use units where ℏ ¼ c ¼ 1, unless otherwise stated. Note
that Eq. (1) is only valid when the process is exponentially
suppressed. For weak magnetic fields, B ≪ 4πm2=g3, this
suppression is strong, and conversely the strongest mag-
netic fields give the highest probability of forming mag-
netic monopole-antimonopole pairs. For magnetic fields
larger than ∼4πm2=g3, while Eq. (1) is no longer quanti-
tatively reliable, monopole production is nevertheless
expected to be unsuppressed. This is supported by field
theory instanton calculations [15]. Today the strongest
known magnetic fields are produced fleetingly in ultra-
peripheral heavy-ion collisions [16].
Thus far there has only been one search for magnetic

monopoles in heavy-ion collisions, from 1997, carried out
at SPS at a center-of-mass energy per nucleon of

ffiffiffiffiffiffiffiffi
sNN

p ≈
17.4 GeV [17]. From the negative result of this search,
upper bounds were inferred on the production cross section
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of magnetic monopoles in heavy-ion collisions at this
center-of-mass energy. In Ref. [18], by considering
monopole production by magnetic fields1 this experimental
result was used to place lower bounds on the mass of
possible magnetic monopoles. The resulting lower bounds
are the strongest lower bounds on the mass of magnetic
monopoles which do not suffer from the inapplicability of
perturbation theory to monopoles. The bounds are also
independent of the specific underlying UV theory, as they
depend only on the coupling of magnetic monopoles to
photons at long distances, which is fixed by Maxwell’s
equations and the Dirac quantization condition [1].
Much higher center-of-mass energies are routinely

reached in heavy-ion colliders today: approximately
200 GeV per nucleon at RHIC [20] and 5020 GeV per
nucleon at the LHC [21]. Thus, possible future searches for
magnetic monopoles in heavy-ion collisions have the
potential to massively extend the mass reach beyond what
was achieved at SPS. However, for this to be possible it is
necessary to have theoretical control of the monopole
production cross section at these higher energies.
In this paper we consider the momentum distribution

of monopoles produced by the Schwinger mechanism.
This is a crucial ingredient for experimental searches, both
in terms of the angular distribution and the momentum
magnitude distribution, as it is a necessary input to
calculate the acceptance of a given experimental setup.
For example, for a monopole to be registered in the
MoEDAL trapping detectors [22,23] it must be fast enough
to punch through the beam pipe, and yet be slow enough to
be trapped in the aluminium rods.
In Ref. [24] we considered the computation of the total

cross section of monopole production in high-energy
heavy-ion collisions. The task was to overcome two
theoretical hurdles: the strong coupling of monopoles to
photons, and the strong spacetime dependence of the
external electromagnetic fields. Approaching this task
stepwise, we utilized two different approximations: the
locally constant field approximation (LCFA), in which the
strong photon-monopole coupling is accounted for to all
orders, but the spacetime dependence of the external
electromagnetic field is treated perturbatively, and the
free-particle approximation (FPA), in which the spacetime
dependence of the external electromagnetic field is
accounted for to all orders, but the photon-monopole
coupling is treated perturbatively. In a limited region of
parameter space, we were also able to include both the
strong coupling and the spacetime dependence nonpertur-
batively by numerically solving a two-dimensional integro-

differential equation; however, we were not able to reach
the energy scales relevant for the LHC.
Starting from the LCFA and treating the spacetime

dependence of the electromagnetic field perturbatively,
we found that while the spatial dependence of the field
reduces the cross section polynomially, the time depend-
ence of the field increases the cross section exponentially,
and thus overall there is a significant boost. Physically, this
boost to particle production is due to the nonadiabaticity of
time evolution in the presence of the rapidly changing
electromagnetic field. Conversely, starting from the FPA
and treating the monopole-photon coupling perturbatively,
we found that monopole-photon interactions increased the
cross section exponentially. Physically, this is due to the
lower threshold energy for producing a monopole-anti-
monopole bound state which then disassociates, than for
producing free particles. Thus, both the monopole-photon
coupling and the spacetime dependence of the electromag-
netic field increase the monopole production cross section.
As a consequence, we expect the total cross sections
computed in both the LCFA and the FPA to underestimate
the true cross section. This is important for monopole
searches, as it means that these cross sections give a lower
bound on the expected number of monopoles produced,
and correspondingly a lower bound on the monopole mass
if there is no detection.
In the following section, we set up our notation and

coordinate system for studying heavy-ion collisions, and
review the electromagnetic fields produced in them. In
Sec. III we perform a detailed calculation of the momen-
tum distribution in the FPA, utilizing the worldline
instanton method, and in Sec. IV we assess the validity
and limitations of the results. In Sec. V, utilizing only very
general arguments, we present consequences and con-
straints regarding the momentum distribution of monop-
oles. The results of these general arguments are in
accordance with those of Sec. III. Finally, in Sec. VI
we summarize our results and discuss the remaining
theoretical uncertainties in light of upcoming experimen-
tal searches. The momentum distribution as calculated in
the LCFA is presented in Appendix A, and the total cross
sections in both the LCFA and FPA are collected in
Appendix B.

II. SETUP

Ultraperipheral heavy-ion collisions lead to the strongest
magnetic fields. In these collisions the two ions skim past
each other with the magnitude of the impact parameter b
equal to approximately twice the nuclear radius R, leaving a
relatively empty detector signal.2 The magnetic fields
produced are strongly spacetime dependent. Figure 1 sets1Also considered was the boost to the production by the

thermal energy of the quark-gluon plasma. This effect is crucial at
low center-of-mass energies, but is irrelevant at LHC energies
because the temperature of the plasma grows very slowly with
center-of-mass energy [19].

2Interestingly, ultraperipheral heavy-ion collisions have also
been studied in order to constrain Born-Infeld theory [25] and
consequently the magnetic monopoles predicted by that theory.
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up our coordinate system: z is the beam axis, along which
the ion velocities lie and x is chosen for each collision to be
the direction along which the impact parameter b ¼ bx̂
lies. The origin of the coordinate system is the spacetime
point at the center of the collision, with t ¼ 0 being the time
of closest approach, and as a consequence y ¼ 0 defines the
reaction plane.
In the rest frame of an ion, its electromagnetic field

is the Coulomb electric field. Boosted to ultrarelativistic
speeds, the ion and its field are Lorentz contracted along
the beam axis. A strong magnetic field is produced,
according to Ampère’s law, which circulates around the
ion. Superposing the field of two ions undergoing an
ultraperipheral collision, the peak of the electromagnetic
scalar invariant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − E2

p
occurs at the origin of our

coordinates, at which point the magnetic field is nonzero
and points in the y direction, while the electric field is
zero. This peak field varies over a region of size R in the x
and y directions, and a region of size R=γ in the z and t
directions. Here γ ≫ 1 is the Lorentz factor, equal to
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, where v is the 3-velocity. For a review of

the electromagnetic fields produced in heavy-ion colli-
sions, see Ref. [16].
In Ref. [24], we computed the electromagnetic fields

produced by heavy-ion collisions, assuming a classical
Saxon-Woods charge distribution. In the vicinity of the
origin, the numerically computed fields were found to be
well described by the following fit:

By ¼
B=2

½1þ ω2ðt − zÞ2�3=2 þ
B=2

½1þ ω2ðtþ zÞ2�3=2 ;

Ex ¼
B=2

½1þ ω2ðt − zÞ2�3=2 −
B=2

½1þ ω2ðtþ zÞ2�3=2 ; ð2Þ

where, for ultraperipheral collisions, the two fitting
parameters were given approximately by3

B ≈
Zeγ
2πR2

; ð3Þ

ω ≈
γ

R
: ð4Þ

For 5.02 TeV lead-lead collisions at the LHC, γ ≈ 2675,
B ≈ 8 GeV2, andω ≈ 80 GeV. All other components of the
electromagnetic field are subdominant, being suppressed
relatively by powers of 1=γ. We have also dropped the
much weaker x and y dependence of the field. Note that
while Eq. (2) is only a fit to the full result, it is nevertheless
an exact solution to Maxwell’s equations in vacuum.
Effects due to the spatial distribution of nucleons within

the ions, as well as the finite electrical conductivity of the
ions, will modify this picture in the near vicinity of the
origin. However, these cannot modify the asymptotic tails
of the electromagnetic field, which are fixed by the result
for point charges. Statistical fluctuations of Oð1Þ nucleons
will cause relative perturbations of order Oð1=ZÞ, where Z
is the ion charge. In fact, due to the exponential dependence
of the production cross section on the magnetic field, event-
by-event fluctuations will only increase the monopole yield
of a collider run. The contribution of quantum fluctuations
to the electromagnetic field is expected to be small [26,27],
though there remains some debate.
While we expect Eq. (2) to provide a reasonable

approximation to the electromagnetic fields in ultrarelativ-
istic heavy-ion collisions, many of our conclusions in this
paper will not depend on this specific functional form. In
fact, the crucial characteristics of the field for the momen-
tum distribution of monopole production are the time scales
and length scales on which it varies. These are all fixed by
the geometry of ultraperipheral collisions.

III. MONOPOLE MOMENTA IN THE FREE
PARTICLE APPROXIMATION

In the FPA to the production of magnetic monopoles, the
effect of the external electromagnetic field (that is produced
by the heavy ions) is assumed to dominate over the effect of
monopole-antimonopole interactions. To leading order in
this approximation, the coupling between monopoles and
the external field is treated exactly, whereas interactions
between the monopoles themselves are dropped. The
particle production rate and resulting momentum distribu-
tion can thus be found by solving the Dirac or Klein-
Gordon equations for the mode functions in the presence of
the external field. For sufficiently slow pair production, this

FIG. 1. A heavy-ion collision described in our coordinate
system, where z is the beam axis and the impact parameter b
lies along the x axis. For ultraperipheral collisions b ≈ 2R. At the
center of the collision, the electric fields of the two ions point in
opposite directions and therefore cancel, while the magnetic
fields point in the same direction and therefore double up.

3There are overall numerical factors ≈1 missing from Eqs. (3)
and (4) which can be found in Ref. [24] for the case of lead ions.
We have also dropped factors of v ≈ 1, as the expressions hold
only for ultrarelativistic collisions.
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calculation is semiclassical, and instanton methods are
applicable.
Magnetic monopoles couple to the dual electromagnetic

potential Aμ, which is related to the electromagnetic field
tensor by 1

2
ϵμνρσFρσ ¼ ∂μAν − ∂νAμ, where ϵμνρσ is the

Levi-Civita symbol. We use the mostly minus Lorentz
signature. A dual electromagnetic potential which leads to
the electromagnetic fields of Eq. (2) is

Ay ¼
ðB=2Þðt − zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2ðt − zÞ2

p þ ðB=2Þðtþ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2ðtþ zÞ2

p ; ð5Þ

and all other components are zero. In the context of QED,
the momentum spectrum of electron-positron pairs pro-
duced by similarly spacetime-dependent fields as Eq. (5)
has been studied in Refs. [28–33]. Within the FPA, the
methods used in these references are directly applicable to
monopole production, and their application would be
valuable.
To compute the longitudinal momentum spectra of

particles produced by Schwinger production, we adopt
the method of Ref. [34] utilizing complex worldline
instantons. This involves finding periodic solutions to
the equations of motion for particles in a given external
field, with complex spacetime coordinates. This method is
particularly useful because on the one hand it may be used
to analyze temporally and/or spatially inhomogeneous
external fields, and on the other hand it can be extended
to incorporate an arbitrary coupling constant [14,35],
moving beyond the FPA (not attempted in this work).
In Ref. [24], we argued that despite the complicated

spacetime dependence of the electromagnetic fields in
heavy-ion collisions, due to the symmetry under z → −z,
the exponential dependence of the total monopole pair
production probability is the same as that for the much
simpler field with only spacetime dependence through the
time coordinate:

Bi
ext ¼

B

½1þ ðωtÞ2�3=2 δ
i2; ð6Þ

where B and ω are the same constants as above.4

In the following, we will use Eq. (6) to compute the
momentum distribution of Schwinger-produced monopoles
in the FPA. This spatially homogeneous field reproduces
the time dependence of Eq. (2), which we have shown in
Ref. [24] is the most important aspect of the spacetime
inhomogeneity for the total production probability. It is,
however, spatially homogeneous, whereas Eq. (2) varies
strongly in the z direction. While this does not affect the
exponential dependence of the total production probability,

it is expected to affect the momentum distribution. In
Sec. IV, we argue that the resulting modification to the
momentum distribution is at most an Oð1Þ factor.
The relation of the dual potential to the magnetic field is

Bi
ext ¼ ∂iA0 − ∂0Ai. For the magnetic field of Eq. (6),

without z dependence, the dual gauge field reduces to

Aμ ¼
Btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðωtÞ2
p δμ2: ð7Þ

The worldline instanton method with imaginary t coor-
dinate (i.e., a Wick rotation) was used in Ref. [24] to
compute the production probability of monopole-antimo-
nopole pairs at zero initial momentum in the field given
by Eq. (6).
In this paper, we instead follow the approach of Ref. [34]:

rather than Wick rotating, we promote the spacetime
coordinates to complex numbers and search for periodic
solutions to the equations of motion with imaginary
proper time.
These equations are simply the Lorentz force law for

magnetically charged particles:

m̈t ¼ gB_y

½1þ ðωtÞ2�3=2 ;

mÿ ¼ gB_t

½1þ ðωtÞ2�3=2 ;

mẍ ¼ m̈z ¼ 0: ð8Þ

Here a dot denotes a derivative with respect to proper time τ
along the particle worldline, and g is the magnetic charge of
the particle. The first integral of these equations provides
the constraint

_t2 − _x2 − _y2 − _z2 ¼ 1; ð9Þ

motivating the description of τ as proper time even when it
takes an imaginary value. From the three spatial translation
symmetries, Noether’s theorem gives the conserved charges

px ¼ m_x;

py ¼ m_y − gAy;

pz ¼ m_z; ð10Þ

which may be interpreted as the canonical momenta
of the produced particles. Equation (9) can therefore be
rewritten as

_t2 −
1

m2
½p2

x þ ðpy þ gAyðtÞÞ2 þ p2
z � ¼ 1: ð11Þ

In order to determine the worldline trajectory, we must
specify the initial values xμðτ ¼ 0Þ and _xμðτ ¼ 0Þ. Due to
the translational symmetry of the magnetic field, we are

4See also Ref. [36], where the same conclusion was reached
for fields which are antisymmetric in directions transverse to
the field.
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free to fix the spatial position of the worldline, and without
loss of generality we can choose

xð0Þ ¼ yð0Þ ¼ zð0Þ ¼ 0: ð12Þ

The initial conditions on the proper time derivatives of the
spatial coordinates are equivalent to specifying canonical
momenta:

m_xð0Þ ¼ px;

m_yð0Þ ¼ py þ gAyðtð0ÞÞ;
m_zð0Þ ¼ pz: ð13Þ

For fields of the form (6), the final kinetic momentum is
related to the canonical momentum by

k2 ¼ py þ gAyðt → ∞Þ

¼ py þ
gB
ω

≈ py þ 2.4n GeV; ð14Þ

with the canonical and kinetic momenta being equal in
other directions. Here n denotes the number of Dirac charge
quanta the monopole carries. For the approximate numeri-
cal value of gB=ω, we have assumed ultrarelativistic lead-
ion collisions, as relevant to the LHC.
The remaining initial conditions to be chosen are tð0Þ

and _tð0Þ. These are specified by stipulating [34] that the
classical worldline trajectories pass through WKB turning
points, defined by

m2 þ p2
x þ ðpy þ gAyðtwkbÞÞ2 þ p2

z ¼ 0: ð15Þ

Note that because t, and thus Ay, is complex, this does not
imply that px ¼ py ¼ 0. Solving this equation gives a
complex-conjugate pair of turning points in the complex t
plane; the worldline solution interpolates between them.
We thus choose the initial condition

tð0Þ ¼ twkb: ð16Þ

The condition (11) requires the final boundary condition

_tð0Þ ¼ 0: ð17Þ

The fact that Eq. (15) is satisfied at τ ¼ 0 allows a
simplification of the _y initial condition: substituting
Eq. (15) into Eq. (13) gives

m_yð0Þ ¼ �im⊥; ð18Þ

where the “transverse mass” is defined as

m2⊥ ¼ m2 þ p2
x þ p2

z : ð19Þ

The sign indicates the direction in which the worldline is
traversed and does not affect the value of the action.
The probability of producing particles with a given

canonical momentum py is given by the imaginary part
of the effective action of the worldline solving Eq. (8) for
imaginary proper time.

nðm;pÞ ∼ exp ð−ImðSeff ½t�ÞÞ; ð20Þ

where [34]

Seff ½t� ¼
1

2

Z
T

0

�
mþm_t2

þ 1

m
½p2

x þ ðpy þ gAyðtÞÞ2 þ p2
z �
�
dτ; ð21Þ

with T being the imaginary worldline period. Using
Eq. (11) and the relation m_yð0Þ ¼ py þ gAy, one can show
that on shell

Seff ½t� ¼ m
Z

T

0

_t2dτ: ð22Þ

As a final observation, note that the physical mass m
factors out of the equations of motion and can be removed
entirely by rescaling τ → τ=m. The only mass dependence
in the action originates from the transverse mass term in the
initial condition for _y, Eq. (13). This means that the action
at arbitrary transverse momentum can be obtained by
solving the equations of motion for px ¼ pz ¼ 0, and
substituting m → m⊥. In the following, we drop the
transverse momentum terms for brevity.
For py ¼ 0 the equations of motion (8) are analytically

solvable: the solution has purely imaginary t and takes the
form of an ellipse in the ImðtÞ-ReðyÞ plane [24]. The ellipse
has semimajor and semiminor axes

at ¼
m
gB

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p ; ð23Þ

ay ¼
m
gB

1

1þ ξ2
; ð24Þ

where ξ ¼ mω=ðgBÞ is the Keldysh parameter, and the
imaginary part of the action is [37]

ImðS½xμ�Þ ¼
πm2

gB
4½Eð−ξ2Þ −Kð−ξ2Þ�

πξ2
: ð25Þ

Here E and K denote elliptic integrals. As previously
discussed, for ultrarelativistic heavy-ion collisions the
ξ ≫ 1 limit is relevant; in this case,

at ≈
m
gBξ

¼ 1

ω
; ð26Þ
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ay ≈
m

gBξ2
¼ 1

ξω
; ð27Þ

ImðS½xμ�Þ ≈
4m2

gBξ
¼ 4m

ω
: ð28Þ

The elliptical worldline solution becomes increasingly
prolate with increasing ξ; for very large values of ξ, the
worldline barely deviates from the imaginary t axis.
For py ≠ 0, the initial condition (15) means that t is no

longer purely imaginary; in Ref. [34], the solutions were
termed “complex worldline instantons.” These solutions are
not obtainable analytically, but can be determined using a
numerical prescription outlined in Ref. [34]; we have
carried out this calculation for monopoles produced in
collisions at LHC energies of 5.02 TeV per nucleon. The
effect of nonzero longitudinal momentum is to bend the
worldline away from the imaginary t axis: this is illustrated
in Fig. 2. Note that these worldlines are not symmetric
about the real t axis; worldlines with negative values of
longitudinal momentum would bend in the other direction.
The momentum spectrum resulting from our numerical

calculation is plotted in Fig. 3. It can be seen that the
probability distribution is well approximated by the
expression

nðm;pyÞ ∼ exp

�
−
4

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y

q �
; ð29Þ

which can be obtained by substitutingm →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

y

q
into

the zero-momentum result (25) and taking the high-
inhomogeneity limit. It therefore reproduces the known
analytic result at zero momentum. Note that this is not a
numerical fit, as there are no free parameters. We conjecture
that this relationship is valid for any field of the form (6),
provided that the Keldysh parameter

mω

gB
≈

m
2.4n GeV

≫ 1; ð30Þ

where n is the number of Dirac charge quanta the monopole
carries. Comparing the computed and approximated values
for monopole production at LHC energies with momenta
py ∈ ½−m=2; m=2� we find that Eq. (29) is accurate to
within around 1% for m ¼ 30 GeV, and is even smaller for
higher masses. Excluding a narrow window not yet
excluded by existing mass bounds [18], realistic monopole
models will satisfy the inequality (30).
As the transverse momentum affects the final result only

via a modification of the effective mass, the relative
momentum distribution is thus the isotropic distribution

nrelðm;pÞ≡ nðm;pÞ
nðm; 0Þ ¼ exp

�
−
4

ω

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

q
−m

	

:

ð31Þ

The kinetic momentum k measured by a detector is
related to the canonical momentum p by Eq. (14). This
means that a plot of the kinetic momentum spectrum would
be shifted by approximately 2.4n GeV compared to Fig. 3.
As the width of the peak shown is much greater than this,
the approximation of an isotropic kinetic momentum
distribution is also justified.
A similar analysis with, for example, the Sauter pulse

Bext
μ ¼ Bsech2

�
π

2
ωt
�
δμ2; ð32Þ

shows a similar momentum distribution, differing only by
an Oð1Þ factor. This suggests that the general structure of
the momentum distribution may be a consequence of the

FIG. 2. Three-dimensional plots of complex worldline instan-
tons in the field given by Eq. (6), for monopoles of mass 100 GeV
and a collision energy of 5.02 TeV per nucleon.

FIG. 3. Relative momentum distribution of monopole-antimo-
nopole pairs produced from the field (6), for collision energies of
5.02 TeV at various monopole masses. Dashed lines show
Eq. (31) for comparison.
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localization of the magnetic field to a time interval of order
1=ω, and not of its specific functional form.

IV. LIMITATIONS OF THE FREE PARTICLE
APPROXIMATION

The worldline method outlined in Sec. III is based upon
two assumptions that are ultimately not satisfied for
monopole production in highly relativistic heavy-ion col-
lisions. These were discussed in Ref. [24] where it was
judged that the worldline method does not apply at the high
energies relevant to monopole searches in modern particle
colliders. However, we will now argue that there is strong
evidence that Eq. (29) nevertheless provides a lower bound
on the absolute probability of producing monopoles with a
given mass. In Sec. V, we will also present general
arguments for why the relative momentum distribution
we have calculated is likely to be accurate to within an
Oð1Þ factor.
The first assumption made in deriving Eq. (29) is the free

particle approximation, in which worldline self-interactions
are neglected. As it is known that if monopoles exist they
must carry magnetic charge g in units of gD ≈ 20.7 ≫ 1,
these self-interactions are expected to significantly modify
the result. However, we argue that these strong coupling
effects should only enhance the monopole production
probability at all momenta, implying that experimental
searches in heavy-ion collisions can test the existence of
magnetic monopoles in a computable mass range.
In Ref. [24] we moved beyond the FPA and included

(resummed) leading-order corrections due to worldline
self-interactions for the inclusive cross section. This
removes the requirement that g must be small, and replaces
it with the condition

nγ ≪
8Ze2

π2
≈ 6 ð33Þ

for lead ions. This is also not satisfied for the highly
relativistic collisions that occur in modern particle col-
liders, but the results of Ref. [24] suggest that corrections
due to the strong coupling of the monopoles enhance the
probability of production. This was shown to be true not
just to leading order, but also to all orders for parameter
values such that mω=gB ∼ 1. Unfortunately, as previously
discussed, for present-day heavy-ion collisions we require
mω=gB ≫ 1, a region of parameter space we were unable
to access numerically, as this introduces a difficult-to-
resolve hierarchy of scales.
There is still, however, reason to believe that strong

coupling effects enhance monopole pair production even in
the strongly time-varying fields in heavy-ion collisions.
This can be seen by examining the shape of the worldlines
for mω=gB ≫ 1: the elliptical worldline solutions com-
puted in Ref. [24] become increasingly prolate in the
imaginary time direction as mω=gB increases. For very

strongly varying fields, the majority of the worldline
instanton consists of a pair of worldlines almost parallel
to the imaginary time axis; the monopoles are nearly
stationary. Indeed, Eq. (29) with p⃗ ¼ 0 may be obtained
by considering a monopole-antimonopole pair that are
created at t ¼ −i=ω and remain stationary until
t ¼ þi=ω, when they are destroyed. The action of a
stationary monopole-antimonopole pair is precisely what
we studied in Ref. [38]. The calculation in that paper was
carried out using lattice field theory techniques, valid to all
orders in the monopole coupling. We found that for ’t
Hooft–Polyakov monopoles, the action of a stationary
monopole-antimonopole pair, where the attractive force
between them is balanced by an external field, is lower than
if the pair were considered to be point particles interacting
by Coulomb forces. This holds until the magnetic field
becomes so strong that Schwinger production is expected
to become unsuppressed; in Ref. [38], we found that
’t Hooft–Polyakov monopoles would be produced by a
classical instability if external field strengths reach this
magnitude.
In addition, in Ref. [15] we computed the field-theoretic

instanton for Schwinger production of solitonic monopoles,
taking the full spacetime dependence of the instanton into
account but neglecting the spacetime dependence of the
external field. We again found a universal enhancement of
the monopole pair production rate compared to the FPA up
to the critical field strength.
The results of Refs. [15,38] also help to address the

second limitation of the worldline method: the fact that it
assumes monopoles are point particles. This assumption is
only valid if the minimal radius of curvature of the
worldline is large compared to the classical monopole
size, an approximation that was shown to break down in
Ref. [24] for ultrarelativistic heavy-ion collisions.
The calculation of Refs. [15,38] was performed with
composite monopoles, resolving their internal structure,
and so moves beyond the small-monopole assumption. As
previously discussed, the results of this calculation sug-
gest that the true production probability is enhanced
compared to Eq. (29).
The above arguments show that, at least for ’t Hooft–

Polyakov monopoles, the effects of finite size and strong
coupling are only expected to enhance monopole produc-
tion. For production of such monopoles, Eq. (29) is
expected to give a lower bound on the production prob-
ability. Combining this with the known classical trajectory
of the produced monopoles, it is possible to place a lower
bound on the number of monopoles of a given mass that
will be detected following a run of heavy-ion collisions, if
indeed such monopoles exist. Either such monopoles are
observed, or their nonobservation in turn can be used to
give a lower bound on the monopole mass.
One complication that is currently not resolved by any

known calculation of monopole production in heavy-ion
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collisions is the issue of whether the monopole “fits” in the
magnetic field. While the magnetic field is extended over a
region of order R in the x and y directions, in the z direction
it is much narrower due to Lorentz contraction along the
beam axis with a width of order R=γ. Taking the classical
radius of the monopole rcl ¼ g2=4πm, this suggests that

monopoles with m < γg2

4πR are large compared to the extent
of the magnetic field in the z direction. In the 5.02 TeV
lead-lead collisions at the LHC, this corresponds to a mass
of 2600 GeV. It is not yet known how to account for this
effect.
The limited spatial extent of the field in the z direction

also has consequences for our computation of the distri-
bution of the pz component of the monopole momentum.
Our calculation in Sec. III was performed in the back-
ground of the spatially homogeneous field (6), which
means that the dual potential may be written as a function
of time only, and the real part of the z coordinate along the
worldline remains constant. In general, the worldline
instanton solutions in the background of the full fields
(2) are not yet known, though due to the z → −z symmetry
the pz ¼ 0 family of solutions must be identical to the
corresponding solutions we have found. For pz ≠ 0, how-
ever, we expect the instanton solutions in the background of
the full field to deviate along the real z axis. This suggests
that the relative probability distribution of such solutions
will differ from our result (31), though the difference can be
at most of order Oð1Þ as no new scales enter the problem.

V. MONOPOLE MOMENTA FROM THE
UNCERTAINTY PRINCIPLE

The relative momentum distribution of Eq. (31) was
obtained using several approximations, most importantly
the neglect of monopole-antimonopole interactions (the
FPA) and finite-size effects. The arguments of Sec. IV
suggest that including such corrections is likely to increase
the overall monopole production probability. However,
those arguments have little to say about the relative
momentum distribution.
Interestingly, one can see that the width of the distribu-

tion saturates the time-energy uncertainty principle [39,40],
which suggests that the results may be generally valid, at
least as a lower bound on the momentum variance.
The time-energy uncertainty principle does not have the

same rigorous basis in quantum mechanics as the uncer-
tainty principles for conjugate observables, because time is
not represented by an operator. Therefore, the general
statement

ΔtΔE ≥
ℏ
2

ð34Þ

has many different interpretations and explicit formula-
tions. It is most commonly discussed as representing
uncertainty of measurement outcomes, but the aspect that

is the most relevant for our current discussion is the
preparation time-energy uncertainty, which is also on a
more solid theoretical footing than many other formula-
tions [41].
The preparation time-energy uncertainty refers to any

process of preparing a quantum system to a state with a
definite energy E, where the system is assumed to have a
continuous spectrum. The statement is that if the prepara-
tion process is carried out in a finite time Δt, then it is
impossible to achieve the desired energy with absolute
precision. Instead, the energy of the final state of the
quantum system will have uncertainty of at least ΔE given
by Eq. (34).
This corresponds to the situation in our setup. The

quantum fields are initially in their vacuum state, and
are then exposed to an external perturbation in the form
of the time-dependent background magnetic fields. This
perturbation, which lasts for a time Δt ≈ 1=ω, can be
considered as the preparation process. With some finite
probability, it takes the system to a final state consisting of a
monopole-antimonopole pair, with energy

E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

q
¼ 2ðmþ EkinÞ; ð35Þ

where Ekin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p
−m is the kinetic energy of a

single monopole. This statement does not depend on any
assumptions about the nature of the monopoles or
approximations.
In order for the monopoles to be produced at rest, this

energy would have to be exactly E ¼ 2m. However, the
uncertainty principle then tells us that it has uncertainty
ΔE ≥ ω=2, and therefore the typical kinetic energy must
satisfy the relation

hEkini ≳ ω

4
: ð36Þ

Comparing this with the predicted relative momentum
distribution (31), which we can write as

nrel ¼ exp

�
−
4Ekin

ω

�
; ð37Þ

we can see that it saturates this bound. This suggests that it
should be a good approximation even when the specific
assumptions made in the calculation are not valid: even
though the precise shape of the exact relative momentum
distribution can be different, its width cannot be any
narrower without violating the uncertainty principle. And
conversely, if the finite preparation time is the dominant
factor in determining the width of the distribution, then we
do not expect it to be any wider either.
This observation may also explain why the momentum

distribution (31) is approximately isotropic, even though
the external field of Eq. (6) defines a preferred direction in
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space. It is because it is primarily determined by the
quantum uncertainty due to the short duration of the
production process, rather than any details of that process
such as the direction of the field.
The position-momentum uncertainty principles impose

constraints on the momentum distribution, as well. In the x
and y directions, the electromagnetic field varies over a
distanceOðRÞ, the ion radius, and hence the corresponding
uncertainty relations imply that Δpx;Δpy ≳ 1=R. For
ultrarelativistic collisions, this is a much weaker condition
than Eq. (36), so it does not alter the momentum distri-
bution. In the z direction, the electromagnetic field extends
over a distance Δz ≈ 1=ω, leading to a constraint onΔpz of
the same order as Eq. (36). While this constraint on pz is
satisfied by our result (31) at the level of orders of
magnitude, a more complete calculation including the z
dependence may lead to an Oð1Þ correction to the shape of
the momentum distribution in the z direction, and hence to
an Oð1Þ anisotropy in this direction.
Finally, we note that uncertainty principles can only

constrain the relative momentum distribution, not the
absolute monopole-antimonopole pair production proba-
bility, for which the two approximations, LCFA and FPA,
predict quite different values (see Appendix B). As argued
in Sec. IV, there are strong indications that both of these
approximations underestimate the absolute production
probability. However, significant theoretical uncertainties
remain, and the discrepancies between these approxima-
tions give some guide as to their magnitude. For a
conservative estimate of the full probability distribution,
it would therefore be sensible to use the lower of the two
predictions for the overall normalization, but the relative
momentum distribution could be obtained using the FPA
worldline calculation. For a discussion of the momentum
distribution in the LCFA, see Appendix A.

VI. CONCLUSIONS

In this work, we have estimated the momentum distri-
bution of magnetic monopoles produced by the dual
Schwinger effect in the strong magnetic fields of ultra-
relativistic heavy-ion collisions. Our main result, Eq. (31),
gives an explicit formula for this momentum distribution
calculated within the FPA. While this approximation
misses contributions due to monopole-antimonopole inter-
actions, the general arguments of Secs. IVand V imply that
such contributions cannot qualitatively modify the result,
except for a possible Oð1Þ inhomogeneity in the z
direction. In particular, a more narrow momentum distri-
bution than what we have found would be in conflict with
the preparation time-energy uncertainty principle.
These results can be applied directly to future searches

for magnetic monopoles in heavy-ion collisions, such as the
MoEDAL experiment at the LHC, for which the potentially
large Standard Model backgrounds in heavy-ion collisions
do not pose a problem. More generally, we would like to

reiterate the importance of performing monopole searches
in heavy-ion collisions. This is because the strong, classical
magnetic fields in heavy-ion collisions are able to over-
come the usual exponential form factor suppression of the
production cross section [42,43]. Thus, searches in heavy-
ion collisions (unlike in proton or e−eþ collisions) have the
possibility to conclusively test, in a model-independent
way, the existence of magnetic monopoles in a given
mass range.
Regarding the mass reach of monopole searches in

heavy-ion collisions, some preliminary estimates can be
made using the total cross sections of the LCFA and the
FPA. In the LCFA, the total cross section is very strongly
mass dependent, and the mass reach of LHC heavy-ion
collisions is approximately

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3B=ð4πÞ

p
∼ 70n3=2 GeV. In

the FPA, depending on the precise experimental accep-
tance, the mass reach is Oð100 GeVÞ. These masses are at
least an order of magnitude lighter than typical expectations
for solitonic monopoles, but elementary monopoles may in
principle have any mass. While significant theoretical work
remains to calculate the true production cross section, both
of these approximations are expected to provide lower
bounds on the true cross section [24]. Thus, monopole
searches in heavy-ion collisions at the LHC have the
potential to conclusively test the existence of magnetic
monopoles with masses of Oð100 GeVÞ for the first
time [18].
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APPENDIX A: THE LOCALLY CONSTANT
FIELD APPROXIMATION

The LCFA is the leading order in an expansion in
derivatives of the electromagnetic field. Within this
approximation it is possible to include the monopole-
antimonopole interactions to all orders in the coupling
[13–15], and hence the LCFA is complementary to the FPA
which we have used in Sec. III. However, the LCFA is not
expected to be reliable for calculating the momentum
distribution of monopoles produced in ultrarelativistic
heavy-ion collisions. This is because, as argued in
Sec. V, the momenta of the produced monopoles are
chiefly due to the fast varying of the external electromag-
netic field. Nevertheless, we include the calculation of the
momentum distribution in the LCFA here, as it sheds some
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light on the orders of magnitude of various contributions to
the momentum spectrum.
The LCFA has been widely used to study the production

of electron-positron pairs in strong electromagnetic fields.
The earliest discussion of this goes back to Keldysh [44],
who recovered the constant-field result in the limit that the
Keldysh parameter goes to zero, ξ → 0. For a more recent
discussion of the LCFA in the context of the Schwinger
production of electron-positron pairs, see Refs. [45–47].
In the LCFA the rate of pair production at any given

spacetime point is given by the expression in a constant
electromagnetic field evaluated at that point. In our case,
the field, Eq. (2), satisfiesE · B ¼ 0 everywhere, and hence
one can always perform a boost (along the z axis) to set
E ¼ 0 at a given spacetime point. In the new frame, there is
only the magnetic field, and hence the pair production
probability is given by Eq. (1). Once produced, the charged
pairs are then evolved classically through the electromag-
netic field, according to the (dual) Lorentz force law. Thus,
the final momentum distribution in the LCFA has three
distinct contributions:

(i) the boost to the frame with E ¼ 0,
(ii) the initial momentum spread in quantum tunnel-

ing, and
(iii) the classical time evolution.

Note that in the FPA, points (ii) and (iii) are accounted for
together by the use of the canonical momentum; see
Eq. (14). Further, point (i) is neglected in Sec. III as the
z dependence of the field is dropped in Eq. (6).
The momentum distribution of particles produced by a

constant field was found by Nikishov [48]. In the directions
transverse to the magnetic field, the result is captured
simply by a shift of the form m2 → m2 þ p2⊥, where p⊥
denotes the transverse momentum, cf. Eq. (29). The
distribution of the longitudinal momentum, parallel to
the external field, pk, depends on the lifetime of the
field. For a constant field existing for a long time T,
the distribution is very close to flat, extending to
� R

gBdt ¼ �gBT. This can be understood as monopoles
being produced with zero longitudinal momentum, uni-
formly in time, and then accelerated by the field. This
observation forms the basis of the treatment in the LCFA,
in which particles are considered to be produced with zero
longitudinal momentum by quantum tunneling, in the
vicinity of some spacetime point. This approach to the
longitudinal momentum distribution misses transitory
phenomena related to the turning on and off of the field
[47], interference effects [29], as well as corrections
related to the Heisenberg uncertainty principle [49,50],
cf. also Sec. V. However, for sufficiently weak and slowly
varying fields it approximates well the correct momentum
distribution.
Combining the contributions (i) and (ii) to the momen-

tum distribution we find the initial momentum distribution,
before the classical time evolution,

nðt;x;pÞ ¼ gF
ð2πÞ3 exp

�
−
πm2

gF
þ g2

4

�

× exp
�
−

π

gF
ðp⊥ − q⊥Þ2

�
δðpkÞ; ðA1Þ

where

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −E2

p
; q⊥ ¼ mjEjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 −E2
p Ê × B̂; ðA2Þ

and the hats denote unit-normalized vectors. This formula
is valid for sufficiently slowly varying fields, and assuming
E ·B ¼ 0. For monopoles with spin s there is an overall
multiplicative factor of (2sþ 1), and the sum of the spins of
the produced pair must equal zero.
Inserting the specific form of the fields into Eq. (A1),

we find an initial probability distribution that is
peaked in spacetime around ðz; tÞ ¼ ð0; 0Þ, with a width
of size ω2Δt2 ∼ ω2Δz2 ∼ gB=ð3πm2Þ. The boost at non-
zero values of z which is needed to set the electric
field to zero induces a corresponding momentum of order
pz=m ≈ 3ω2zt ∼ gB=ðπm2Þ. The additional spread in the
transverse momenta which is due to the tunneling process is
of this same order, Δpz=m ∼ Δpx=m ∼ gB=ðπm2Þ. The
process of pair production is assumed to be semiclassical,
and hence the exponent of Eq. (A1) is large and negative.
As a consequence, gB=ðπm2Þ ≪ 1 and the initial momenta
are nonrelativistic.
This initial distribution of magnetic monopoles is then

evolved in time according to the dual Lorentz force law,

dpμ

dτ
¼ gF̃μνpν; ðA3Þ

where F̃μν ¼ 1
2
ϵμνρσFρσ is the dual electromagnetic field

tensor and τ is the proper time along the particle worldline.
The monopole-antimonopole pairs will be accelerated in
opposite directions by the magnetic field, and their trajec-
tories will be curved by the electric field. For monopoles
with nonzero spin, there will also be an additional term
coupling the resulting dipole moment to the external field;
(see, for example, Ref. [29]). The final momentum dis-
tribution is achieved after the monopoles have left the
interaction region, at t ¼ ∞ on the celestial sphere.
The final momentum distribution predicted within the

LCFA is complicated, but we can extract some general
features. To understand the magnitude of contribution
(iii) to their final momenta, we consider the simple case
of a monopole-antimonopole pair produced at the origin,
and then accelerated apart by the magnetic field. Their
asymptotic momenta are given by

py ¼ �g
Z

∞

0

dtBy ¼ � gB
ω

≈� Zeg
2πR

: ðA4Þ
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Note that while a stronger magnetic field is produced at
larger center-of-mass energies, the field lasts for a corre-
spondingly shorter time, in such a way that the final result is
independent of the center-of-mass energy. For lead ions,
Eq. (A4) gives py ≈�2.4n GeV. As the peak of the initial
monopole production is at the origin, and at zero initial
momentum, the final momentum distribution will have two
peaks at py ≈�2.4n GeV. If we consider particles starting
at nonzero velocities instead of at rest, the same conclu-
sions will hold regarding the change of momentum due to
the field, as the momentum evolution equations are linear.
In summary, the LCFA predicts a nonrelativistic initial

momentum distribution which receives additive corrections
from the time evolution, of order a few GeV. For the
ultrarelativistic heavy-ion collisions performed at the LHC,
this momentum distribution is much more strongly peaked
around zero than the result from the FPA, Eq. (31). As a
consequence, for such ultrarelativistic collisions, the pre-
diction of the LCFA violates the preparation time-energy
uncertainty principle. This is not surprising, as the LCFA
treats the production process as adiabatic, whereas it is in

fact closer to the opposite limiting case, of an instantaneous
process.

APPENDIX B: TOTAL CROSS SECTIONS

For ease of reference and consistency of notation, we
quote here the total cross sections calculated in the LCFA
and FPA approximations [24], after integration over the
momentum distribution. These read

1

2πb
dσLCFA
db

≈
ðgBÞ4

18π3m4ω2ΩxΩy
exp

�
−
πm2

gB
þ g2

4

�
; ðB1Þ

1

2πb
dσFPA
db

≈
ðgBÞ4

18π3m4ω2ΩxΩy
exp

�
−
4m
ω

�
; ðB2Þ

where B and ω are functions of the collision energy and
impact parameter b. The remaining factors, Ωx ≈ 2=b and
Ωy ≈ 1=R, are the slow inverse decay lengths in the x and y
directions.
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