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Abstract This study uses the Neural Network (NN) technique to optimize design of surface-

mounted Permanent Magnet Synchronous Motors (PMSMs) for More-Electric Aircraft (MEA)

applications. The key role of NN is to provide dedicated correction factors for the analytical PMSM

mass and loss estimation within the entire design space. Based on that, a globally optimal design can

be quickly obtained. Matching the analytical estimation with Finite-Element Analysis (FEA) is the

main research target of training the NN. Conventional analytical formulae serve as the basis of this

study, but they are prone to loss accuracy (especially for a large design space) due to their assump-

tions and simplifications. With the help of the trained NNs, the analytical motor model can give an

estimation as accurate as the FEA but with super less time during the optimization process. The

Average Correction Factor (ACF) approach is regarded as the comparison method to demonstrate

the excellent performance of the proposed NN model. Furthermore, a NN aided three-stage-seven-

step optimization methodology is proposed. Finally, a Pole-10-Slot-12 PMSM case study is given to

demonstrate the feasibility and gain of the NN aided multi-objective optimization approach. In this

case, the NN aided analytical model can generate one motor design in 0.04 s while it takes more

than 1 min for the used FEA model.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades, the continued progress of Permanent Mag-

net Synchronous Motors (PMSMs) development has led to a
situation that they are widely used in electrical vehicles, fans,
drives, and compressors.1–7 PMSM is commonly selected for

electromechanical actuators in the More-Electric Aircraft
(MEA) due to its high power density, reliability and effi-
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ciency.3,8–11 Moreover, a few literatures have shown the suit-
ability of PMSMs for different MEA generation and environ-
mental control systems.11–13 However, the problem of

designing an optimal PMSM is still challenging because of
its multi-physics nature. Several computational models can
account for the multi-physics design, including the closed-

form analytical model, lumped parameter model, Finite-
Element Analysis (FEA) model, combined finite-element, etc.
Among that, FEA models are the most current but also most

time consuming. Therefore, time-step FEA can be a practical
tool to verify the machine performance based on simpler ana-
lytical models since it is impossible to verify all analytical esti-
mations with experiments.4,14,15 Due to that, FEA has become

the main approach to design and optimize PMSM also the
basis of manufacturing the benchmark system. This paper pro-
poses to use a nonlinear surrogate model, Neural Network

(NN), to correct the PMSM analytical estimated performance
based on the samples from FEA, which is a very efficient way
for speeding up the FEA-based PMSM optimization.16,17

Two objectives of PMSM optimization are studied in this
paper: total mass (M) and total power loss (PL). For the
PMSM mass, which is critical for MEA applications, it can

be estimated with relatively high accuracy because the motor
geometries and materials are usually parameterized and they
can be confirmed for a potential motor design based on a fixed
topology.1,2,8,9 Further improving the mass estimation requires

a more accurate winding weight estimation, since the winding
is the most uncertain part in mass estimation. The winding
length is related with a few factors (e.g. winding type, number

of turns, end winding), while only the Mean Length per Turn
(MLT) can be tuned in the analytical approach.2,8 The PL is
much more difficult to estimate compared to the total mass

M. This is due to the fact the flux field is coupled with quite
a lot of factors and flux density varies much among back-
iron, tooth, Permanent Magnet (PM) and rotor. In that case,

the analytical method is prone to lose its accuracy since tradi-
tionally only the flux density of typical points is utilized instead
of considering the whole PMSM area. To solve these problems
in mass/loss estimation, this work reported in this paper uti-

lizes the NN aided approach to bridge the gap between the
analytical methods and FEA in the whole design space. Based
on that, the optimal PMSM design with multiple objectives

can be quickly and globally found in this space.
Many analytical and FEA methods of PMSM design and

optimization have been studied in literatures. A fast, accurate,

and high dimensional multi-physics analytical model for
PMSM was presented in Ref. 2 with the FEA and experimen-
tal validation on typical design points. The resulting model
takes an average of 0.03 s to run on a standard PC. Based

on that, the system-level optimization of a motor drive design
is studied in Ref. 7 by using an advanced evolutionary opti-
mization algorithm. Ref. 18 utilized the explorative particle

swarm optimization to find the optimal design of a PMSM
with a mesh adaptive direct search. Even though the authors
declare that the proposed rule of start point selection takes

an advantage of minimizing the search time, the proposed
approach was not quantitatively compared with other search
methods regarding the search and computation time. The

shape optimization of PMSM was studied in Ref. 19 by using
an analytical Kriging surrogate model (a statistical-based
interpolation method) but, the FEA-based iteration should
be done to get the convergence of the surrogate model which
can cost a long computation time. In contrast, the proposed
NN-aided approach only needs to evenly sample a small num-
ber of FEA-based design points (64 in the case study) for the

NN training; after which, the analytical model can be cor-
rected with very high accuracy in the entire design space.

Another approach to build a surrogate model for PMSM

performance is building a response surface.16,20 Using both
the analytical and the FEA model, Ref. 20 has chosen the sig-
nificant parameters for an additional optimization with a

reduced simulation model. Based on that, a response surface
model can be built analytically. However, one major disadvan-
tage of the response surface model is that its approximation
performance is always limited by the pre-chosen equation

(e.g. polynomial, exponential). In contrast, NN is a general
nonlinear surrogate model that can approximate any given
input–output function with arbitrary precision.21,22 Moreover,

there is no need to specify the math relations between inputs
and outputs of NN. Though NN modelling requires a certain
additional time for collecting a small amount of sample data,

this is justified by a much faster evaluation of PMSM designs
in the NN execution stages.16

Up to now, the NN-aided PMSM design and optimization

is still rarely reported. Ref. 17 utilized NN to build surrogates
for machine optimization which has the best accuracy versus
training time tradeoff among several surrogate candidates;
however, most of the NN technical details (e.g. sample collec-

tion, NN training and test) are not given. In Ref. 23, NN was
embedded into the FEA-based evolutionary optimization
using Genetic Algorithm (GA)24,25 to reduce the very high

computational effort. However, as it depends on the detailed
FEA models, it can thus still be time-consuming and probably
much slower than the hybrid method of NN and analytical

models in this paper. In addition, the application of GA would
bring risk of getting stuck in local optimum.22,24 An adaptive
network-based fuzzy inference system was presented in Ref.

26, this system acted as a surrogate for the motor FEA opti-
mization. This approach may speed up the original FEA-
based optimization but, the computation time for the proposed
method was still quite long (around 24 h) in the case study and

the actual time for the surrogate was nearly half an hour. In
addition, the optimization block diagram (using the surrogate)
was not clearly described. In Ref. 27, two NN architectures

were proposed to quickly and accurately predict the motor tor-
que and efficiency. For the training data collection, there are
two FEA simulation stages: (A) flux linkage calculation; (B)

torque and efficiency. And the exaction calculations using ana-
lytical equations are located between two FEA stages. Differ-
ently, this paper proposes a NN based correction model
linking analytical models to the detailed FEA thus, the analyt-

ical model and the FEA model of PMSM are separately con-
sidered and there is no data transfer in between.

This work proposes the NN aided approach for both

PMSM mass and loss correction. It utilizes simple conven-
tional math equations and the trained NN, it is thus extremely
fast with no need for substantial derivations. More impor-

tantly, NN based correction model can give dedicated factors
to ensure the high accuracy of mass/loss estimation in the
whole PMSM design space. Therefore, global optimization

of PMSM can be obtained quickly and smoothly based on
the simple analytical models and trained NNs. Lastly, the
NN aided approach is independent to the PMSM topologies
and sizing models because of the constraint-free surrogate



Fig. 1 Two conventional computational methods of MLT.
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function of NN; therefore, it is very easy to be generalized to
other PMSM optimization problems for the aircraft
application.

This paper is organized as follows: fundamental equations
of mass/loss estimation are given in the next section where
their limitations and comparisons with FEA are also discussed.

The proposed NN approach for mass/loss correction is pre-
sented in Section 3; furthermore, Average Correction Factor
(ACF) method is given as a comparison method, their compar-

ison results in a PMSM case are depicted at the end of Sec-
tion 3. In Section 4, the proposed NN aided global
optimization procedure is introduced step-by-step. After that,
a new PMSM case is studied in Section 5 for the method val-

idation and the optimization method is compared with the
conventional FEA-based optimization. Finally, this paper is
concluded in Section 6.

2. Analytical estimation for mass and power loss

This section will discuss the limitations of the analytical mass

and loss estimation methods. In general, these analytical
(math) methods pursue the design efficiency thus usually
depend on one or several design factors/coefficients, which

would give a poor estimation performance for large design
spaces though they can predict the performance close to
FEA at certain design points. It is important to notice that

the purpose of analytical models is to give the base data for
the following NN training thus, the models provided here
can be changed to any other feasible or desired motor models
with no impacts on the method application.

The following subsections will introduce the mass and loss
analytical estimations separately.

2.1. Mass estimation

As mentioned above, accurate estimation of winding mass is
the most challenging part in PMSM because winding mass

are dependent on quite a few parameters including material,
end winding, number of turns etc. Therefore, this subsection
mainly discusses the limitation of conventional analytical esti-

mation approaches for winding mass.
Conventionally, MLT is utilized for analytically design of

the motor winding based on the given number of turns, wire
diameter and winding material.2,8,28,29 As shown in Fig. 1(a),

in Ref. 28, MLT is given as twice the sum of the stack length
and the semicircle arc around the corner (named as ‘‘Method
1”). The equation is:

MLT1 ¼ 2Lst þ pD ð1Þ
where Lst is the stack length of motor and D here represents
the slot pitch to give the end-winding length (Lew). In practice,
D is usually corrected with a coefficient Kew1 depending on the

actual Lew length. Another MLT determination method can be
referred to Ref. 29 which also considers two contributions: the
turn part embedded in the slot (Lcore, which equals Lst) and the

end-winding (Lew), named as ‘‘Method 2”. However, the com-
putational equations are slightly different:

MLT2 ¼ 2 Lst þ Lewð Þ ð2Þ

Lew ¼ Kew2sw ð3Þ
sw ¼ 1� nrNpole

Nss

� �
p

Npole

Dis þ hsð Þ ð4Þ

Kew2 is the end-winding shape coefficient whose value is usually
close to p=2 for wire windings, assuming a semi-circumference
end-winding shape with a diameter equal to sw. nr is the pitch

shortening (5
6
in this study). Nss refers to the number of slot.

Npole is the pole number (defined by the air-gap fundamental

spatial harmonic). Dis denotes the inner diameter of stator
and hs represents the slot height. Obviously, before applying
Method 2 into the motor design and optimization, Kew must

be given as a parameter.
This paper proposes another MLT computational method

to derive the Lew in Eq. (2), which utilizes the tooth width
(Widto) and the bottom lengths of slot rather than the pole/slot

pitch in above two methods. The proposed computational
equation of Lew is:

Lew ¼ p
2

Widto þ Kp;ew b1 þ b2ð Þ� � ð5Þ

where Kp;ew is the proposed end-winding coefficient, b1 and b2
are the lengths of slot upper/lower bottoms. In order to com-

pare the estimation performance of these three MLT methods,
two Design Variables (DVs), tooth base fraction and PM
height, are chosen to give the comparative sensitivity analysis

and, other motor parameters stay the same with the case study
in Ref. 15. First, a base design point in the 3D model of a soft-
ware, MotorCAD, is given to derive the values of three coeffi-

cients: Kew1; Kew2, and Kp;ew. Namely, assume a motor design

in MotorCAD and get the MLT value to inversely derive three

coefficients by using above equations.
The base design and the updated coefficients can be found

in Table 1. Two variables are tooth base fraction and PM

height, the three coefficients are obtained by the base design



Table 1 Key parameters and sampling range/step in MLT

estimation studies.

Variable Tooth base fraction PM height (mm)

Values 0.6 4.4

Sampling range [0.5, 0.65] [4, 5.5]

Sampling step 0.005 0.1

Kew1 Kew2 Kp;ew

0.5452 1.4869 0.7383
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of (0.6, 4.4 mm) in MotorCAD. Then, evenly sample two DVs
in a range (sampling rang and step of two variables can be

found in Table 1) and further collect the MLT results of both
the 3D model and three afore-mentioned methods. Lastly, cal-
culate the errors between analytical methods and the 3D

model. The error variation and comparison results are shown
in Fig. 2.

The horizontal axis of Fig. 2(a) refers to the series number

of the design points (circle/star marked) in Fig. 2(b). Obvi-
ously, Method 1 has the same estimation performance with
Method 2 though they are using slightly different equations.
In contrast, the proposed MLT method appears a totally dif-

ferent variation direction with the other two methods. How-
ever, as shown in Fig. 2(b), there is no best analytical
method for MLT estimation in the given ranges of two DVs.

The proposed method can give closer estimation than Method
Fig. 2 MLT estimation results.
1&2 when using the blue-star design points but loses the prior-
ity for the red-circle designs.

In summary, neither the proposed MLT method nor

Method 1&2 can consistently provide the highly accurate esti-
mation in the design space. The key reason comes from the fact
that three coefficients (Kew1; Kew2, and Kp;ew) all stay

unchanged in the design space and are thus not adaptive
against the DV changes. To this end, this paper proposes the

NN aided approach to correct the motor total mass estima-
tion, which can guarantee the high accuracy with regards to
DV changes in a certain design space.

It is important to note that winding length is also significant
in loss estimation as it directly determines the motor dc resis-
tance by using the given copper conductivity and cross-

section area.2,8,29 Therefore, except for the iron and PM losses
in Ref. 15, NN is also utilized here to cover the winding/copper
loss correction in the motor optimization (will be discussed in

Section 3). The following two subsections will discuss the ana-
lytical estimation models of iron loss and PM loss in detail.

2.2. Iron loss estimation

When a PMSM operates under the no-load condition, iron
losses contribute the largest part of the motor loss because
the current in winding is nearly zero and PM loss is much

smaller. To calculate iron loss in the soft ferromagnetic mate-
rial, modified Steinmetz equation is used with two different
terms, hysteresis and eddy current loss. The specific iron loss

parameter Wiron (W/kg) for a certain material is given as2,15:

Wiron fe; B̂
� � ¼ Khf

a1
e B̂b1 þ Ke KsffeB̂

� �2 ð6Þ
where B̂ is the peak amplitude of flux density and fe is the
motor electrical frequency, Ksf is the stacking factor of the lam-
ination sheets (assumed 1 in this study). Kh is the hysteresis

coefficient and Ke is the eddy coefficient. Kh;Ke; a1 and b1

are all Steinmetz coefficients which can be determined by fit-
ting the loss data from manufactures for specific materials.
In this paper, M235-35A steel is utilized for iron modeling

whose Steinmetz coefficients can be found in Table 2.
The first assumption of using Eq. (6) is that the stator flux

density must vary sinusoidally (with fe). However, in practice,

the flux densities in stator tooth tip and in the back-iron parts
linking stator base are far from sinusoidal. Furthermore, as

discussed, analytical loss models traditionally use B̂ of typical

points to estimate the whole stator losses for the sake of sim-
plicity. That also contributes to errors of analytical method
compared with FEA models. Namely, the limit is that there

is a non-uniform flux distribution on PMSM stator all the
time. Lastly, flux saturation is not accounted for in this Stein-
Table 2 Parameters of M135-35A

steel for PMSM stator.

Parameter Value

Density (kg/m3) 7600

Lamination thickness (mm) 0.35

Kh 0.0081294

a1 1.208357

Ke 3.442366

b1 1.78619
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metz equation. To clearly demonstrate the flux variation and
the limitations of Eq. (6), the following contents will choose
two different iron models to discuss the comparison results

of analytical method and FEA.

2.2.1. Plate

In order to get the ideal conditions of Eq. (6), this study mod-

eled a plate in Infolytica MagNet (see Fig. 3(a)) with a simple
current driven coil. An iron cube part (small die-square in the
centre) is extracted for the iron-loss study. The side length of

this cube is 3 mm and the depth is 54 mm. Fig. 3(b) depicts
the flux variation of two cube points (Point A & B) in a time
period. Obviously, in the lamination of cube, the flux density

of every point is uniform, so it varies synchronously and sinu-
soidally with the coil current changes. In addition, there is no
saturation in this cube due to the small input current in coil.

Based on this plate model, Eq. (6) can then be compared with
FEA. To calculate the loss in analytical model, we need to choose

the flux density of one typical point. The B̂ value from Point A

(0.0638 T) is used to give the loss estimation which turns to be

8.33366�10�5 W. The FEA in MagNet gives 8.33244�10�5 W
so the relative error of Eq. (6) is �0:015%. Therefore, the modi-
fied Steinmetz equation can estimate the iron loss as accurate as

FEA based on the afore-mentioned assumptions.

2.2.2. Cube solid in motor stator

Based on the studied motor case in Ref. 15, a Pole-10-Slot-12

motor was modelled in MagNet. The studied cuboid locates at
the centre of stator base, red part in Fig. 4(a). The red die-
square has a side length of 1 mm and the depth is 54 mm.

Its centre location is (0, 45) mm in the motor cross-section.
The variation of flux density of this central point is depicted
Fig. 3 Cube in plate and its flux variation.
in Fig. 4(b). The Root Mean Square Error (RMSE) with its
corresponding sinusoidal curve is 0.05059 T. Though this sinu-
soidally tracking error is very small, the loss estimation of Eq.

(6) performs much worse than the plate model above.
Motor FEA under transient with motion conditions

(fe = 125 Hz) was performed in MagNet. The FEA iron loss

of this cuboid is given as 0.0020272 W while analytical model
using Eq. (6) predicts 0.001996 W (�1:52% difference). There-
fore, even for this very small part in motor stator, the Stein-

metz equation is prone to lose the estimation accuracy. The

estimation error would be much larger if we only use the B̂
of stator centre to give the whole stator power losses.

In order to mitigate the effects from the B̂ changing
between stator tooth and back-iron (yoke), this study divides
stator into two parts: tooth and yoke, for loss estimation.

More importantly, NN is utilized here to correct the estima-
tion of Eq. (6) and establish its link with FEA results in a
PMSM design space.

2.3. PM loss estimation

Three significant parts of motor losses are usually considered
in the PM synchronous machines: iron losses, winding losses,

and eddy current losses in PM.30 However, in some
optimization-oriented motor design models, power losses of
PM are usually not accounted for because they are relatively

much smaller than the iron loss.2,8,9 Since in this study NN
is expected to correct the loss estimation with very high accu-
racy, PM loss should be considered as a part of PMSM total

losses. As shown in Fig. 5,31 the base PM loss model used here
is assuming each PM as a plate of a sector of the circular ring.
Eq. (7) from Ref. 31 is utilized to predict the PM losses:
Fig. 4 Cube solid in the PMSM case.
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PPM ¼ 1

12
ð2pfÞ2B̂2

PMba2R
4
2 1� k2c
� �

1� kcð Þ2b2 1� tanhðb2cÞ
b2c

� �
ð7Þ

where B̂PM is the estimated peak flux density in PM, a2 denotes
the conductivity of PM material, b2 is the half of the circular
angle of PM (rad). R1 and R2 are the internal and external
radius of the PM circular ring, c and kc are defined as:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� k2c
� �

1� kcð Þ2
1� k2c
� �

1� 8kc þ k2c
� �� 12k2c ln kcð Þ

vuut ð8Þ

kc ¼ R1

R2

ð9Þ

Similar with the analytical methods in the above subsec-
tions, Eq. (7) only uses the BPM of one specific point in PM

to calculate the whole PM losses, which can generate signifi-
cant errors compared with the FEA. More importantly, for
the method itself, it does not consider the PM eddy current

reaction effect. The reaction effect makes the flux more diffi-
cult to pass through the PM and more flux line passes through
the leakage path.14 Therefore, it directly affects the generation

and calculation of PM losses. Authors in Ref. 32 found that
the reaction field should be taken into account when the
machine is excited by a pulse-width modulated current, espe-
cially for high-speed machines. Ref. 14 found that, if the reac-

tion effect is neglected, the analytical results can only match
the FEA for the PM with large numbers of segmentations.
In addition, as will be shown in the case study of Section 3.3,

this analytical method is very sensitive to the PM height
increase. Compared with FEA, the estimation error of Eq.
(7) will quickly go up with regards to the PM height increase.

To solve the above-mentioned PM loss estimation prob-
lems, this study utilizes an adaptive factor kPM in NN to cor-
rect the loss estimation in a design space of PMSM without

PM segmentation. As mentioned, this PM loss model can be
replaced by any other desired models which will not affect
the proposed NN-aided approach because the well-trained
NN can smoothly and efficiently correct the PL estimation

to the corresponding FEA results.
The next section will introduce the proposed NN approach

in detail and a PMSM case will be given showing that, after the

NN-based correction, the RMSE of PM loss estimation can be
less than 0.004 W (around 0.23%–0.74% of the FEA values).
Fig. 5 A plate of the shape of a sector of the circular ring.31
3. Average correction factor and NN aided approach

This section presents the NN aided correction approach for
mass and loss estimation in PMSM design. Average Correc-

tion Factor (ACF) is utilized as a comparative method to
demonstrate the excellent performance of NN in both mass
and loss corrections. Their correction performance will be

compared in a PMSM case. There are five correction factors,
four for power loss correction and one for mass correction:
PM factor (kPM), yoke factor (kYO), tooth factor (kTO), copper
factor (kCO) and total mass factor (kMA). Both ACF and NN

aided approach are giving these five factors based on the sam-
ple data from analytical models and FEA model but, as will be
discussed, the methodology is totally different.

3.1. Average Correction Factor (ACF) method

ACF method was preliminarily investigated in Ref. 15; how-

ever, the estimation correction of PMSM mass and copper loss
are not included in that paper. In contrast, this paper will com-
pare ACF and the NN approach for both PMSM total mass

and total loss correction. After NN training, the NNs will also
serve the PMSM global multi-objective optimization, see Sec-
tions 4 and 5.

The ACF operation process is depicted in Fig. 6 where Perf

represents PL and M, MAT means the math/analytical model.
First, we assume five correction factors all equal to 1 and there
are n variables. Second, the first sample collection is exercised

by only using up/down boundary values for each DV (this
sampling scheme is named as ‘‘sweep2”), i.e. that we have 2n

design points for joint simulation (math and FEA) to collect

mass/loss results in this round. After that, the initial five cor-
Fig. 6 ACF for both mass and loss correction.
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rection factors should be updated by a simple average operator
using two groups (math and FEA) of 2n mass/loss data:

kitemnew;1 ¼ 1
2n

X2n
j¼1

PLitem
FEA;j

PLitem
MAT;j

kMA
new;1 ¼ 1

2n

X2n
j¼1

MFEA;j

MMAT;j

8>>>>><
>>>>>:

ð10Þ

where ‘‘item” represents four issues for loss estimation: PM,

stator yoke, stator tooth and copper. PLitem
FEA;j and MFEA;j

denote the power loss and mass of FEA at the j-th design point

while PLitem
MAT;j and MMAT;j denote the power loss and mass of

analytical model at the same point.
In the next step, replace initial correction factors (all 1) with

the corresponding five knew;1 in the math model and do the sec-

ond round of collection (via joint simulation). In this round,
sample 4 values for each DV (named as ‘‘sweep4”) which
includes 2 boundary values, the other two are evenly dis-
tributed in the value range. Further, use the same average

operator to calculate the second new factors:

kitemnew;2 ¼ 1
4n

X4n
j¼1

PLitem
FEA;j

PLitem
MAT;j

kMA
new;2 ¼ 1

4n

X4n
j¼1

MFEA;j

MMAT;j

8>>>>><
>>>>>:

ð11Þ

whose only difference with Eq. (10) is operating on 4n mass/

loss data instead of 2n. If all five knew;2 are closed to 1 with

small errors and, the relative errors of total loss and total mass

of samples [Er, which is given by Eq. (12)] are all smaller than
3% for all 4n data, the ACF validation is successful; otherwise,
the validation fails.

EPL
r ¼ PLAll

MAT
�PLAll

FEA

PLAll
FEA

EMA
r ¼ MAll

MAT
�MAll

FEA

MAll
FEA

8><
>: ð12Þ
3.2. NN aided approach

This paper employs a feedforward NN to implement the map-
ping from DVs to correction factors. Feedforward NN is a

well-known supervised learning technique in the machine
learning and artificial intelligence domain. NN is based on a
non-parametric regression model. User does not need to spec-

ify the relations between the predictors (input) and responses
(output) with a predetermined function since NN will learn
them automatically by updating the internal training parame-

ters (i.e. weights and bias).15,33

A basic feedforward NN comprises an input layer, one or
more hidden layers and an output layer. Each hidden layer

has one or several neurons, which can be set as a NN algo-
rithm developer.25,33 The data derivation principles from input
to output layer via the hidden neurons can be found in the Sec-
tion IV of Ref. 22. It is noted that there are two different types

of NN learning: regression15,22,25,33 and pattern recognition25.
The PMSM performance correction study here is not a classi-
fication problem thus this paper focuses on the regression

learning. NN regression can be trained to a nonlinear model
for specific tasks by using a very simple NN structure. Such
a general nonlinear model can approximate any given input–
output function with arbitrary precision.21,22 Therefore, its
excellent generalization capability is utilized here to correct

the analytical PMSM sizing mass and losses in a large design
space with very high accuracy.

As shown in Fig. 7, we use two NNs to correct power loss

and mass separately, named as NN1 and NN2. Both NNs have
one input layer, one hidden layer and one output layer. For
simplicity, weights and bias terms are omitted from the figures.

The input elements of two NNs are both the studied DVs and
they have the same hidden-layer structure (whose neurons are
marked in green), but their output layers are different. The
output elements of NN1 are four correction factors for power

losses: kPM; kYO; kTO; kCO, while there is one output element
kMA in NN2 for the PMSM total mass. Regarding the neuron
number (q) in the hidden layer, as mentioned, it can be set as a

NN algorithm developer but in the following studies, it is sim-
ply set as 6 by trial-and-error for both NNs. The reason is the
fact that there are only 64 sample points (sweep4 scheme) in

NN training thus we can get good regression performance with
only 6 hidden neurons, which benefits from the excellent global
generalization capability of NN.

In the training process, the raw data set was randomly
divided into three data sets: training data (70%), validation
data (15%) and test data (15%). Training data is used to
directly modify weight and bias values; validation data is used

for validating stopping condition and ranking of net candi-
dates; testing data is used to obtain unbiased estimates of
non-training data.25 Therefore, only 70% of raw data are

directly used for training NN, other 30% of raw data are
new for the trained networks. It should be noted that the pre-
cision of NN turned out to be highly robust to data division

ratios. Due to the small sample set and the great NN regres-
sion capability, empirical investigation has shown negligible
differences in NN precision when the training set was from

50% to 90%. In the following contents, the RMSE of a trained
NN is computed as the error between the whole raw data and
the corresponding predicted data, which stands for the NN
training/mapping performance.

3.3. Comparisons between ACF and NN approach

In order to demonstrate the excellent correction performance

of the NN aided approach, a 12-slot-10-pole PMSM design
case is illustrated to generate the mass/loss correction results
using both ACF and NN. Three geometry DVs are studied

here: axial length (l), stator tooth base fraction (at) and PM
height (dm), whose ranges can be found in Table 3. Different
from Ref. 15 which only focuses on the loss correction, PMSM
input RMS current (I) is not considered as a variable here

because the current has no relationship with the motor mass.
Other PMSM parameters stay unchanged, as also summarized
in Table 3.

The analytical PMSM sizing model in Ref. 12 is used as the
basis of this study which is a non-iterative and high dimen-
sional sizing model. It can generate a comprehensive design

of multi-physics fractional-slot PMSM in a very short time.
This paper will use the afore-mentioned NNs to mainly link
the estimated mass/losses of this sizing model to the FEA tar-

get values (from MotorCAD software) in a desired design
space. Based on that, a multi-objective PMSM global opti-



Fig. 7 NN deployments for loss/mass correction with normalization functions at the inputs (i) and de-normalization function at the

output (o).

Table 3 Parameters and variables of

PMSM case for correction performance

comparison.

Parameter Value

Rated speed (r/min) 1500

Electrical frequency (Hz) 125

Input RMS current (A) 10.162

No. of turns per phase 80

Depth of tooth tip (mm) 1.26

Wire diameter (mm) 0.682

Depth of tooth base (mm) 19.67

Tooth tang angle (�) 38.38

Coil density (kg/m3) 8960

Coil conductivity (S) 5:7� 107

Air gap (mm) 1.3

Rotor radius (mm) 28.6

Yoke Depth (mm) 6.88

Tooth tip fraction (%) 78.83

PM fraction (%) 88.19

PM density (kg/m3) 7500

PM relative permeability 1.033

Shaft radius (mm) 17.5

Shaft density (kg/m3) 7820

Design Variable Range

DV1: Axial length (mm) [40, 80]

DV2: Tooth base faction [0.5, 0.7]

DV3: PM height (mm) [4, 8]
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mization can be quickly finished (as it will be discussed in Sec-
tions 4 and 5).

In this section, DV1, DV2 and DV3 are l, at and dm, respec-
tively. Both ACF and NN approach are tried to correct the
estimated PMSM total losses and mass. In order to use

ACF, as discussed in Section 3.1, we need to do two rounds
of joint simulations between which the five correction factors
should be updated. The updated correction factors in Eq.

(10) (knew;1), as well as the knew;2 in Eq. (11) after the second

round of joint simulation, are all given in Table 4. On the other

hand, to implement the NN approach, the 64 samples from
sweep4 are processed as the input–output training data set fol-
lowing the designs in Fig. 7. Then, two NNs can be trained
using the train command, which is a part of MATLAB’s Deep
Learning Toolbox, in 1 s on a standard computer. After train-
ing, the absolute RMSE results (using 64 raw data) for the pre-

dictions of five correction factors are given in Table 4.

As shown in the 4th row of Table 4, even though the knew;2
values of yoke loss, tooth loss, copper loss and total mass are

all closed to 1, kPMnew;2 has a big error with 1 which indicates that

after correction with kPMnew;1, the PM losses in sweep4 could not

match the FEA target values. Therefore, according to Fig. 6,
the validation of ACF fails in this case study. In contrast,

the RMSE of two trained NNs for five correction factors are
all very small. As all the original loss/mass data are in the
range of (0, 100), the RMSE results in Table 4 demonstrate

an excellent mapping capability of the NN approach. How-
ever, Table 4 only provides the holistic correction results of
ACF and NN. The following contents will further give the cor-
rection results of all samples in sweep4 and sweep5.

It is hard to depict the variations of two objectives against
three variables. Therefore, before showing the correction rela-
tive errors of ACF and NN, the series numbers of design

points for 3-DV combinations are defined. Fig. 8 shows the
overall scheme of sweep4 and sweep5. As discussed in Sec-
tion 3.1, the first and the last values of each DV are the bound-

ary values of their ranges while the other sampled values are
evenly distributed in the middle. For example, in sweep5, a1
and a5 are the lower and upper boundaries of DV1, and the

distance of adjacent values equals (a5�a1)/4. On the other
hand, Fig. 8 also depicts the series number of DV combina-
tions for each sample value of DV3. Obviously, in sweep4,
when a value of DV3 is confirmed, there will be 4 � 4 designs

whose series numbers are marked as 1,2. . .,16. And in sweep5,
the series numbers are given as 1,2. . .,25 for each value of
DV3.

Based on the definition of series number, the relative errors

[EPL
r ;EMA

r in Eq. (12)] of all sample points in sweep4 and

sweep5 are depicted in Fig. 9. Loss correction results are

shown in Figs. 9(a) and (b) while mass correction results are
given in Figs. 9(c) and (d). In all subfigures, the results of
ACF are linked by dotted lines and the results of NN approach

are using solid lines. Even though ACF method can perform

well in mass correction (all absolute EMA
r values are smaller

than 1%), most of the EPL
r values in ‘‘dm = 8 mm” designs

(Figs. 9(a) and (b)) are bigger than 4% which violate the val-
idation success condition in Fig. 6. In contrast, the NN



Table 4 Correction factors in ACF and RMSE results in NN approach.

Factor in ACF kPMnew;1 kYO
new;1 kTOnew;1 kCOnew;1 kMA

new;1

Value 0.1605 1.1158 1.2413 0.8072 1.0231

Factor in ACF kPMnew;2 kYO
new;2 kTOnew;2 kCOnew;2 kMA

new;2

Value 0.8089 1.0152 1.0145 1.0001 1.0001

Error in NN EPMðWÞ EYOðWÞ ETOðWÞ ECOðWÞ EMAðkgÞ
RMSE Value 0.003398 0.002403 0.004281 0.001132 4:54� 10�5

Fig. 9 Relative loss/mass estimated errors using ACF and NN for two sampling schemes.

Fig. 8 Design variable combinations for sweep4 and sweep5.
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approach provides a much better correction performance. In
all sub-figures of Fig. 9, the NN approach can predict at least
one order of magnitude closer to the FEA target value. Espe-

cially for mass correction, the relative errors of ACF method
can be thousands of times bigger than the NN approach.

It is important to note that, in sweep5, third fifths of sample

points are not included in sweep4 sampling which provides the
raw training data (64 samples) for two NNs. But, as shown in
Figs. 9(b) and (d), NN approach can still correct the analytical

loss/mass with very high accuracy even the sample was not
used for NN training. Therefore, instead of the time-
consuming FEA model, the NN approach can be further
applied into the global analytical PMSM optimization, which

will be illustrated in the next two sections.

4. NN aided multi-objective optimization procedure

This section presents the proposed NN aided multi-objective
optimization methodology. As shown in Fig. 10, it is a three-
stage-seven-step procedure. Three stages in this methodology

are: PMSM modeling, NN training and multi-objective opti-
mization. In the first two, there are three steps in each stage
while the last step is in the third stage. Three stages will be

introduced separately, as follows.
At the beginning of modeling stage, we should first confirm

the PMSM pole-slot topology, input parameters, design vari-

ables (and their ranges) and output performance indices (mass
and power losses in this study). Then, establish the analytical
Fig. 10 Procedure of NN aided mul
model which can derive the output performance by using the
given lumped parameters and math functions. After that, the
joint simulation between the analytical model and the target

FEA model should be built for sample data collection. This
study is using MATLAB for the analytical modelling and col-
lect FEA results from MotorCAD. Other software platforms

should also be feasible and compatible with the methodology
as long as they can generate satisfied results of performance
indices with regards to the studied DVs. The next stage would

be training NNs to bridge the gap between the analytical and
FEA models.

The ranges of DVs form the design space of the studied
optimization problem. In the first step of NN training stage,

samples are collected by the joint simulation built in the previ-
ous stage. This study suggests using the sweep4 sampling
scheme which evenly samples four values for each DV (see Sec-

tion 3.3). After that, the raw data of samples should be pro-
cessed as the input–output training data set following the
designs in Fig. 7. Namely, the input elements are the DVs

for two NNs; however, the output elements are four loss cor-
rection factors for NN1 while only the total mass correction
factor is in the output layer of NN2 . After the training data

preparation, the last step of NN training stage is to train
two feedforward NNs. Many commercial NN training tools
can be utilized, e.g. Deep Learning Toolbox in MATLAB.

After the modeling stage and the NN training stage are

accomplished, two desired NNs are prepared and can become
fast surrogate correction models for the performance indices
which are objectives of the studied PMSM optimization prob-
ti-Objective PMSM optimization.



Table 5 Variables, sample step and NN training performance

in PMSM case for optimization.

Design Variable Range Sample step

DV1: Tooth base faction [0.5, 0.7] 0.01

DV2: Airgap height (mm) [1, 2] 0.1

DV3: Wire diameter (mm) [0.6, 0.7] 0.002

Error in NN RMSE Value

EPM (W) 0.003398

EYO (W) 0.002403

ETO (W) 0.004281

ECO (W) 0.001132

EMA (kg) 4:54� 10�5
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lem. Thus, in the final step of the methodology, we can leave
the time intensive FEA model and do the optimization in the
original design space by only using the analytical models and

the trained NNs. Noting that the optimization in any subspace
can be exercised in the same way. Since both analytical model
and NNs are mathematic thus very efficient, exhaustive algo-

rithm is used in this step for the global optimization, i.e. that
sample large number of design points in the whole design space
and generate all corresponding values of objectives.

Lastly, in order to generate the best design point, an inte-
grated index r of two objectives is utilized to select one partic-
ular point for the Pareto front in the objective space, the
criterion for this decision-making solution is the minimal dis-

tance from ideal objectives24,25,34:

Solution � minðriÞ ð13Þ
where

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kMA

Mi

Mmax

� �2

þ PLi

PLmax

� �2
s

ð14Þ

where Mi is the mass of the ith solution; Mmax is the maximal

mass of all designs; PLi is power losses of the ith solution;
PLmax is the maximal power losses of all designs; kMA is the

weight of mass objective.
kMA is usually set as 1 which means two objectives have the

same priority. But, in practice, different objectives can be pri-

oritized by changing the weight value in Eq. (14). Obviously,
the best design obtained from Eqs. (13) and (14) will differ
with regards to kMA. In particular, when kMA increases, power
loss of the best design will climb up while the mass will

decrease. For the MEA application, kMA is usually set larger
than 1 since the mass objective has a higher priority.

It is noted that, the proposed NN aided approach should be

independent with the PMSM’s operational scenarios. The sce-
narios’ parameters can be fixed in the optimization or, they can
be set as the design variables as well. No matter for which sit-

uation, the general procedure of the proposed NN aided
PMSM optimization methodology would be the same (as
shown in Fig. 10). For the case study in Section 5, the PMSM

is used for an actuator onboard MEA. The design space of
PMSM optimization would be different for different PMSM
application scenarios, either actuation or generation. More-
over, the design space should be predefined before the NN

aided optimization process.

5. PMSM case for multi-objective optimization

5.1. DV selection

Based on the PMSM case in Section 3.3, three DVs are newly
selected for the PMSM optimization case. In order to demon-
strate the trade-off study between two objectives, we initially

investigated the sensitivity of two objectives with regards to
different design parameters and then, chose the ones whose
variations of two objectives are converse. For example, when

at becomes larger, the motor mass would increase while the
total losses would decline. Besides, the airgap height and wire
diameter have the same variation situation with at. In contrast,
we found that the two objectives would show the same varia-
tion trend against the changes of axial length, PM height
and tooth base height.

Therefore, the three DVs in this section are: stator tooth
base fraction (at), airgap height (hag) and wire diameter

(Dwire) whose ranges are given in Table 5. Axial length and
PM height are unchanged in this section whose values are 54
and 4.4 mm. Other parameters are the same with Section 3.3.

It is noted that the DV selection will not affect the optimiza-
tion procedure discussed above. Namely, the optimization
methodology would be the same for all DV combinations.

5.2. NN training and optimization results

In the NN training stage of optimization, sweep4 sampling was

again used for the training data preparation. Therefore, 64
samples were collected from the joint simulations and pro-
cessed as the input–output data set for two NNs. Then, two
NNs were trained using the train command in MATLAB’s

Deep Learning Toolbox, both in 1 s. The RMSE training per-
formance of two NNs are given in Table 5 which are in the
same level with the NNs in Section 3.3. Finally, as shown in

the bottom of Fig. 10, sample large number of design points
in the 3D design space of at; hag and Dwire, the objective values

of all these designs can be quickly obtained by using the ana-
lytical model and two trained NNs.

In this case, the small steps of DVs for the global optimiza-

tion are given in Table 5 thus, we sampled 21 values of at, 11
values of hag, and 51 values of Dwire. The total sample number

is 11781 and the collapsed time for generating all the objective
values of samples is 365.44 s on a standard computer. Then,
the optimal design was then simply obtained by finding the

lowest value of r in Eqs. (13) and (14), which can be done in
MATLAB almost instantaneously using the embedded min
function. The PMSM optimization results are depicted in

Fig. 11.
All the design points in optimization as well as six Pareto-

front points are presented. The objective value distributions of

design points are shown in Fig. 11(a) where there is a clear Par-
eto front at the bottom-left side. Two objectives of all designs
were integrated into one (r value) by using Eqs. (13) and (14)
with a specific kMA. This study swept kMA value from 1 to 6



Fig. 11 PMSM optimization results with different kMA value.

244 Y. GAO et al.
and used Eqs. (13) and (14) to generate the six Pareto-front
points in Fig. 11(a) (Mmax and PLmax should be found before-

hand). Obviously, with the increase of kMA, power loss of the
best design goes up while the mass declines. Since this study
is for MEA applications, mass should have a priority over

the other objective thus, kMA is set as 3 here for the final best
design confirmation. In the same subfigure, the 64 samples col-
lected from joint simulations are also shown, which demon-

strates that the sample amount is very small compared with
the optimization sampling.

On the other hand, Fig. 11(b) shows the design points in the
3-Dimensional DV space (at; hag and Dwire). Noting that the

color of design points only shows the r value distribution when

kMA = 3. The color distribution will be changed with different
kMA values. In this subfigure, there is a clear trend that the dis-
tance from the ‘‘Best Design” in this 3D space has a positive
relation with r value, i.e. the far the larger. Corresponding to

Fig. 11(a), the three DV values of six Pareto-front points are
marked in Fig. 11(b) among which the minimum-r design of
‘‘kMA = 3” is the final best design point in this PMSM opti-

mization case.
Finally, after finding these six Pareto-front points, their 3D

values were input into the FEA platform, MotorCAD, to ver-

ify the accuracy of the NN aided optimization methodology.
As summarized in Table 6, all performance results are extre-
mely close to the target FEA values no matter for mass or

power losses. The relative errors (absolute value) of M are
all below 0.01% and for PL, the relative errors are around
�0:15%. Therefore, the mass mapping performance (NN2) is
Table 6 Performance verification of six Pareto-front points.

kMA at hag (mm) Dwire (mm) PL, NN ap

1 0.62 2 0.7 44.1356

2 0.5 2 0.7 46.1027

3 0.5 2 0.654 51.1041

4 0.5 2 0.624 54.9784

5 0.5 2 0.6 58.5054

6 0.5 1.3 0.6 61.4448
better than that of power losses (NN1). This conclusion can
also be reflected by the NN RMSE results in Tables 4 and 5.

It should be noted that most of the six Pareto-front points
are not included in the 64 samples, which again validates the
excellent performance of NN aided optimization approach.

5.3. Comparison with FEA-based optimization

Compared with the conventional FEA-based optimization, the

first advantage of the proposed methodology comes from the
efficiency of doing optimization. As discussed, the sample
amount of NN training (obtained from joint simulation) is
very small, which means we can work on the time-

consuming FEA model in a very short time and then do the
optimization by only using the trained NNs and analytical
models. In this study, the proposed NN approach can generate

a PMSM design in 0.04 s while it costs more than 1 min in the
FEA model.

Another advantage of the NN approach is that it has no

risk of getting stuck in local optimum, it is a global optimiza-
tion approach using the exhaustive algorithm. Since the FEA
consumes much time, it is usually not realistic to use the

exhausted method to generate the multi-objective optimiza-
tion.23 Popular solutions are using search algorithms, e.g.
genetic algorithm.23–25,34,35 However, in that case, we still need
to sample hundreds even thousands of design points to get the

Pareto front for a multi-objective optimization problem. More
importantly, search algorithms would bring the risk of getting
stuck in local optimum.
proach PL, FEA M, NN approach M, FEA

88 44.204464 4.356582 4.356823

50 46.175872 4.256810 4.257075

06 51.179156 4.141608 4.141867

85 55.054922 4.070650 4.070949

67 58.583106 4.016253 4.016612

55 61.548200 3.977189 3.977494
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Last but not the least, the hybrid model of trained NNs and
math models can provide the best design point smoothly for
any potential DV subspaces, also in a very short time. How-

ever, for the FEA-based optimization with search algorithms,
we may have to run the FEA model once and once again for
the new optimization problems because, in a subspace, the pre-

vious searched samples can be very little thus cannot be uti-
lized to give the optimal design.

However, there is one limitation of the proposed NN aided

optimization approach: the trained NN may not work well
for the variable ranges out of the original design space. Namely,
if enlarge the design space, the prediction performance of the
trainedNNmay be affected. The reason is that the raw data col-

lected for NN training do not cover the entire design space. For
the design points out of range, the FEAmodel is still needed for
the accurate performance estimation though it is not efficient.

Therefore, for the method generalization, it is suggested the
motor variables and their design ranges should be well selected
before the data collection and the final NN training.

6. Conclusions

In this study a hybrid model of NN and analytical model is

proposed for the fast and accurate multi-objective global
PMSM optimization. Based on some samples collected from
the FEA model, two NNs are trained for the mass and loss

correction separately to serve the optimization in the PMSM
design space. Two PMSM design cases are described in this
paper. The first case demonstrates the excellent NN training
performance under the comparisons with the ACF method;

the other case validates the proposed NN aided optimization
method with the globally optimal results and compares it with
the conventional FEA-based optimization.

In general, the NN aided approach for PMSM optimization
mainly accounts for the data of inputs (design variables) and
outputs (performance correction factors); therefore, the appli-

cation should not be limited to the typical types and topologies
of electrical machines. In addition, apart from mass and power
loss, other machine performance indices can also be considered

in the multi-objective optimization using a similar way.
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