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Abstract 42 

 43 

The source of sedimentary organic matter in lakes can help to elucidate climate and catchment variation 44 

and processes that reflect lake development. Common techniques for tracing sediment organic matter 45 

sources, such as the stable isotopes and elemental concentrations of C and N, can be too imprecise to 46 

identify the specific provenance of organic matter. By contrast, organic geochemical techniques such as 47 

gas or liquid chromatography and nuclear magnetic resonance provide detailed organic molecular 48 

characterisation but are both expensive and time consuming. Fourier Transform Infrared (FTIR) 49 

spectroscopy is a rapid, non-destructive, and well-established method for determining the constituents of 50 

lake sediments. However, the potential for identifying the sources of organic matter in lake sediments has 51 

not been fully explored. In this study, we assess the extent to which FTIR can be used to identify varying 52 

organic matter sources through analysis of modern autotrophs from Blue Lake, North Stradbroke Island, 53 

Australia. We investigated spectral processing techniques to identify the approach that could most 54 

accurately classify autotroph samples. Three autotroph groups were correctly classified 90% of the time. 55 

Processed spectra then became the basis of a model that used multivariate random forests to estimate 56 

sediment organic matter composition source from a sediment record from Blue Lake that spans the last 57 

7500 years. FTIR-based estimates suggested that throughout the history of the lake, algae contributed the 58 

highest amount of organic matter to the sediment samples. These results allow a refinement of a previous 59 

study of C:N and δ13C from the same core and suggests that alterations in C:N and, particularly, δ13C 60 

reflect chemical changes in algae through time. This study demonstrates that FTIR spectroscopy is a 61 

promising tool to elucidate sources of sediment organic matter in lake sediments.  62 

 63 

 64 

 65 

 66 
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1. Introduction 67 

 68 

Organic matter is an important fraction of lacustrine sediments (Meyers and Teranes 2002). It is 69 

comprised of a complex mixture of organic compounds such as lipids, carbohydrates, and proteins 70 

produced by organisms that once lived in, and around, lakes. The accumulation of these compounds 71 

records important information about past lake dynamics, catchment processes, and climate (Meyers 1994; 72 

Meyers and Ishiwatari 1993; Leng and Marshall 2004; Anderson et al. 2018; Atahan et al. 2015; Cadd et 73 

al. 2018; McGowan et al. 2018).  74 

Methods such as the analysis of the isotopic and elemental composition of sediment organic 75 

matter are well established and can be powerful tracers of sediment organic matter origin in lacustrine 76 

studies (Leng et al. 2006; Leng and Marshall 2004; Maxson et al. in review). However, the interpretation 77 

of organic matter sources from these proxies can be ambiguous. Alternative methods that provide 78 

chemical data to identify specific sources of organic matter include methods such as fatty acid analysis 79 

(Xu et al. 2019), n-alkanes (Bush and McInerney 2013; Tao et al. 2016), gas chromatography-mass 80 

spectrometry (Bravo et al. 2017; Ninnes et al. 2017), nuclear magnetic resonance (Simpson et al. 2018; 81 

Simpson and Hatcher 2004), or ancient DNA (Anderson-Carpenter et al. 2011; Ahmed et al. 2018). 82 

However, these methods are often costly, time consuming, and can require large amounts of sediment. 83 

Fourier transform infrared (FTIR) spectroscopy is a widely used method in material and soil 84 

science (Allen et al. 1994; Artz et al. 2008; Beć et al. 2020; High and Penkman 2020; Vogel et al. 2008; 85 

Rosén et al. 2010) and is a rapid, non-destructive, and cost-effective method for measuring properties of 86 

sediment (Korsman et al. 2002). FTIR spectroscopy produces a vibrational spectrum due to the interaction 87 

of infrared light wavelengths with chemical bonds which allows for the identification of constituent 88 

functional groups in a sample (Colthup 2012; Beć et al. 2020). Information on multiple biological, 89 

geochemical, and sedimentological properties can be obtained relatively quickly from a single spectrum, 90 
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and samples do not require complex preparation. However, the complex mixture of organic and 91 

mineralogical constituents of lacustrine sediments can overlap and obscure individual constituent signals. 92 

Typically, partial least squares regressions have been used to tie biogeochemical information to FTIR 93 

spectral information (Rosén et al. 2010; Vogel et al. 2008; Cadd et al. 2020). This technique has been 94 

utilised to estimate the concentration of total organic carbon (TOC), total nitrogen (TN), biogenic silica, 95 

and charcoal in lake sediment cores (Meyer-Jacob et al. 2014; Rosén et al. 2010; Vogel et al. 2008; Cadd 96 

et al. 2020; Constantine et al. 2021). These studies highlight specific regions of sediment spectra that are 97 

tied directly to organic matter (Rosén et al. 2010; Vogel et al. 2008), which could enable the identification 98 

of the source of sedimentary organic material. However, the use of PLS methods to measure C:N via 99 

FTIR is laborious and time consuming, and FTIR measurements of isotopes requires an electron 100 

microscope (Hachtel et al. 2019). Therefore, alternative data processing techniques are needed to enable 101 

identification of sediment organic matter sources with FTIR spectra. 102 

Random forests is a machine learning technique for classification and regression that operates by 103 

constructing – or ‘growing’ – multiple decision trees that classify elements based on the aggregate of 104 

individual trees (Breiman 2001; Ho 1995, 1998). Random forests can be used on large datasets because 105 

random sub-sampling allows trees to grow without suffering from overfitting (Ho 1995; Breiman 2001). 106 

Furthermore, random forest models are a particularly useful method to interrogate high dimensional 107 

datasets like FTIR spectral data. Random forests have the potential to associate relevant FTIR signatures 108 

to contemporary lake organic matter sources and for resulting models to then infer past contributions from 109 

these sources using lake sediment FTIR spectra. 110 

Here we explore, for the first time, a method for distinguishing the sources of organic matter in a 111 

lacustrine sediment sequence based on FTIR spectroscopic data. We use a dataset of modern autotrophs 112 

from Blue Lake, North Stradbroke Island, Australia to train a random forest model. Then, mixtures of 113 

contemporary autotrophs are used as an independent test of model predictive ability. Finally, the model is 114 

applied to sediment core samples to infer past sediment organic matter sources in Blue Lake. Our results 115 
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are compared to pre-existing C:N and δ13C data from the same sediments to explore differences between 116 

these proxies (Maxson et al. in review). FTIR data may be able to refine interpretation of the Holocene 117 

sedimentary organic matter record from Blue Lake which has been hampered by the ambiguous nature of 118 

C:N and δ13C from wetlands on North Stradbroke Island (Cadd et al. 2018; Maxson et al. in review).  119 

 120 

2. Methods 121 

 122 

2.1 Study site 123 

 124 

North Stradbroke Island (27°27’12”S, 153°28’56”E; Figure 1) is the second largest sand island 125 

on Earth and is part of the massive south-east Queensland coastal dune fields (Patton et al. 2019). Blue 126 

Lake is a groundwater “window” lake that intersects with the regional groundwater table within the sand 127 

mass of the island (Barr et al. 2013). The connection to the groundwater table has been invoked to explain 128 

the inference, derived from sediment proxy analyses, that Blue Lake has changed little since its inception 129 

during the Holocene and that it is one of the most stable lake systems in Australia (Barr et al. 2013). This 130 

hypothesis has recently been refined by new interpretations of the organic matter record from Blue Lake 131 

that have shown that lake nutrient concentrations responded to changes in climate over the past 7,500 132 

years (Maxson et al. in review). 133 

The vegetation of the Blue Lake catchment is comprised of open sclerophyll woodland, 134 

dominated by Eucalyptus and Casuarinaceae tree species (Moss et al. 2013), and includes Banksia, 135 

Melaleuca, and various heath species as understorey vegetation (Barr et al. 2013). Aquatic vegetation 136 

(collectively referred to as ‘aquatic macrophytes’) is dominated by the emergent macrophyte Lepironia 137 

articulata (Retz.) Domin and the submerged Eleocharis difformis S.T.Blake, with small populations of 138 



6 
 

Cycnogeton procerus (R.Br.) Mering & Kadereit, Gahnia sp., and Myriophyllum sp.. Cyanobacteria and 139 

diatoms (collectively referred to as ‘algae’) primarily grow epiphytically on aquatic macrophytes and 140 

epiphytically on fallen trees in the lake. Epiphytic algae can become detached and form macroscopic 141 

‘balls’ which are found on the lake floor. Generally, these algal ‘balls’ are found in the centre of the lake, 142 

far from any aquatic macrophyte stand or bed (Maxson et al. in review).  143 

 144 

2.2 Autotroph collection and classification 145 

 146 

Autotroph samples were collected at sites every 200 metres around the perimeter of the lake 147 

(Maxson et al. in review). Samples include terrestrial leaves and wood (Banksia sp., Casuarinaceae, and 148 

Eucalyptus sp.), aquatic macrophytes (Lepironia articulata, Eleocharis difformis, Cycnogeton procerus, 149 

Myriophyllum sp., and Gahnia sp.), and algae dominated by cyanobacteria (Hapalosiphon pumilus 150 

Kirchner ex Bornet & Flahault, Symphyonema karboorum G.B.McGregor, and Scytonema mirabile 151 

Bornet). Samples were separated for identification and for FTIR analysis. For identification, algal 152 

material was preserved in situ with 2% buffered formaldehyde. Sub-samples were mounted on flat slides 153 

and observed at 400× magnification. A total of 300 algal units were identified from each sample to the 154 

lowest taxonomic rank and results expressed as proportional abundance (Barbour et al. 1999). For FTIR 155 

determination, fresh samples were freeze dried and ground into a fine powder using a mortar and pestle 156 

for analysis. Additional samples included woody debris of unknown origin collected from the shallow, 157 

near shore environments of the lake.  158 

Autotroph data were categorised at several hierarchical levels to test whether FTIR data could 159 

successfully identify each different level, namely: individual sample, genera, and group (Table 1). The 160 

autotroph groups were algae, aquatic macrophytes, and terrestrial plants. Approximately half of the 161 
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samples were not identified to species level (Table 1), and therefore groupings by species were not used. 162 

Terrestrial samples were split into ‘leaf’ and ‘stick’ samples to identify differences in the sample types.  163 

 164 

2.3 Mixtures of autotroph groups  165 

 166 

To test if the composition of organic matter could be accurately determined from FTIR spectra, 167 

we created mixes of autotroph material. For each autotroph group (algae, aquatic macrophyte, and 168 

terrestrial; Table 1), a one-gram representative sample was made by mixing equal parts of all the 169 

individual samples of that group. For example, in the algae group, which contained nine individual 170 

samples, 1/9 g of each individual algae sample was combined to create the representative algae sample.  171 

The representative autotroph group samples were then used to create amalgamations with known 172 

concentrations of each group. Three types of mixtures were created, one with 50% dominance, one with 173 

80% dominance, and one with equal weighting (33% by weight of each group). This was repeated for 174 

each of the three groups, resulting in seven unique sample mixtures (Table 2). 175 

 176 

2.4 Sediment core samples 177 

 178 

Sediments were sub-sampled from a 2.4 metre core from Blue Lake that has previously been 179 

analysed for C:N and δ13C (Barr et al. 2013; Maxson et al. in review) (Table 3). The core had largely 180 

homogenous sediments with no distinguishing features (Barr et al. 2013; Maxson et al. in review). Seven 181 

samples were chosen to represent points of major changes in the C:N and δ13C of sediment organic 182 

matter. Two additional surface samples were collected near the core site (Surface 1) and 200 metres north 183 

of the core site (Surface 2) and were also analysed via FTIR (Table 3) (Maxson et al. in review). Surface 184 
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samples were not analysed for C:N and δ13C. All samples were freeze dried and ground to a fine powder 185 

in a mortar and pestle prior to FTIR analysis.  186 

 187 

2.5 FTIR analysis and data processing 188 

 189 

2.5.1 Sample analysis 190 

 191 

For each sample (autotroph, mixture, and sediment), a small amount of material (<1 mg) was 192 

suspended in acetone to allow for easy mounting. The suspension was pipetted onto a 0.5 mm-thick 193 

calcium fluoride disc allowing time for the acetone to evaporate prior to analysis. IR spectra were 194 

generated using a Cary 670 FTIR spectrometer integrated with a Cary 620 FTIR microscope (Agilent, 195 

Santa Clara, CA, USA). The FTIR microscope was fitted with a 15× Vis/IR objective and a 64 × 64-pixel, 196 

liquid nitrogen cooled focal plane array detector purged with dry air. Each pixel constituted an area of 5.5 197 

µm2, providing a total scanning area of 352 µm2. Scanning was conducted in transmission mode at a 198 

resolution of 4 cm-1 over a spectral range of 4000 to 950 cm-1. Three replicate measurements per sample 199 

disc were collected. Replicates were determined by averaging the 128 scans collected per measurement 200 

with the Resolutions Pro software. Background spectra were collected and automatically subtracted prior 201 

to each set of replicates.  202 

 203 

2.5.2 Autotroph spectra processing and classification 204 

 205 
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Data processing was based on Jardine et al. (2019a), with publicly available code (Jardine et al. 206 

2019b). Data processing was carried out in R v.3.6.3 (R Core Team 2020) using the packages baseline 207 

v.1.2-3 (Liland et al. 2010), caret v.6.0-86 (Kuhn et al. 2016), class v.7.3-17 (Venables and Ripley 2002), 208 

corrplot v.0.84 (Wei and Simko 2017), e1071 v.1.7-3 (Meyer et al. 2014), prospectr v.0.2.0 (Stevens et al. 209 

2020),  MASS v. 7.3-51.6 (Venables and Ripley 2002), and RColorBrewer v1.1-2 (Neuwirth and Brewer 210 

2014). Spectra were z-score standardized to correct for differences in absorbance intensity by subtracting 211 

the mean value and dividing by the standard deviation (Duarte et al. 2004; Jardine et al. 2015). Baseline 212 

drift was reduced by subtracting a second-order polynomial baseline from each spectrum (Jardine et al. 213 

2019a). The z-score standardized, baseline corrected data are referred to as ‘unprocessed spectra’. 214 

Replicates of individual samples were split into training (2/3) and validation (1/3) datasets to test the 215 

classification potential of the data.  216 

We used k nearest neighbour (k-nn) classification to identify groups of samples based on the 217 

similarity of spectra (Jardine et al. 2019a; Julier et al. 2016; Varmuza and Filzmoser 2016). The 218 

parameter k is the number of most similar spectra, or ‘nearest neighbours’, used for classification and is 219 

manually selected. When k = 1, the object is assigned to the class of its nearest neighbour. When k > 1 the 220 

classification is determined by the average of the selected number of nearest neighbours. Classification in 221 

the case of a tie is determined randomly (Venables and Ripley 2002). Euclidean distance was used to 222 

determine between-sample spectral similarity.  223 

In addition to k-nn classification, data processing consisted of generating first and second 224 

derivatives of spectral data and applying Savitzky-Golay smoothing (Zimmermann and Kohler 2013) to 225 

find which data derivative had the highest classification potential. Data derivatives are used because they 226 

can amplify the signals in spectra to better differentiate samples. However, data derivatives generally 227 

amplify random noise in the data (Tsai and Philpot 1998). Savitzky-Golay smoothing is a technique that 228 

applies an algorithm which approximates the spectra by polynomial least-square fitting to a moving 229 
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window of size ω. To smooth the random noise in the data derivatives, Savitzky-Golay smoothing was 230 

applied to optimise the signal to noise ratio and smoothed data are referred to as ‘processed spectra’.  231 

Leave-one-out cross-validation (LOOCV) was conducted on the training dataset of unprocessed, 232 

first, and second derivative data to determine the best combination of parameters (k and ω) for 233 

classification (Jardine et al. 2019a). LOOCV removes one sample from a dataset and runs a model on the 234 

remaining datapoints (n-1). This process is repeated n times and classification accuracy can then be 235 

calculated based on the percent correct classification across the LOOCV procedure. A range of window 236 

sizes (ω = 5 to ω = 43) and nearest neighbours (k = 1 to k = 20) were tested with LOOCV. The Savitzky-237 

Golay polynomial order (p) was fixed at three for simplicity, because p must be larger than the order of 238 

the derived data (two being the highest in this case).  239 

The best performing combination of parameters for k and ω was applied to the training dataset to 240 

create a model. This model was applied to the validation dataset and classification accuracy was 241 

calculated from the percentage of correctly predicted classifications divided by total classifications. We 242 

used confusion matrices (Stehman 1997) to examine the inter- and intra-taxon patterns of classification 243 

accuracy (Jardine et al. 2019a). Confusion matrices compare the value predicted by the LOOCV to the 244 

reference. A diagonal line in the confusion matrix shows 100% correct classification, and deviations from 245 

the diagonal line can show how samples have been misclassified. Hierarchical cluster analysis with the 246 

Euclidean distance metric and average linkage method as well as principal components analysis (PCA) 247 

were used to visualise relationships of data clusters.  248 

 249 

2.6 Estimating organic matter origin in sediment samples 250 

 251 

Autotroph data were used to predict sediment organic matter composition using multivariate 252 

random forest analysis. The R (R Core Team 2020) packages ‘vegan’ v.2.5-6 (Oksanen et al. 2019), 253 
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‘randomForestSRC’ v.2.9.3 (Ishwaran et al. 2007) and ‘randomForestExplainer’ v.0.10.1 (Paluszynska et 254 

al. 2020) were used. To compare autotroph and sediment samples, spectral data were truncated to 1800 – 255 

1200 cm-1, the spectral region that contains the majority of sediment organic matter compounds (Rosén et 256 

al. 2010; Vogel et al. 2008). A PCA was run to determine if plant and sediment data could be compared. 257 

Methods and results may be found in the Supplementary Material (Figure S7). Random forests operate by 258 

bootstrapping parameters from a dataset to build prediction trees, with approximately one-third of the 259 

original dataset omitted from the bootstrap to build each individual tree (Breiman 2001; Biau and Scornet 260 

2016). Each tree becomes a ‘test set’ of the original data. Aggregating trees against the unused data from 261 

the bootstrap gives an estimate of model error (out-of-bag error) without requiring an independent 262 

validation dataset (Biau and Scornet 2016).  263 

Hyperparameters of the random forests model can be tuned against the out-of-bag error to find 264 

the optimal values of each. Parameters generally used are mtry (number of features scanned before 265 

splitting), ntree (number of trees to grow), and node_size (minimal number of terminal nodes). Using the 266 

R package ‘caret’ v6.0-86 (Kuhn et al. 2016; Brownlee 2020), each hyperparameter was tested over a 267 

range of values: mtry (1-89; 89 is the number of predictors in the dataset); ntree (100-2000); and 268 

node_size (1-15) to find the value of each that produced the highest accuracy in the model 269 

(Supplementary Material, Figure S5 and S6). The best model parameters were ntree = 500, node_size = 1, 270 

and mtry = 9 with an out-of-bag error of six percent (Supplementary Material, Figure S5 and S6).  271 

Multivariate random forest analysis applied to autotroph samples was used to train a regression 272 

model which was subsequently used to estimate sediment organic matter composition. Validation of the 273 

model was quantified by the out-of-bag error and tested on the mixtures of known compositions. 274 

Predicted composition of sediment data was calculated and plotted against sediment age to compare with 275 

previously measured C:N and δ13C data (Maxson et al. in review). 276 

 277 
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3. Results 278 

 279 

3.1 Autotroph classification 280 

 281 

Autotroph FTIR spectra show distinct peaks and unique signatures (Figure 2). The k-nearest 282 

neighbour classification accuracy of the validation dataset was highest at the group level (96%; Figure 3a) 283 

lower at the genus level (82%), and the lowest at the individual sample level (71%) (Supplementary 284 

Material, Figure S1 and S3). Parameters with the highest classification accuracy were second derivative 285 

smoothing with k = 1 and ω = 35. Three groupings in the samples became apparent from the analyses: 286 

algae, aquatic macrophytes, and terrestrial plants (Figure 3). Aquatic macrophyte samples (Myriophyllum, 287 

Eleocharis difformis, Gahnia, Lepironia articulata, and Cycnogeton procerus) were the most frequently 288 

misclassified, as other macrophytes, (Supplementary Material, Figure S1 and S3) at the individual sample 289 

and genus levels compared to the other sample types. The uncertainty of the aquatic macrophyte 290 

classification represented a substantial proportion of the uncertainty of all samples. However, only one 291 

aquatic macrophyte (Eleocharis difformis) sample was misclassified as a non-macrophyte (Symphyonema 292 

karboora, a cyanobacterium. 293 

Terrestrial samples were only misclassified as other terrestrial samples, except for one 294 

Casuarinaceae leaf and one Casuarinaceae stick sample, which were misclassified as Symphyonema 295 

karboorum (Supplementary Material, Figure S1 and S3). Generally, the leaf samples were misclassified 296 

more frequently than the wood samples. Algae (Hapalosiphon pumilus, Scytonema mirabile, and 297 

Symphyonema karboorum) were the best classified of the three groups. There were no misclassifications 298 

in the validation dataset at any level. Symphyonema karboorum samples were misidentified as other algae 299 

in the training datasets (Supplementary Material, Figure S1 and S3).  300 
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Processed spectra principal component analyses show distinct clusters (Figure 3c). Algae and 301 

terrestrial samples are the two most dispersed groups. Algae have low PC 1 scores, and terrestrial samples 302 

have high PC 1 scores, with both groups spread evenly across PC 2. Aquatic macrophytes plot between 303 

algae and terrestrial clusters, near the PC space origin. PC 1 and 2 loadings show variation is mostly in 304 

the wavenumbers 1800 – 950 cm-1 with small loadings in the 3000 - 2800 cm-1 in PC 2 (Figure 3d).  305 

Cluster analysis generally agrees with the PCA and with data clustered into three groups: 306 

terrestrial, aquatic macrophyte, and algal samples (Figure 3e). The algal cluster contains only algae 307 

samples, and the aquatic macrophyte cluster contains one misclassified algal sample. The terrestrial 308 

cluster contains five misclassified macrophyte samples and three misclassified algal samples (Figure 3e). 309 

The misclassified macrophyte, Myriophyllum, and algal samples are anomalous, with no obvious 310 

explanation for why they cluster with terrestrial samples. Lepironia is cellulose and lignin rich and 311 

physiologically robust (Stephens and Sharp 2009), which may explain why it clusters with terrestrial 312 

samples, rather than other aquatic macrophytes.  313 

 314 

3.2 Random forest model performance and estimation 315 

 316 

Testing of hyperparameter values led to a range of out-of-bag error between 5 and 15 percent, 317 

with an average value of 10 percent. This indicates that model classification accuracy varied between 85 318 

and 95 percent at all values and combinations of the selected model hyperparameters and is interpreted to 319 

suggest good model performance. 320 

Mixture composition estimation successfully identified the dominant autotroph in four of six 321 

mixes with a dominant autotroph, and poor estimation of the equal mixture (Table 2). In the equal and 50 322 

percent mixes, aquatic macrophytes were consistently overestimated with algae and terrestrial 323 
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underestimated. In the 80 percent mixes, dominant plant type was identified, and estimated composition 324 

was within out-of-bag error (10%) of the actual value (Table 2). 325 

The predicted composition of sediment organic matter sources was calculated (Table 3) and 326 

plotted against sediment age (Figure 6a) to compare with previous qualitative estimates of sediment 327 

composition (Barr et al. 2013 and Maxson et al. submitted). FTIR-based sediment source composition 328 

estimated that algae was the dominant source of organic matter throughout the record, ranging between 74 329 

and 90 percent of the organic matter. One seemingly anomalous sediment sample at ~3.8 ka estimated 330 

algae at 20 percent and terrestrial composition at 70 percent. Terrestrial and aquatic macrophyte estimates 331 

were generally similar and varied between two  and 19 percent of the sediment organic matter.  332 

 333 

4. Discussion 334 

 335 

4.1 FTIR-based identification of autotrophs 336 

 337 

  FTIR spectra of autotroph samples show distinct peaks that have previously been identified in 338 

algae and vascular plants (Cocozza et al. 2003; Filip and Bielek 2002; Grube et al. 2006; Haberhauer et 339 

al. 1998; Her et al. 2004; Kansiz et al. 1999; Murdock and Wetzel 2009; Nelson 1991; San-Blas et al. 340 

2011; Traoré et al. 2016; Yang et al. 2007; Zaccheo et al. 2002; Zeroual et al. 1995; Beć et al. 2020; 341 

Gonzalez-Torres et al. 2017). These include a broad OH band from 3600 – 3000 cm-1, aliphatic compound 342 

peaks at 2925 cm-1 and 2850 cm-1, C=O stretching at 1740 cm-1, amide I (C=O stretching) at 1640 cm-1, 343 

lignin or cellulose (absorbed O-H or conjugated C-O) in the band 1650 – 1600 cm-1, amide II (C-N 344 

stretching and N-H deformation) at 1550 cm-1, and polysaccharides in the 1180 – 950 cm-1 region (Figure 345 

2a). 346 
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The major differences between autotroph groups are seen in the spectral region at wavenumbers 347 

lower than 1800 cm-1 (Figure 3d) and will be referred to as the ‘total organic carbon (TOC)’ region. This 348 

region is dense with chemical information typical of organic materials due to the number and variety of 349 

bonds to carbon (and nitrogen) located in this part of the spectrum. Clear separation between algae and 350 

terrestrial plants can be seen in the polysaccharide, lignin, and amide I regions of the spectra (regions 7, 5, 351 

and 4 respectively in Figure 2a). The differences in the polysaccharide region between algae and 352 

terrestrial plants suggest subtle differences in the polysaccharides of each. Namely, vascular plants have a 353 

higher relative abundance of structural polysaccharides (cellulose or lignin; Figures 2a and 4a) than algae 354 

(Meyers 1994; Liu et al. 2020), and algae have a higher relative abundance of storage polysaccharides 355 

(generally glycogen) than vascular plants (San-Blas et al. 2011; Kansiz et al. 1999). Specifically, algae 356 

from Queensland wallum lakes form a bulky, water stable polysaccharide gel in which the cells live 357 

(McGregor 2018). Algae have a higher relative abundance of nitrogen than vascular plants which is in 358 

proportion to the high relative abundance of proteins in the algal matrix (Meyers and Teranes 2002; 359 

Meyers and Ishiwatari 1993). Aquatic macrophytes have peaks in both the lignin and amide I regions and 360 

a strong cellulose signal in the polysaccharide region of the spectra, which is similar to terrestrial plants 361 

(Figure 2). This suggests aquatic macrophytes are intermediate in chemical composition between algae 362 

and terrestrial plants in terms of polysaccharides and proteins.  363 

The spectral region of 1800 – 1200 cm-1 contains most of the information that permits 364 

discrimination between groups (Figure 2 and 3). The high classification accuracy using full (96%; Figure 365 

3a, Section 3.1) or truncated spectra (90%; Section 3.2) supports this interpretation. Exclusion of the 366 

polysaccharide region (1200 – 1000 cm-1) may be the cause of the lower classification accuracy, given the 367 

differences between samples in this spectral region, while higher wavenumber peaks (> 1800 cm-1) are 368 

generally similar between samples (Supplementary Material, Figure S2 and S4; Figure 2). Peaks in amide 369 

I and II, lignin, and lipid spectral regions (Figure 2), as well as small differences in amide IV (proteins; 370 

1235 cm-1) and aromatic hydrocarbons (amide III proteins; 1460 – 1455 cm-1) (Beć et al. 2020), most 371 
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likely explain differences between autotroph groups in the 1800 – 1200 cm-1 region. The marked 372 

physiological and ecological differences between sample types, i.e. algae, aquatic macrophyte, and 373 

terrestrial (Maxson et al. in review) are a likely driver of the strong model prediction (Figure 3).This 374 

suggests our data groups in an intuitive way, and that groupings are identified based on known differences 375 

between autotroph types.  376 

Our analyses of controlled mixtures of the different plants and algae show that FTIR has promise 377 

for identifying sediment organic matter sources. When the proportions of autotrophs are similar (i.e. the 378 

50% mixes), estimation can be difficult (Table 2). However, when the organic matter compositions are 379 

dominated by one autotroph group (i.e. the 80% mixes) model performance improves (Table 2). This is 380 

because the mixtures tend to become more ‘macrophyte-like’ (i.e. intermediate between algae and 381 

terrestrial plants) when proportions of autotroph groups are similar. These similarities are most likely 382 

explained by the amide I, lignin, and cellulose peaks in the spectra (4, 5, and 7 in Figure 2). Since algal 383 

data show no peak in lignin and a peak in amide I, with the reverse occurring in terrestrial plants (Figure 384 

2), mixing algal and terrestrial organic material produces peaks in both. Since macrophytes have peaks in 385 

both amide I and lignin, any mixture with similar compositions of the three autotroph groups would 386 

appear to be more ‘macrophyte-like’ than actually the case. Similarly, algae have low cellulose 387 

concentrations, terrestrial material have high cellulose concentrations, and macrophytes have cellulose 388 

concentrations intermediate between the two (Meyers and Teranes 2002; Liu et al. 2020) so mixing of the 389 

three groups with similar concentrations leads to a more ‘macrophyte-like’ spectral signature. Hence, 390 

aquatic macrophyte chemical similarities to both algae and terrestrial plants accounts for their 391 

overestimation in all the mixes (Table 2). Caution is therefore needed when interpreting the model results, 392 

especially when high concentrations of macrophytes are present. Higher wavenumber inclusion does not 393 

change the out-of-bag error of the model, most likely due to similarities of group spectra outside the TOC 394 

region (Figure 2). Lower wavenumbers (900 – 600 cm-1) indicate that only carbohydrate (Beć et al. 2020; 395 
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High and Penkman 2020) or inorganic peaks like carbonate or biogenic silica (Meyer-Jacob et al. 2014) 396 

are present, so these wavenumbers may be of little use in differentiating mixtures of autotrophs.  397 

 398 

4.2 Sediment organic matter composition in Blue Lake 399 

 400 

The FTIR data suggest that Blue Lake fossil sediments are dominated by biogenic silica and TOC 401 

(Figure 4). The sediment spectral data are very similar to pure biogenic silica spectra, especially in the 402 

1000–1200 cm-1 region (Figure 4). However, a PCA containing both plant and sediment data show they 403 

overlap in ordination space (Supplementary material, Figure S7). Furthermore, PC 1 and 2 loadings 404 

(Figure 5c,d) show sediment spectra have strong signals in the TOC spectral region (Meyer-Jacob et al. 405 

2014; Rosén et al. 2010; Liu et al. 2013), which indicates the influence of organic matter in these samples. 406 

Importantly, biogenic silica and TOC spectra only overlap in the 1200 – 1000 cm-1 region (Figure 4) 407 

(Meyer-Jacob et al. 2014; Rosén et al. 2010; Vogel et al. 2008), so any signal the 1800 – 1200 cm-1 range 408 

is likely to derive from organic matter in the sediments rather than linkages to biogenic silica.  409 

When inferring environmental change from sedimentary organic matter it is important to consider 410 

diagenesis, because it can alter sediment organic matter composition over time. Diagenetic processes 411 

preferentially degrade proteins and amino acids, so tend to degrade algal remains more than terrestrial 412 

plants, due to their higher proportion of proteins relative to vascular plants (Li et al. 2013; Meyers and 413 

Teranes 2002; Meyers 1994). However, the two most prominent algal species in Blue Lake, 414 

Hapalosiphon pumilus and Symphyonema karboorum, have resistant polysaccharide sheaths that may 415 

protect their remains from degradation (McGregor 2018). Structural polysaccharides such as cellulose and 416 

lignin can be resistant to degradation (High et al. 2016; High et al. 2013). Reduced absorbance in the 417 

TOC region of sediment spectra (Figure 4), relative to the autotroph data (Figure 2), suggests sediment 418 

organic matter has degraded in Blue Lake, or that the organic matter signal is dwarfed relative to that 419 
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from biogenic silica (Figure 4). Loadings of PCs 1 and 2 of the processed sediment spectra (Figure 5c,d) 420 

have similar peaks to the loadings of the equivalent PCs of the autotroph processed spectra (Figure 3d), 421 

which indicates organic compounds have at least been partially preserved. In summary, these data suggest 422 

that diagenetic changes may have altered organic matter in Blue Lake, but the chemical differences 423 

between the organic matter sources remain intact and can be used to trace their sources through time. 424 

 425 

4.3 Application of FTIR to palaeolimnological studies 426 

 427 

An important motivation of this study was to further interrogate sources of sedimentary carbon, 428 

C:N and δ13C records due to the ambiguity of sedimentary C:N and δ13C from Blue Lake (Maxson et al. in 429 

review; Barr et al. 2013). This ambiguity characterises oligotrophic lakes on North Stradbroke Island and 430 

Fraser Island where nitrogen limitation drives algal C:N values higher (Cadd et al. 2018; Maxson et al. in 431 

review), making distinctions between algae and vascular plants using C:N difficult. The FTIR-based 432 

method described herein shows promise in this regard, as it was able to distinguish between modern 433 

autotroph groups (Figure 3). However, the imprecise estimation of the composition of mixtures of 434 

autotrophs highlights some of the limitations of the FTIR method. Namely, the method performs poorly 435 

when there is no single dominant source of organic matter, however, performance increases as one source 436 

becomes dominant (Table 2).  437 

In the context of the out-of-bag model error (10%) the FTIR based estimates suggest algal 438 

dominance throughout the Blue Lake record (Figure 6a) and that algal, aquatic macrophyte, and terrestrial 439 

concentrations remained largely stable, with one exception being the estimated high terrestrial 440 

concentration at ~3.8 ka. TOC data indicate a prolonged (~200 year) increase in organic matter in this part 441 

of the record (Figure 6b). Algal under prediction in the modern group mixes (Table 2) implies that we can 442 

have confidence in the organic matter inferences due to their high inferred algal proportions. However, 443 
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the excursion to terrestrial dominance at ~3.8 ka disagrees with the C:N data, which does not indicate 444 

significant amounts of terrestrial material (Maxson et al. in review). Without more FTIR data, it is 445 

difficult to confidently confirm whether a temporary alteration in organic source occurred. Further study 446 

is needed surrounding the 3.8 ka event.  447 

The inferred high algal contribution to the Blue Lake organic matter record is supported by the 448 

higher relative abundance of sediments consisting of diatoms (Figure 4a), the prevalence of algae found in 449 

the present-day lake (Maxson et al. in review), and the relative stability of Blue Lake through time (Barr 450 

et al. 2013). Moreover, it further suggests that degradation of algal material has not led to algae being 451 

underrepresented by FTIR. Indeed, sedimentary C:N and δ13C data are generally most similar to average 452 

modern algal C:N and δ13C composition (Maxson et al. in review). FTIR results suggest that C:N and 453 

δ13C data reflect changes in algal chemistry through time, rather than indicating different sources of 454 

organic matter (Figure 6c,d). The shift in C:N and δ13C at 4.2 ka, therefore, most likely reflects an 455 

increase in lake nutrient concentrations leading to less nitrogen limitation in algae, reducing algal C:N 456 

values (Maxson et al. in review). This interpretation supports previous studies from Blue Lake and North 457 

Stradbroke Island that indicate a reduction in rainfall (Barr et al. 2019) led to an increase in water 458 

residence time that subsequently promoted higher nutrient availability in Blue Lake (Maxson et al. in 459 

review).  460 

Interpreting the source of organic matter in lake sediments is valuable to a range of applications 461 

in palaeoecology and palaeoclimatology, however determining organic sediment sources can present a 462 

significant challenge. This study tested the hypothesis that FTIR spectra can be used to discriminate lake 463 

sediment organic matter. Overall, the data presented here support this hypothesis. While there may be 464 

issues related to organic matter preservation, complex mixtures of sediment, and organic source chemical 465 

similarities, this study suggests that FTIR spectroscopy is a valuable tool for identifying organic matter 466 

sources in lacustrine sediments.  467 

 468 
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5. Conclusions 469 

 470 

We presented the first use of FTIR spectral data to compare modern autotroph material with fossil 471 

sediment samples to infer the source of sediment organic matter in lake sediments. We demonstrated that 472 

processing FTIR spectra using Savitzky-Golay smoothing on data derivatives can enhance classification 473 

accuracy when using k-nearest neighbour classification and that random forests can classify autotroph 474 

samples at the group level with high accuracy. Testing the model on mixes of autotrophs showed that it 475 

can better identify compositions of mixtures with a dominant source, rather than thosewith more similar 476 

compositions of multiple sources. Application of the model to fossil sediments indicated that Blue Lake’s 477 

sediment organic matter has been dominated by algae throughout its lifetime, and C:N and δ13C shifts 478 

most likely reflect chemical changes in algae, possibly associated with changed nutrient availability 479 

driven by precipitation. This study demonstrates that FTIR based studies have the potential to more 480 

accurately trace sediment organic matter origins than those using C:N and δ13C. FTIR has the potential to 481 

be applied to sediment records to trace sources of sediment organic matter particularly where 482 

contemporary autotroph data are available. This study highlights the potential of FTIR as a new tool in 483 

palaeolimnological studies as an efficient, non-destructive means of identifying specific sources of 484 

organic matter that will enable more accurate inferences of lake and catchment evolution, climate 485 

changes, and variability.  486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 
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 721 

Figure 1: (A) Map of Australian climate zones with North Stradbroke Island location. (B) North Stradbroke Island elevation with 722 
Blue Lake location.  723 

  724 
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 725 

Figure 2: A) Unprocessed mean spectra of group data. B) is the smoothed and derived group data. Numbers in A refer to OH 726 
zone (1) (Beć et al. 2020), aliphatic compounds (2) (Beć et al. 2020; Zaccheo et al. 2002), lipids or fatty acids (3) (High and 727 
Penkman 2020; Haberhauer et al. 1998), amide I (4) (Murdock and Wetzel 2009; Gonzalez-Torres et al. 2017), Lignin (5) (High 728 
and Penkman 2020; Traoré et al. 2016), amide II (6) (Beć et al. 2020; Gonzalez-Torres et al. 2017), and polysaccharides (7) (Beć 729 
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et al. 2020; Traoré et al. 2016; San-Blas et al. 2011; Kansiz et al. 1999). 730 

 731 

Figure 3: Autotroph group processed data validation and training confusion matrices (A and B), PCA (C), PC 1 and 2 (D), and 732 
cluster analysis (E). PC 1 and 2 loadings labelled with organic matter spectra from Figure 1. Cluster analysis data labelled with 733 
genera, with boxes that correspond to group PCA colours in (C), to highlight how autotrophs are grouped.  734 

 735 

 736 
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 737 

Figure 4: A) Sediment mean unprocessed stack with cellulose and biogenic silica spectra (Meyer-Jacob et al. 2014) for 738 
comparison. B) Smoothed and derived sediment data.  739 
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 740 

Figure 5: Sediment processed spectra (A) PCA, (B) hierarchical clustering, (C) PC 1, and (D) PC 2. PC 1 and 2 loadings labelled 741 
with organic matter spectra from Figure 1 and represent the same spectra as Figure 2. 742 
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 743 

Figure 6: Predicted sediment constituents of terrestrial plants, aquatic macrophytes and algae, plotted against age (A) and 744 
compared to core sediment TOC (B), C:N (C), and δ13C (D) of Maxson et al (in review). Error bars on composition estimates 745 
represent out-of-bag error of the model (10%). Dots on TOC, C:N, and δ13C data represent the location of FTIR sediment 746 
samples. Sediment surface samples (Surface 1 and 2) were taken in the vicinity of the core (~20 metres away; Surface 1) and 747 
150 metres north of the core (Surface 2). 748 
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Table 1: Plant and algae classification. Algal samples list dominant species in each sample with percent 749 

abundance of that species, if available. 750 

Plant and algal samples  

Group Taxon (percent abundance) Notes 

algae Symphyonema karboorum (>90%) Collected from in lake woody debris 

algae Hapalosiphon pumilus (97%) Algal ball from deep lake 

algae Hapalosiphon pumilus (>90%) Collected from Eleocharis difformis 

algae Symphyonema karboorum (95%) 

Collected from in lake woody debris 

algae Symphyonema karboorum (89%) 

algae Scytonema mirabile (>95%) 

algae Symphyonema karboorum 

algae Symphyonema karboorum 

algae Hapalosiphon pumilus (91%) Collected from Lepironia articulata 

terrestrial Unknown  Wood debris collected from in the lake 

terrestrial Casuarina sp. Casuarina stick sample 

terrestrial Casuarina sp. Casuarina leaf sample 

terrestrial Casuarina sp. Casuarina leaf sample 

terrestrial Casuarina sp. Casuarina stick sample 

terrestrial Eucalyptus sp. Eucalyptus leaf sample 

terrestrial Eucalyptus sp. Eucalyptus stick sample 

terrestrial Banksia sp. Banksia stick sample 

terrestrial Banksia sp. Banksia leaf sample 

terrestrial Banksia sp. Banksia leaf sample 

Aquatic macrophyte Eleocharis difformis 

Collected from shallow, near shore 
environment 

Aquatic macrophyte Eleocharis difformis 

Aquatic macrophyte Eleocharis difformis 

Aquatic macrophyte Myriophyllum sp. 

Aquatic macrophyte Myriophyllum sp. 

Aquatic macrophyte Cycnogeton procerus 

Aquatic macrophyte Gahnia sp. 

Aquatic macrophyte Lepironia articulata 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 
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 759 

Table 2: Mixes and their composition with random forest model predicted composition in bold. 760 

Mixture Algae (%) Macrophyte (%) Terrestrial (%) 

Equal 33 (33) 33 (48) 33 (19) 

Algae 50 50 (24) 25 (44) 25 (32) 

Macrophyte 50 25 (13) 50 (76) 25 (11) 

Terrestrial 50 25 (5) 25 (56) 50 (39) 

Algae 80 80 (70) 10 (21) 10 (9) 

Macrophyte 80 10 (13) 80 (74) 10 (13) 

Terrestrial 80 10 (2) 10 (16) 80 (82) 

 761 

Table 3: Sediment sample depth and age with random forest model estimated percent composition by 762 

plant type. Surface samples are represented as a depth of 0 cm. Cal yr BP: calibrated year before present 763 

(where “present” equals 1950 CE). 764 

Core samples 

Depth (cm) Age (Cal yr BP) Algae (%) Macrophytes (%) Terrestrial (%) 

Surface 1 -68 90 8 2 

Surface 2 -68 69 19 12 

40 1945 79 12 9 

106 3804 20 10 70 

112 4085 76 13 10 

113 4099 74 16 10 

116 4140 80 13 7 

165 5921 75 14 12 

227 7197 77 13 9 

 765 

 766 

  767 
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Supplementary Information. 768 

 769 

 770 

All data and the code for the Random Forest model can be found on Figshare at: 771 
https://figshare.com/projects/Fourier_transform_infrared_spectroscopy_as_a_tracer_of_organic_matter_s772 
ources_in_lake_sediments/100088 773 

 774 

 775 

Figure S1: Plant genera processed data training and validation confusion matrices (A and B), PCA (C), cluster analysis (D), PC 1 776 
and 2 (E and F). Code available from (Jardine et al. 2019). 777 

https://figshare.com/projects/Fourier_transform_infrared_spectroscopy_as_a_tracer_of_organic_matter_sources_in_lake_sediments/100088
https://figshare.com/projects/Fourier_transform_infrared_spectroscopy_as_a_tracer_of_organic_matter_sources_in_lake_sediments/100088
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 778 
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 779 

Figure S2: Unprocessed mean spectra of genera data (A). Smoothed and derived genera data (B).  780 
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 781 

 782 

Figure S3: Plant individual processed data training and validation confusion matrices (A and B), PCA (C), cluster analysis (D), PC 1 783 
and 2 (E and F). Macrophytes are separated into emergent (E) and submerged (S) species. Plants identified in Table S3. Code 784 
available from (Jardine et al. 2019). 785 

 786 
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 787 

Figure S4: Unprocessed mean spectra of individual data, split into algae and submerged macrophytes (A) and emergent 788 
macrophytes and terrestrial (B) samples. Smoothed and derived species data split into algae and submerged macrophytes (C) 789 
and emergent macrophytes and terrestrial (D) samples. Emergent species are Myriophyllum sp., Eleocharis sp., and Cycnogeton 790 
sp. Emergent species are Lepironia articulata and Gahnia sp.  791 
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 792 

Figure S5: Testing of mtry and node_size with ntree held constant.  793 
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 794 

Figure S6: Testing of ntree with marry and node_size held constant.  795 

 796 
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 797 

 798 

Figure S6: Data further truncated to 1800 – 1300 cm-1 to test for any potential influence of biogenic silica on the spectra.  799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 
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 814 

Sediment PC score estimation 815 

Methods 816 

Two separate principal component analyses were run on the plant and sediment data in R (R Core Team 817 
2020). In the R package ‘vegan’ v.2.5-6 (Oksanen et al. 2019), the function ‘predict’ was used to predict 818 
the PC scores of the sediment in the PC space of the plant samples.  819 

Results 820 

The sediment data plots mostly in the PC space of algae, with an excursion of a couple of datapoints into 821 
the terrestrial PC space (Fig. S7), almost exactly the result of our random forest model (Fig. 6A). The 822 
difference is the RF model can predict proportion of each plant group in the sediment.  823 
 824 

 825 

 826 

 827 

 828 

 829 

 830 

Figure S7: PCA biplot of modern autotrophs with the location of predicted fossil sediment PC sample scores based on a 

model trained by plant PC scores. 
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mtry node_size ntree Accuracy Kappa AccuracySD KappaSD 

6 4 200 0.94713 0.920564 0.0646382 0.097062 

6 4 500 0.94713 0.920564 0.0709191 0.106474 

6 4 2000 0.94713 0.920564 0.0709191 0.106474 

6 4 700 0.943426 0.915008 0.0709642 0.106534 

6 4 1200 0.943426 0.915008 0.0709642 0.106534 

6 4 1800 0.943426 0.915008 0.0709642 0.106534 

6 4 1900 0.943426 0.915008 0.0709642 0.106534 

6 4 900 0.939722 0.909453 0.0765855 0.114953 

6 4 1000 0.939722 0.909453 0.0765855 0.114953 

6 4 1100 0.939722 0.909453 0.0765855 0.114953 

6 4 1300 0.939722 0.909453 0.0765855 0.114953 

6 4 1400 0.939722 0.909453 0.0765855 0.114953 

6 4 1500 0.939722 0.909453 0.0765855 0.114953 

6 4 1700 0.939722 0.909453 0.0765855 0.114953 

6 4 300 0.936019 0.903897 0.081648 0.122536 

6 4 400 0.936019 0.903897 0.081648 0.122536 

6 4 600 0.936019 0.903897 0.081648 0.122536 

6 4 800 0.936019 0.903897 0.081648 0.122536 

6 4 1600 0.936019 0.903897 0.081648 0.122536 

6 4 100 0.932315 0.898342 0.08625 0.12943 

Table S1: Results of ntree testing, organised by highest accuracy 831 

 832 

 833 

 834 

 835 

 836 

 837 
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 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

Table S2: mtry and node_size test results, organised by highest accuracy 847 

mtry ntree node_size Accuracy Kappa AccuracySD KappaSD 

9 500 1 0.950833 0.926119 0.064369 0.096665 

5 500 7 0.94713 0.920564 0.070919 0.106474 

5 500 10 0.94713 0.920564 0.070919 0.106474 

6 500 15 0.94713 0.920564 0.070919 0.106474 

7 500 3 0.94713 0.920564 0.064638 0.097061 

7 500 15 0.94713 0.920564 0.064638 0.097061 

8 500 2 0.94713 0.920564 0.064638 0.097061 

9 500 3 0.94713 0.920564 0.064638 0.097061 

9 500 13 0.94713 0.920564 0.070919 0.106474 

12 500 2 0.94713 0.920564 0.070919 0.106474 

12 500 3 0.94713 0.920564 0.070919 0.106474 

18 500 5 0.94713 0.920564 0.070919 0.106474 

8 500 11 0.946759 0.920137 0.071202 0.106808 

17 500 10 0.946667 0.9202 0.078545 0.116983 

2 500 10 0.943426 0.915008 0.076729 0.115175 

2 500 14 0.943426 0.915008 0.076729 0.115175 

3 500 2 0.943426 0.915008 0.076729 0.115175 
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3 500 4 0.943426 0.915008 0.076729 0.115175 

3 500 6 0.943426 0.915008 0.076729 0.115175 

3 500 9 0.943426 0.915008 0.076729 0.115175 

3 500 10 0.943426 0.915008 0.076729 0.115175 

4 500 1 0.943426 0.915008 0.076729 0.115175 

4 500 3 0.943426 0.915008 0.076729 0.115175 

4 500 11 0.943426 0.915008 0.08209 0.123211 

5 500 3 0.943426 0.915008 0.076729 0.115175 

5 500 6 0.943426 0.915008 0.070964 0.106534 

5 500 15 0.943426 0.915008 0.076729 0.115175 

6 500 3 0.943426 0.915008 0.076729 0.115175 

6 500 5 0.943426 0.915008 0.070964 0.106534 

6 500 7 0.943426 0.915008 0.070964 0.106534 

7 500 1 0.943426 0.915008 0.070964 0.106534 

7 500 5 0.943426 0.915008 0.070964 0.106534 

7 500 7 0.943426 0.915008 0.070964 0.106534 

7 500 9 0.943426 0.915008 0.070964 0.106534 

7 500 11 0.943426 0.915008 0.070964 0.106534 

7 500 12 0.943426 0.915008 0.070964 0.106534 

7 500 13 0.943426 0.915008 0.070964 0.106534 

8 500 9 0.943426 0.915008 0.070964 0.106534 

8 500 14 0.943426 0.915008 0.070964 0.106534 

8 500 15 0.943426 0.915008 0.070964 0.106534 

9 500 4 0.943426 0.915008 0.070964 0.106534 

9 500 7 0.943426 0.915008 0.076729 0.115175 

9 500 10 0.943426 0.915008 0.070964 0.106534 

9 500 12 0.943426 0.915008 0.070964 0.106534 

10 500 3 0.943426 0.915008 0.070964 0.106534 
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10 500 15 0.943426 0.915008 0.070964 0.106534 

11 500 2 0.943426 0.915008 0.070964 0.106534 

11 500 7 0.943426 0.915008 0.070964 0.106534 

11 500 11 0.943426 0.915008 0.070964 0.106534 

11 500 15 0.943426 0.915008 0.070964 0.106534 

12 500 8 0.943426 0.915008 0.070964 0.106534 

12 500 14 0.943426 0.915008 0.070964 0.106534 

13 500 3 0.943426 0.915008 0.076729 0.115175 

13 500 7 0.943426 0.915008 0.070964 0.106534 

14 500 1 0.943426 0.915008 0.070964 0.106534 

14 500 6 0.943426 0.915008 0.070964 0.106534 

14 500 8 0.943426 0.915008 0.070964 0.106534 

14 500 10 0.943426 0.915008 0.070964 0.106534 

14 500 14 0.943426 0.915008 0.070964 0.106534 

14 500 15 0.943426 0.915008 0.070964 0.106534 

15 500 9 0.943426 0.915008 0.070964 0.106534 

15 500 11 0.943426 0.915008 0.070964 0.106534 

15 500 14 0.943426 0.915008 0.076729 0.115175 

15 500 15 0.943426 0.915008 0.070964 0.106534 

17 500 3 0.943426 0.915008 0.070964 0.106534 

17 500 6 0.943426 0.915008 0.070964 0.106534 

17 500 14 0.943426 0.915008 0.070964 0.106534 

18 500 14 0.943426 0.915008 0.070964 0.106534 

20 500 1 0.943426 0.915008 0.070964 0.106534 

20 500 5 0.943426 0.915008 0.070964 0.106534 

15 500 13 0.942963 0.914362 0.078563 0.117721 

19 500 9 0.942963 0.914644 0.078563 0.11702 

1 500 1 0.939722 0.909453 0.081956 0.123004 
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1 500 2 0.939722 0.909453 0.081956 0.123004 

1 500 4 0.939722 0.909453 0.081956 0.123004 

1 500 5 0.939722 0.909453 0.081956 0.123004 

1 500 6 0.939722 0.909453 0.081956 0.123004 

1 500 7 0.939722 0.909453 0.081956 0.123004 

1 500 8 0.939722 0.909453 0.081956 0.123004 

1 500 10 0.939722 0.909453 0.081956 0.123004 

1 500 12 0.939722 0.909453 0.081956 0.123004 

1 500 14 0.939722 0.909453 0.081956 0.123004 

1 500 15 0.939722 0.909453 0.081956 0.123004 

2 500 1 0.939722 0.909453 0.081956 0.123004 

2 500 2 0.939722 0.909453 0.081956 0.123004 

2 500 3 0.939722 0.909453 0.081956 0.123004 

2 500 4 0.939722 0.909453 0.081956 0.123004 

2 500 6 0.939722 0.909453 0.081956 0.123004 

2 500 7 0.939722 0.909453 0.081956 0.123004 

2 500 8 0.939722 0.909453 0.081956 0.123004 

2 500 9 0.939722 0.909453 0.081956 0.123004 

2 500 11 0.939722 0.909453 0.081956 0.123004 

2 500 12 0.939722 0.909453 0.081956 0.123004 

2 500 13 0.939722 0.909453 0.081956 0.123004 

2 500 15 0.939722 0.909453 0.081956 0.123004 

3 500 1 0.939722 0.909453 0.081956 0.123004 

3 500 3 0.939722 0.909453 0.081956 0.123004 

3 500 5 0.939722 0.909453 0.081956 0.123004 

3 500 7 0.939722 0.909453 0.081956 0.123004 

3 500 8 0.939722 0.909453 0.081956 0.123004 

3 500 11 0.939722 0.909453 0.081956 0.123004 
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3 500 12 0.939722 0.909453 0.081956 0.123004 

3 500 13 0.939722 0.909453 0.081956 0.123004 

3 500 15 0.939722 0.909453 0.081956 0.123004 

4 500 2 0.939722 0.909453 0.081956 0.123004 

4 500 5 0.939722 0.909453 0.081956 0.123004 

4 500 7 0.939722 0.909453 0.081956 0.123004 

4 500 8 0.939722 0.909453 0.076586 0.114953 

4 500 9 0.939722 0.909453 0.081956 0.123004 

4 500 10 0.939722 0.909453 0.081956 0.123004 

4 500 12 0.939722 0.909453 0.081956 0.123004 

4 500 13 0.939722 0.909453 0.081956 0.123004 

4 500 14 0.939722 0.909453 0.081956 0.123004 

4 500 15 0.939722 0.909453 0.081956 0.123004 

5 500 1 0.939722 0.909453 0.076586 0.114953 

5 500 8 0.939722 0.909453 0.081956 0.123004 

5 500 9 0.939722 0.909453 0.076586 0.114953 

5 500 11 0.939722 0.909453 0.076586 0.114953 

5 500 12 0.939722 0.909453 0.081956 0.123004 

5 500 13 0.939722 0.909453 0.081956 0.123004 

5 500 14 0.939722 0.909453 0.076586 0.114953 

6 500 4 0.939722 0.909453 0.076586 0.114953 

6 500 6 0.939722 0.909453 0.076586 0.114953 

6 500 11 0.939722 0.909453 0.076586 0.114953 

6 500 12 0.939722 0.909453 0.076586 0.114953 

6 500 14 0.939722 0.909453 0.076586 0.114953 

7 500 2 0.939722 0.909453 0.076586 0.114953 

7 500 6 0.939722 0.909453 0.076586 0.114953 

7 500 10 0.939722 0.909453 0.076586 0.114953 
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8 500 1 0.939722 0.909453 0.076586 0.114953 

8 500 3 0.939722 0.909453 0.076586 0.114953 

8 500 4 0.939722 0.909453 0.076586 0.114953 

8 500 5 0.939722 0.909453 0.076586 0.114953 

8 500 12 0.939722 0.909453 0.076586 0.114953 

8 500 13 0.939722 0.909453 0.076586 0.114953 

9 500 2 0.939722 0.909453 0.076586 0.114953 

9 500 5 0.939722 0.909453 0.076586 0.114953 

9 500 6 0.939722 0.909453 0.081956 0.123004 

9 500 8 0.939722 0.909453 0.076586 0.114953 

9 500 9 0.939722 0.909453 0.076586 0.114953 

9 500 11 0.939722 0.909453 0.076586 0.114953 

9 500 14 0.939722 0.909453 0.076586 0.114953 

9 500 15 0.939722 0.909453 0.076586 0.114953 

10 500 6 0.939722 0.909453 0.076586 0.114953 

10 500 7 0.939722 0.909453 0.076586 0.114953 

10 500 8 0.939722 0.909453 0.076586 0.114953 

10 500 10 0.939722 0.909453 0.076586 0.114953 

11 500 5 0.939722 0.909453 0.081956 0.123004 

11 500 10 0.939722 0.909453 0.076586 0.114953 

11 500 12 0.939722 0.909453 0.070809 0.106295 

11 500 14 0.939722 0.909453 0.070809 0.106295 

12 500 4 0.939722 0.909453 0.076586 0.114953 

12 500 5 0.939722 0.909453 0.076586 0.114953 

12 500 12 0.939722 0.909453 0.076586 0.114953 

12 500 13 0.939722 0.909453 0.076586 0.114953 

13 500 1 0.939722 0.909453 0.070809 0.106295 

13 500 4 0.939722 0.909453 0.081956 0.123004 
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13 500 8 0.939722 0.909453 0.070809 0.106295 

13 500 10 0.939722 0.909453 0.076586 0.114953 

14 500 2 0.939722 0.909008 0.070809 0.106651 

14 500 5 0.939722 0.909453 0.070809 0.106295 

15 500 1 0.939722 0.909453 0.076586 0.114953 

15 500 3 0.939722 0.909453 0.070809 0.106295 

15 500 4 0.939722 0.909453 0.070809 0.106295 

15 500 6 0.939722 0.909453 0.076586 0.114953 

15 500 8 0.939722 0.909453 0.076586 0.114953 

16 500 2 0.939722 0.909453 0.070809 0.106295 

16 500 3 0.939722 0.909453 0.070809 0.106295 

16 500 5 0.939722 0.909453 0.070809 0.106295 

16 500 7 0.939722 0.909453 0.076586 0.114953 

16 500 8 0.939722 0.909453 0.076586 0.114953 

16 500 11 0.939722 0.909453 0.070809 0.106295 

16 500 15 0.939722 0.909453 0.070809 0.106295 

17 500 15 0.939722 0.909453 0.070809 0.106295 

18 500 12 0.939722 0.909453 0.070809 0.106295 

18 500 15 0.939722 0.909453 0.076586 0.114953 

19 500 5 0.939722 0.909453 0.076586 0.114953 

19 500 6 0.939722 0.909453 0.076586 0.114953 

19 500 14 0.939722 0.909453 0.070809 0.106295 

11 500 4 0.939259 0.909089 0.083654 0.124716 

13 500 12 0.939259 0.908807 0.0784 0.117473 

14 500 9 0.939259 0.908807 0.0784 0.117473 

16 500 1 0.939259 0.909089 0.0784 0.116784 

16 500 13 0.939259 0.909089 0.0784 0.116784 

17 500 2 0.939259 0.908362 0.0784 0.117793 
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17 500 7 0.939259 0.909089 0.0784 0.116784 

18 500 8 0.939259 0.908807 0.0784 0.117473 

18 500 9 0.939259 0.909089 0.0784 0.116784 

18 500 13 0.939259 0.909089 0.0784 0.116784 

19 500 7 0.939259 0.908807 0.0784 0.117473 

19 500 8 0.939259 0.908807 0.0784 0.117473 

20 500 6 0.939259 0.909089 0.0784 0.116784 

20 500 12 0.939259 0.909089 0.0784 0.116784 

1 500 3 0.936019 0.903897 0.086705 0.130118 

1 500 9 0.936019 0.903897 0.086705 0.130118 

1 500 13 0.936019 0.903897 0.086705 0.130118 

2 500 5 0.936019 0.903897 0.086705 0.130118 

3 500 14 0.936019 0.903897 0.081648 0.122536 

4 500 4 0.936019 0.903897 0.081648 0.122536 

4 500 6 0.936019 0.903897 0.081648 0.122536 

5 500 2 0.936019 0.903897 0.081648 0.122536 

5 500 4 0.936019 0.903897 0.081648 0.122536 

5 500 5 0.936019 0.903897 0.081648 0.122536 

6 500 1 0.936019 0.903897 0.081648 0.122536 

6 500 2 0.936019 0.903897 0.081648 0.122536 

6 500 8 0.936019 0.903897 0.081648 0.122536 

6 500 9 0.936019 0.903897 0.081648 0.122536 

6 500 10 0.936019 0.903897 0.081648 0.122536 

6 500 13 0.936019 0.903897 0.081648 0.122536 

7 500 4 0.936019 0.903897 0.081648 0.122536 

7 500 8 0.936019 0.903897 0.081648 0.122536 

7 500 14 0.936019 0.903897 0.081648 0.122536 

8 500 6 0.936019 0.903897 0.081648 0.122536 
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8 500 8 0.936019 0.903897 0.081648 0.122536 

8 500 10 0.936019 0.903897 0.081648 0.122536 

10 500 2 0.936019 0.903897 0.076256 0.114453 

10 500 4 0.936019 0.903897 0.081648 0.122536 

10 500 5 0.936019 0.903897 0.081648 0.122536 

10 500 9 0.936019 0.903897 0.076256 0.114453 

10 500 11 0.936019 0.903897 0.081648 0.122536 

10 500 12 0.936019 0.903897 0.076256 0.114453 

10 500 14 0.936019 0.903897 0.076256 0.114453 

11 500 1 0.936019 0.903897 0.076256 0.114453 

11 500 3 0.936019 0.903897 0.076256 0.114453 

11 500 6 0.936019 0.903897 0.081648 0.122536 

11 500 8 0.936019 0.903897 0.076256 0.114453 

11 500 13 0.936019 0.903897 0.076256 0.114453 

12 500 1 0.936019 0.903897 0.076256 0.114453 

12 500 7 0.936019 0.903897 0.081648 0.122536 

12 500 10 0.936019 0.903897 0.081648 0.122536 

12 500 15 0.936019 0.903453 0.070452 0.106087 

13 500 5 0.936019 0.903897 0.081648 0.122536 

13 500 6 0.936019 0.903897 0.081648 0.122536 

13 500 9 0.936019 0.903897 0.076256 0.114453 

13 500 13 0.936019 0.903897 0.076256 0.114453 

13 500 14 0.936019 0.903897 0.076256 0.114453 

13 500 15 0.936019 0.903897 0.076256 0.114453 

14 500 3 0.936019 0.903897 0.076256 0.114453 

15 500 5 0.936019 0.903897 0.076256 0.114453 

15 500 7 0.936019 0.903897 0.076256 0.114453 

15 500 12 0.936019 0.903897 0.076256 0.114453 
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16 500 9 0.936019 0.903453 0.070452 0.106087 

16 500 12 0.936019 0.903897 0.076256 0.114453 

17 500 1 0.936019 0.903453 0.076256 0.114761 

17 500 9 0.936019 0.903897 0.076256 0.114453 

17 500 12 0.936019 0.903897 0.076256 0.114453 

17 500 13 0.936019 0.903897 0.076256 0.114453 

18 500 2 0.936019 0.903897 0.076256 0.114453 

18 500 10 0.936019 0.903897 0.076256 0.114453 

19 500 3 0.936019 0.903897 0.076256 0.114453 

19 500 10 0.936019 0.903897 0.076256 0.114453 

19 500 13 0.936019 0.903897 0.076256 0.114453 

1 500 11 0.935556 0.903104 0.081963 0.123085 

12 500 9 0.935556 0.903533 0.083331 0.124238 

14 500 7 0.935556 0.903251 0.078056 0.116951 

15 500 10 0.935556 0.903089 0.078056 0.116576 

16 500 6 0.935556 0.903533 0.078056 0.116273 

16 500 14 0.935556 0.903533 0.083331 0.124238 

17 500 4 0.935556 0.903533 0.078056 0.116273 

18 500 1 0.935556 0.903533 0.083331 0.124238 

18 500 7 0.935556 0.903533 0.078056 0.116273 

19 500 2 0.935556 0.903533 0.078056 0.116273 

19 500 4 0.935556 0.903533 0.083331 0.124238 

19 500 11 0.935556 0.903533 0.078056 0.116273 

19 500 15 0.935556 0.903533 0.083331 0.124238 

20 500 7 0.935556 0.903533 0.078056 0.116273 

20 500 10 0.935556 0.903533 0.078056 0.116273 

20 500 13 0.935556 0.903533 0.083331 0.124238 

20 500 15 0.935556 0.903251 0.083331 0.124873 
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16 500 4 0.935093 0.903028 0.091099 0.13476 

17 500 5 0.935093 0.903028 0.091099 0.13476 

8 500 7 0.932315 0.898342 0.08625 0.12943 

10 500 1 0.932315 0.898342 0.081164 0.121805 

10 500 13 0.932315 0.898342 0.08625 0.12943 

11 500 9 0.932315 0.898342 0.081164 0.121805 

12 500 6 0.932315 0.898342 0.081164 0.121805 

12 500 11 0.932315 0.897897 0.081164 0.122074 

13 500 2 0.932315 0.898342 0.081164 0.121805 

14 500 12 0.932315 0.898342 0.081164 0.121805 

15 500 2 0.932315 0.898342 0.081164 0.121805 

18 500 11 0.932315 0.898342 0.081164 0.121805 

13 500 11 0.931852 0.897533 0.082836 0.123764 

14 500 4 0.931852 0.897978 0.082836 0.1235 

17 500 8 0.931852 0.897978 0.082836 0.1235 

17 500 11 0.931852 0.897978 0.082836 0.1235 

18 500 6 0.931852 0.897978 0.082836 0.1235 

20 500 2 0.931852 0.897978 0.082836 0.1235 

20 500 4 0.931852 0.897533 0.077527 0.115767 

20 500 14 0.931852 0.897978 0.082836 0.1235 

14 500 13 0.931389 0.897473 0.090626 0.134058 

18 500 3 0.931389 0.897473 0.090626 0.134058 

18 500 4 0.931389 0.897473 0.095208 0.141022 

20 500 8 0.931389 0.897473 0.095208 0.141022 

20 500 11 0.931389 0.897028 0.090626 0.134299 

14 500 11 0.928611 0.892786 0.085627 0.128489 

19 500 1 0.928148 0.891978 0.082165 0.122743 

19 500 12 0.927685 0.891917 0.094606 0.140124 
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20 500 3 0.927685 0.891917 0.094606 0.140124 

20 500 9 0.927685 0.891917 0.094606 0.140124 

16 500 10 0.924444 0.88614 0.086392 0.129669 

 848 

 849 

Table S3: Identifiers of individual samples in figure S3. 850 

Plant and algal samples   

Individual samples  Taxon (percent abundance) 

A1 Symphyonema karboorum (>90%) 

A2 Hapalosiphon pumilus (97%) 

A3 Hapalosiphon pumilus (>90%) 

A4 Symphyonema karboorum (95%) 

A5 Symphyonema karboorum (89%) 

A6 Scytonema mirabile (>95%) 

A7 Symphyonema karboorum 

A8 Symphyonema karboorum 

A9 Hapalosiphon pumilus (91%) 

T1 Unknown  

T2 Casuarina sp. 

T3 Casuarina sp. 

T4 Casuarina sp. 

T5 Casuarina sp. 

T6 Eucalyptus sp. 

T7 Eucalyptus sp. 

T8 Banksia sp. 

T9 Banksia sp. 

T10 Banksia sp. 

S1 Eleocharis difformis 



56 
 

S2 Eleocharis difformis 

S3 Eleocharis difformis 

S4 Myriophyllum sp. 

S5 Myriophyllum sp. 

S6 Cycnogeton procerus 

E1 Gahnia sp. 

E2 Lepironia articulata 

 851 

 852 

 853 

References 854 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, 855 
Simpson GL, Solymos P, Stevens MHH, and ES, and Wagner H (2019) vegan: Community 856 
Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan 857 

R Core Team (2020) R: A language and environment for statistical computing 858 

 859 

 860 

Jardine, PE, WD Gosling, BH Lomax, A Julier, and WT Fraser. 2019. 'Data and code for "Chemotaxonomy 861 
of domesticated grasses: a pathway to understanding the origins of agriculture"'. 862 
https://doi.org/10.6084/m9.figshare.8046395. 863 

 864 

 865 

https://cran.r-project.org/package=vegan
https://doi.org/10.6084/m9.figshare.8046395

