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ABSTRACT  

We propose an instrument model for coherence scanning interferometry using familiar Fourier optics methods, the 

spectrum of plane waves, and the assumption that the light source spectral bandwidth is the dominant factor in determining 

fringe contrast as a function of optical path length. The model is straightforward to implement, is computationally efficient, 

and reveals many of the common error sources related to the optical filtering properties of the imaging system. We quantify 

the limits of applicability of the model related to the geometrical approximations for conventional Fourier optics, 

particularly for high numerical apertures, and when using the fringe contrast for determining surface heights. These 

limitations can be overcome by using a three-dimensional imaging model.   
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1. INTRODUCTION  

 

Figure 1: Simulated interference fringe signal detected by a camera for a sinusoidal surface topography when using a 
spectrally broadband light source, as the interference objective is scanned in the z  direction.  

The central red line represents the object surface profile on the same scale. 

The image in Figure 1 is simulated data from a coherence scanning interferometry (CSI) microscope, showing interference 

fringes acquired by a camera during an axial scan of the interference objective. Both the shape of the interference fringes 

and their variation in contrast are suggestive of the surface profile, shown as a solid red line in the figure. The image 

illustrates the principle of CSI while raising several questions, including how best to convert these data into a measured 

surface profile, and whether we can use simulations to predict the performance of CSI depending on surface topography. 
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The success of CSI has motivated research into physics-based models to predict the interference signals and measurement 

results for these instruments [1-8]. These models address surface topographies and material characteristics that vary from 

simple to complicated, consistent with the wide range of applications for CSI. In this paper we propose an approximate 

model that builds on the Fourier optics approach for monochromatic interferometry presented at last year’s SPIE 

conference [9]. While illustrating the basic features of a CSI system and fundamental sources of uncertainty, the model 

also provides a means for determining under what circumstances an approximate model of this kind generates meaningful 

results, and when conversely more accurate models of surface diffraction and optical filtering are recommended.  

This paper is structured as follows. After a review of the principles of white-light interferometry and data processing 

methods, we propose the Fourier optics simulator for predicting CSI signals and measurement results. Several examples 

illustrate the use of the model for understanding error sources and predicting performance characteristics, such instrument 

response as a function of spatial frequency. This is followed by an analysis of the limitation of the model attributable to 

the geometrical approximations in its development. Finally, we consider approaches to more accurate modeling methods, 

as well as perspectives on further research in this area. 

2. INTERFERENCE MICROSCOPY 

 

Figure 2: Model of a microscope with a Mirau type interference objective.  

Figure 2 shows a common microscope configuration for measurement of surface heights using interferometry [10]. The 

principle of measurement, at least as a starting concept, relies on the assumption that phases are directly proportional to 

object surface heights: 

    2o ox Kh x  , (1) 

where the subscript o  refers to the object, oh  is the local surface height along the orthogonal z  direction, and x  is an 

abbreviation for the ,x y  coordinates in a plane that coincides with the surface [11]. The interference fringe frequency K  

along the z  axis depends on the illumination geometry as well as the wavelength  .  

A common approximation is to summarize the illumination geometry with an obliquity factor   that accounts for the 

illumination numerical aperture (NA) for the objective [12]. The fringe frequency is then 
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 2K   . (2) 

A value for the obliquity factor for aplanatic imaging, uniform illumination of the objective pupil is 
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where the maximum incident angle for the illumination cone in terms of the NA value NA  is 

  1sin NA  . (4) 

After measuring the phase distribution I  over the surface, for example by phase shifting interferometry (PSI), the 

calculated topography is  

     2I Ih x x K  . (5) 

A known limitation when using a single wavelength   is that the interference phase I  can only be determined within a 

2  interval. One solution, known since the earliest days of interferometry, is to use a spectrally-broadband or “white light” 

source [13]. The incoherent superposition of interference patterns for multiple wavelengths results in a signal for which 

the interference fringe contrast reaches a maximum at the stationary phase point, corresponding to zero group-velocity 

path difference. The variation in fringe contrast provides a means to determine the interference fringe order, or 

alternatively, to determine surface heights without relying on interference phase at all [14-16].  

The general concepts of white-light interferometry can be extended to any method for which the interference fringe contrast 

varies with surface height and objective scan position. It is common to equate CSI with white-light interferometry, and to 

assume for example that the width of the coherence envelope is inversely proportional to the spectral bandwidth [17]. 

However, it is possible to have signals similar to those shown in Figure 2 without using white light, if the light source is 

spatially extended and the illumination optics have an NA large enough to limit the z -axis range of high fringe contrast 

[18]. In practice, in interference microscopy, the fringe contrast effect is a combination of both the broad spectral 

bandwidth and the focusing effects of high NA values. For this reason, the ISO term for technologies that rely on variations 

in fringe contrast is called CSI rather than the more narrowly defined white light interferometry [19].     

To capture and analyze CSI signals, the interference objective in Figure 2 is scanned axially, while the camera records a 

sequence of intensity patterns. Setting aside methods for economizing data storage, the result of the acquisition is an 

, ,x y z  cube of intensity values, for which an example ,x z  cross section is shown in Figure 1. The usual approach to 

analyzing these data is to extract intensity signals I  as a function of scan position z  for each image pixel ,x y , as 

illustrated in Figure 3. The resulting signal, showing interference fringes and a coherence envelope with defined 

characteristics such as an envelope peak, is the usual starting point for developing CSI data analysis algorithms.  

A common approach to CSI data analysis is to demodulate the signal to obtain the coherence envelope. The location of 

the peak, centroid or other envelope characteristic is directly a measure of the surface height for the corresponding image 

pixel. The surface heights Ch  as a function of x  is often referred to as the coherence profile. By analyzing the interference 

fringes from the same signal, for example by using a phase-shifting algorithm near the coherence peak, we can also obtain 

a phase profile h  that has close to the same value as the result Ih  in Eq.(5). The coherence profile is as much as 10× 
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more sensitive to additive noise and signal distortions than the phase profile, but has the important advantage of avoiding 

the 2  cycle ambiguity [10, 20].  

 

Figure 3: Extracting a CSI signal for a single image pixel. 

 

Figure 4: The FDA method of data analysis for CSI signals. 

An alternative to calculating the coherence envelope and fringe phase is to transform the intensity signal I  into the 
frequency domain [21]. The Fourier transform along the z  direction is 

      1
exp 2q K I z i K z dz

dz
  

, (6) 

where the integration is over a scan range that encompasses the interference signal. These Fourier components have 

magnitudes and phases given by  

   arg q K   (7) 
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  M q K  . (8) 

Figure 4 shows discretely-sampled values 1,2,3  and 1,2,3M  for the Fourier transform of a signal for one image point. 

After removing integer multiples of 2  between neighboring phase values, a linear fit to the phase data weighted by the 

Fourier magnitudes provides a phase slope and intercept for this image point. The slope of the line is a measure of the 

location of the signal, corresponding to the coherence profile: 

    ,1

2C

d x K
h x

dK








. (9) 

This result combines with the intercept A at 0K   to provide a phase value at the strongest frequency MK   which, in 

Figure 4, is indicated by the frequency 2K  : 

      2M M Cx x xA K h    . (10) 

The phase translates to a phase profile using  

     2M Mh x x K    . (11) 

Because the coherence profile Ch  is more sensitive to sources of error than the phase profile h , it is common when 

measuring smooth surfaces to use the coherence profile only as a first estimate of surface height, to resolve the ambiguities 

in the fringe order for the phase profile h  [20]. 

It is important to note that the FDA method is not itself an instrument model; rather, it is one of several ways to analyze 

CSI signals to extract surface topography information. However, as we shall see, it is a particularly useful method in the 

context of modeling instrument response, as it will allow for some convenient shortcuts for signal simulations.  

After this brief review of the principles of both monochromatic interference microscopy and CSI, we turn our attention to 

physical modeling of the interference signal and the resulting measured profiles.  

3. ELEMENTARY FOURIER OPTICS MODEL 

It is understood that the measured interference phases will be altered from the starting values by the imaging optics 

illustrated in Figure 2. In our 2019 SPIE paper for this conference, entitled “Does interferometry work?”, it is argued that 

a significant potential contributor to measurement error is the spatial frequency bandwidth limits resulting from optical 

filtering in the imaging system [11]. This basic error mechanism can be examined, within well-defined limits, using a 

Fourier optics model that includes geometrical approximations to simplify the calculation. 

Imaging systems are frequently characterized in optical engineering using Abbe theory and standardized concepts such as 

the optical transfer function (OTF) and its modulus, the modulation transfer function (MTF) [22]. These methods are most 

often applied to intensity objects—defined conceptually as perfectly flat surfaces having only a variation in reflectivity. If 

the illumination is fully incoherent, using the Fourier optics propagation of 2D wavefronts, the diffraction-limited imaging 

response is determined by linear transfer functions (TFs) in the frequency domain. 

The situation is different for 3D surface topography. In principle, for such objects, there does not exist a generalized linear 

TF for the imaged intensity in partially coherent light, and we cannot readily apply a frequency-domain calculation using 
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the OTF [23, 24]. It can be nonetheless constructive to make several approximations that allow us to leverage familiar 

Fourier optics models. The first of these approximations is to replace the actual surface topography with a flat reflecting 

aperture function, with the local surface height represented by phase changes in the complex amplitude [25-27]. The main 

assumption is that the surface topography variations are small relative to the depth of field (DOF). Figure 5 illustrates this 

approximation, which is a familiar foundational concept in interferometry for topography measurement. Here it serves as 

a starting point for modeling the diffraction problem, in what we refer to as the elementary Fourier optics (EFO) method.  

 

Figure 5: The thin phase object approximation, assuming that the topography variations are small relative to the DOF. The 
color density in the equivalent thin object represent phase variations of a complex amplitude reflectivity. 

The next approximation in the EFO model for interferometers is to set aside the contribution to the measured intensity of 

the object surface reflection alone, given the complications of solving this problem in partially coherent light. Instead, we 

isolate that portion of the signal resulting from the coherent interference of the light reflected from both the object and the 

reference. This portion contributes the interference fringes shown in Figure 1, while the neglected portion is the 

background light resulting from conventional, non-interferometric imaging of the object surface and reference surfaces. 

This is a significant step, as it allows for modeling the interference signal generation using linear TFs. 

The next approximation is not essential to the EFO method, but it provides a path to using familiar TFs such as the OTF 

in simulations. The most accurate way to calculate the interference signal in partially coherent light is to integrate the 

image contributions from all illumination incident angles, using a diffraction calculation independently for each of these 

contributions [28-30]. The problem is significantly simplified, with a penalty to the accuracy of the model at high NA, if 

we average these effects using the obliquity factor   defined in Eq. (3).  

With this ensemble of approximations in hand, and considering for the moment just one wavelength  , we define the 

following 2D complex function as a representation of the effect of the object surface on the interference fringe signal:  

    expo oU i xx     , (12) 

where, just as in Eq. (1) and Eq. (2), we have the height-dependent phase 

    2o ox Kh x   (13) 

for the fringe frequency  

 2K   . (14) 

The function oU  may be thought of conceptually as the light field immediately after reflection from the object surface, 

assuming uniform illumination and surface reflectivity, although it is more accurately described as the contribution of the 
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object surface reflection to the interference pattern at the camera. Following conventional methods from Fourier optics 

[31], the light field immediately after reflection is represented by a spectrum of plane waves:  

       1
exp 2xo o xf U x i f x dx

dx
U  

. (15) 

The tilde (~) symbol denotes a frequency-domain representation of the corresponding space-domain quantity, and the 

definite integrals are over the field of view. The lateral spatial frequency xf  for each plane wave is 

  cosx xf   , (16) 

where x  is the angle between the direction of the plane wave propagation and the x
 
axis. The effect on the spectrum of 

plane waves is a multiplication in frequency space  

        I x x o xU f O f U f , (17) 

where O  is the partially-coherent TF for interferometric imaging. A familiar example TF for an interference microscope 

with Köhler illumination is the autocorrelation of a 2D circular pupil, which has the same form as the OTF for conventional 

optical imaging with a fully incoherent light source: 

   
2

12
cos 1 rect

2
x x x x

x
max max max max

f f f f
O f

f f f f


                      
, (18) 

where the maximum detectable lateral spatial frequency is  

 2max Nf A  . (19) 

For a 2D pupil, the frequency xf  is replaced by a radius in the frequency domain. Within the implied limits of the 

approximations discussed above, the TF can also incorporate overall image defocus and optical aberrations [27]. Figure 6 

shows example TFs illustrating the wavelength dependence of the response.  

At the image plane, the coherent superposition of the filtered plane waves results in an imaged light field given by the 

inverse Fourier transform  

       1
exp 2I I x x x

x

U x U f i f x df
df

 
, (20) 

where we have reused the object-space coordinates ,x z , equivalent to a system without distortion and with unit 

magnification. The interference fringe intensities are proportional to the real part of this image function 

    Re II x U x    , (21) 
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and the calculation of the topography follows from a determination of the interference phase. In practice, determining the 

phase interferometrically may proceed by any one of a number of ways. However, for the purposes of mathematically 

modeling the effect of surface topography, it is often enough to calculate the phase directly from  

     argI Ix U x   . (22) 

The topography measurement for a single wavelength is then 

    I Ih x x K , (23) 

and the interference signal strength is proportional to 

    I IM x U x . (24) 

This completes the description of the single-wavelength EFO model, consistent with prior work [9, 27]. 

 

 Figure 6: The imaging TF calculated from Eq. (18) for wavelengths 0.5 µm and 0.6 µm..  

To extend the EFO model to CSI, an important decision is whether to include both optical spectrum and focus effects in 

the model. As has been noted in Section 2, the shape of the coherence envelope is a combination of both spectral bandwidth 

and illumination geometry, implying integrations over multiple incident angles and wavelengths [32]. In what follows, we 

will assume that the effects of the white-light spectrum are dominant. First, we define a light source spectrum that is 

Gaussian in wavenumber: 

  
2

1
exp

2
M

k

k k
S k



      
   

. (25) 

The mean wavenumber Mk  is the inverse of the central wavelength M of the spectrum, and the standard deviation in 

wavenumbers k  is given by the approximately equivalent value  
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2 2 ln 2
k

M



  (26) 

for a full-width at half maximum wavelength bandwidth  . In software simulations, it is often useful to normalize the 

spectrum S  so that the sum over all k  values is equal to unity. 

In the white-light limit of low NA and with a perfectly flat part without tip and tilt, the optical spectrum may be directly 

associated with the Fourier frequencies using Eq.(14) and by assuming 

 K K  . 

The complex values for IU  of the imaged light field can then be assigned to the Fourier coefficients for FDA: 

    , ,Iq x K U x K . (27) 

The phases   and magnitudes M  needed for FDA follow from Eqs.(7) and (8). It is therefore feasible in the white-light 

approximation to model the measured surface profile resulting from an FDA evaluation of a CSI signal, without the need 

to simulate the signal itself. We call this the direct to FDA method.  

The direct to FDA implementation is fast and efficient, but the question remains as to how to simulate the CSI fringe image 

shown in Figure 1. This is useful for visualization, but also as a practical matter, for evaluating data processing methods 

not based on FDA. The signal for each image point follows from the inverse Fourier transform  

      1
exp 2I z q K i Kz dK

dK
 

. (28) 

The calculation is simplified by integrating over the positive frequency  0K   the real value  q K , which is equivalent 

to summing the interference signal for each of the wavelengths. Table 1 summarized the EFO model for CSI with white 

light illumination. 

The number of wavelengths needed for numerical modeling of the interference signal depends on the range of possible 

positions of the coherence envelope in the acquired data. Defining this range as Z , the maximum wavelength spacing to 

avoid aliasing in the frequency domain is 

 2 2Z    . (29) 

In practice, CSI instruments often store only that portion of the data acquisition scan that includes meaningful interference 

data, while recording the scan offset for each pixel in the image of the object [20, 33]. This limits the range Z  in Eq. (6) 

to approximately 5 µm, for a maximum wavelength spacing at a mean wavelength of 0.5 µm of 0.025 µm. For a spectral 

bandwidth of approximately 0.1 µm, it is sufficient to use three to five wavelengths near the peak Fourier magnitude for 

an FDA calculation of surface heights. However, for a signal simulation over a wider range, such as shown in Figure 1, 

many more wavelengths may be needed to fully attenuate interference signal contributions outside of the contrast envelope. 
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Table 1: Summary of the EFO model for CSI, using FDA for surface profiles. 

Step Reference 

For each wavelength   in the light source spectrum Eq.(25) 

Calculate the corresponding fringe frequency K Eq.(2) 

Calculate object contribution oU  to the interference effect Eq.(12) 

Propagate through the optical system using the imaging TF O  as a filter Eq.(18) 

Store complex-valued result IU  as the Fourier coefficient q at this K Eq.(27) 

For each imaged pixel x   

Extract the phase  and magnitude M for the Fourier coefficient q Eq.(7),(8) 

 Unwrap the phase values  as a function of K Figure 4 

 Perform a least-squares fit to the phase values , weighted by the Fourier magnitudes M  Figure 4 

 Use the phase slope for the coherence profile Ch  Eq.(9) 

 Use the phase offset and slope together from the linear fit for the phase profile h ,  Eq.(10) 

Optional CSI “fringe” signal  

For each imaged pixel x   

Inverse transform the Fourier coefficients q Eq.(28) 

 

4. RESULTS 

A first example of the modeling is the sinusoidal profile shown in Figure 1. The simulated results in Figure 7 show that 

even in a diffraction limited system, there are small residual errors, particularly for the coherence profile. The example 

illustrates how a linear diffraction model can be used to predict the kind of nonlinear instrument response often encountered 

in practice [8, 34, 35]. The errors are the result of the bandwidth limits of the imaging TF. For the coherence profile, the 

larger predicted measurement errors are attributable to the wavelength dependence of TFs [11, 36]. This is one of the 

reasons for preferring the phase profile if the surface is sufficiently smooth. 

The difference between the coherence and phase profiles is even more significant when the surface has steep slopes or 

sharp features that are beyond the specular NA angle limit   of the imaging optics, defined in Eq. (4).  Figure 8 shows 

the predicted behavior for a rectangular surface feature, illustrating the overshoots at sharp edges, often referred to as 

“batwings” [37]. The effect is significantly more pronounced with coherence profiles. This effect is perhaps the most 

frequently encountered origin of accidental 2  errors in the phase profile, if the coherence profile is used to determine 

fringe order. For this reason, software for CSI commonly includes a variety of mitigation strategies, many based on a 

detailed analysis of the difference between the phase and coherence profiles [20]. 
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Figure 7: Simulated measurement results using the EFO model for the profile of Figure 1.  
The sinusoidal period is 50 µm, and the peak-valley height range is 1 µm. 

The mean wavelength is 0.5 µm, the FWHM bandwidth is 0.1 µm, and the NA is 0.1. 

 

Figure 8: Simulated results using the EFO model for an 8 µm wide rectangular surface feature with a height of 0.75 µm.  
The mean wavelength is 0.57 µm, the FWHM bandwidth is 0.12 µm, and the NA is 0.15.  

Note the 10× difference in height scale for the predicted errors for the coherence and phase profiles. 
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Figure 9: EFO modeling analysis of instrument response as a function of surface spatial frequency for phase profiles, for a 
constant maximum surface slope equal to 50% of the geometrical NA limit.  The left-hand graph shows the results in 

comparison with the optical imaging MTF. The right-hand graph shows the rms error in the measured profile.  
The mean wavelength is 0.57 µm and the NA is 0.15.  

One of the uses of the EFO model is for the evaluation of instrument response as a function of spatial frequencies. This 

kind of analysis is useful for determining whether an instrument is suitable for measuring the power spectral density (PSD) 

of specific surfaces [38]. Figure 9 illustrates such an analysis for an interference microscope measuring sinusoidal surface 

profiles using phase information. A sequence of simulated profiles is presented to the model, with sinusoidal amplitudes 

scaled inversely with the spatial frequency, such that the maximum surface slope angle is at 50% of the NA angle limit   

for all frequencies. The corresponding amplitudes range from 12 µm at a frequency of 0.001 1μm   to 0.012 µm at 1 1μm   

for an NA of 0.15. The left-hand graph in Figure 9 shows the relative measured amplitude of the sinusoidal input amplitude, 

while the right-hand graph in Figure 9 shows the rms nonlinearity at each frequency relative to the input amplitude.   

Although not shown in Figure 9, detailed calculations for other angle limits show that for smaller surface height variations, 

the response curve approaches that of the MTF for conventional intensity imaging in the same optical system, and the 

results are almost perfectly linear [39]. Contrarily, for coherence profiles, the height response is nonlinear even for modest 

slopes and surface height variations, even though there are many applications involving rough surface textures that are 

well served by CSI measurement modes based on coherence alone. 

The results shown here are representative of what is observed experimentally [20, 27], and have also been confirmed by 

direct comparison with more advanced models [8]. However, the EFO method has its limits of validity, given the many 

geometrical approximations built into the model. Quantifying these limits is the topic of the next section.  

5. LIMITS OF APPLICABILITY FOR EFO MODELLING 

The approximation of a 2D complex-valued aperture function in place of the 3D topography assumes that all surface points 

in the topography are at the same focus position [25-27]. This gives rise to the DOF limitation for fixed-focus systems, 

such as PSI microscopes, noted already in Section 3. The Rayleigh formula for the DOF is 

 2
field ND A . (30) 
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This number is one-half the focus range, but for the purpose of specifying an approximate limit for the EFO, we use fieldD  

as the total allowable range of surface heights. To make this more meaningful in practice, the graph in Figure 10 shows 

the DOF as a function of NA with several example magnifications for common interference microscope objectives. It is 

worth observing that typical 100 mm aperture laser-Fizeau interferometers have an NA of less than 0.01. Given the 

limitations on resolvable fringe density, there is no practical surface height range limit for continuous surfaces below 0.1 

NA for use with EFO modeling of laser Fizeau interferometers, provided that the field curvature matches that of the part 

to within a few millimeters. For this reason, EFO modeling is common for optical design and tolerancing [40, 41], and 

digital holographic refocusing is possible using 2D propagators [42].  

 

Figure 10: Limits to the allowable surface height variation for the use of the EFO model for a fixed-focus (non-scanning) 
system, based on the DOF. The graph includes representative magnifications for common interference objectives. 

The shading qualitatively represents confidence in the modelling results, with darker shading representing greater accuracy. 

 

Figure 11: Limits to applicability of the EFO model for CSI when using phase information to calculate surface heights.  
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For CSI, the limitations of EFO modeling are relaxed and at the same time more restricted than for fixed focus 

monochromatic interferometry. In most implementations of CSI, the focus position and the position of peak fringe contrast 

are coincident and are scanned together [10]. The measurement principle has the significant benefit that every point on the 

object surface is measured at the same focus position [43]. This practical benefit also means that DOF limitation for 

application of the EFO can be relaxed, at least for measurements based on interference phase. The CSI scan enables a 

piecewise evaluation across the field of view, equivalent to collapsing the entire surface topography into the thin complex-

valued aperture function of the EFO model, even if the surface height range is much larger than the DOF. We have verified 

this phenomenon by direct comparison with more advanced 3D modeling that we will describe in Section 6. Figure 11 

summarizes this finding for phase profiles in CSI, with applicability for the model over all height ranges and NA values. 

The progressively lighter shading is a qualitative representation of declining confidence in the result at higher NA values, 

given polarization-dependent material effects at large incident angles, and the use of scalar diffraction theory. 

 

Figure 12: Limits to applicability of the EFO model for CSI for coherence profiles using common light sources. 
 The “white light” approximation is limited to low NA values characteristic of objective magnifications below 10×. 

The situation is less encouraging for measurements using coherence. The white-light EFO model for CSI described in this 

paper assumes that the coherence envelope is shaped uniquely by the broad spectral bandwidth of the light source; whereas 

it is well known that at high NA values, the envelope changes in width and overall shape as a consequence of the range of 

illumination angles [18, 32, 44]. Consequently, a constraint for the extended height range for simple EFO modeling in CSI 

is that the coherence length of the illumination should be much less than the depth of focus fieldD . A comparison of the 

EFO model presented here with more advanced methods with fewer geometrical approximations shows that “much less” 

is approximately a factor of five if the intent is to accurately predict residual measurement errors in the coherence profile. 

This requirement can be written as 

 5C fieldD  , (31) 

where the coherence length is 

  1C k  . (32) 
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As a practical example, assume the coherence length is 2 µm for a 0.57 µm light source with a 0.12 µm FWHM spectral 

bandwidth, and scales inversely with the bandwidth.  Figure 12 summarizes this limit, where the shading once again is 

indicative of declining confidence in the result with increasing NA and corresponding objective magnifications.  

Importantly, the limitations on NA for simulating coherence profiles in CSI are not relaxed in the limit of small surface 

height variations, as they are for fixed-focus measurements based on interference phase. In essence, above a certain 

illumination NA value, EFO modeling is simply not suited to the task of simulating the complete CSI signal well enough 

to predict the coherence profile results, regardless of the range of surface height variations. 

The limitations of the EFO model for CSI at high NA can be overcome by abandoning the obliquity factor approximation 

and considering the diffracted wavefronts as a function of incident angle, using pupil-plane integration [30]. A limit case 

for this method is the modeling of a monochromatic, high-NA system, for which the Fourier coefficients in the FDA 

method map to directional cosines, rather than spectral wavenumbers [18]. However, to account for both spectral 

bandwidth and measurement geometry correctly, the most accurate method is to integrate over the pupil plane the 

diffracted plane waves for each incident plane wave in the illumination [27]. Although this is a useful approach and can 

be applied to nonlinear diffraction problems such as optically-unresolved surface features [45], clearly the simplicity and 

ease of implementation of the EFO model is lost, and it becomes compelling to start fresh with a more realistic 3D imaging 

solution. 

6. 3D MODELS 

Conventional Fourier optics methods are based on 2D TFs along the lateral spatial ,x yf f  frequency axes, with propagation 

and modification of wavefronts expressed in terms of planar representations of light fields. Models based on 3D TFs in 

,x yf f  and zf are common in microscopy [46], particularly confocal microscopy and high lateral resolution systems [47]. 

The formalism for 3D TFs can be equally well applied to holography and interferometry [48] and is of interest in any high-

NA system for which focus effects strongly influence the outcome of a measurement, including CSI [49-51].  

Linear 3D models have a rigorous foundation in diffraction theory [47, 50]; however, for our present purpose, we consider 

just the geometrical aspects of 3D TFs. Figure 13 shows the ,x zf f  cross-section of a 3D TF for spatially-incoherent, 

monochromatic light in an interference microscope. The key difference of this figure with respect to the more familiar 

representation shown in Figure 6 is the addition of the vertical axis zf  to the lateral xf  axis, with the consequence that 

the TF magnitude is now represented by a color map. The 2D TF shown in Figure 6 is equivalent to integrating the image 

shown in Figure 13 along the zf  direction for each position along the xf  axis.  

The construction of Figure 13 starts by defining incident wavevectors ik  and scattered wavevectors sk . These 

wavevectors have a length given by the spectral wavenumber 1k  , and are oriented according to their incident and 

scattered angles. The range of incident angles for ik  sweeps out an arc ia  consistent with the geometry of the illuminating 

light cone for a system having a pupil filled with spatially incoherent light. For each of these incident wavevectors ik , 

there is an arc sa  of scattered wavevectors sk  limited by the acceptance cone of the imaging system. The combination of 

these two arcs defines the range of possible ,x zf f  values that are detectable using interferometry. By sweeping both the 

ik  and sk vectors through all possible angles, we obtain the 3D TF, with a magnitude distribution proportional to the 

number of ways in which these vectors can be oriented to reach the same ,x zf f  point in frequency space. 

The 3D TF allows us to predict the frequency content of a signal, such as the one shown in Figure 1, for an object surface 

modeled as a thin “foil” or point cloud of scattering points in , ,x y z  [25, 52]. The 3D TF can be measured experimentally 
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by realization of the 3D point spread function using a small sphere, which scatters light in every direction [49]. The 

resulting detected signal will have a frequency content close to that of the 3D-TF. This method has been used to calibrate 

interferometers and to correct for defocus, aberrations, and tilt-dependent errors [53-55]. 

  

Figure 13: Geometrical construction of the cross section of a 3D-TF in monochromatic light with a linear pupil.  

An approach to understanding the 3D TF is to observe its frequency limits. Along the lateral xf  axis, the boundaries are 

given by the Abbe frequency, exactly as in Eq. (19). Along the vertical zf  axis, we have a range of possible interference 

fringe frequencies, with the maximum possible frequency for normal incidence and specular reflection of 2  . For every 

other frequency within the boundaries of the 3D TF, there are differing fringe frequency contributions along the zf axis 

and lateral spatial frequencies along the xf  axis. For white-light illumination, the superposition of wavevector lengths of 

differing lengths blurs the TF and extends its boundaries along the zf  direction, without departing from the overall 

“umbrella” shape shown in Figure 13. 

 

Figure 14: Simulations at NA = 0.55 (50× objective) for a sinusoidal profile with an amplitude of 0.15 µm. The mean 
wavelength is 0.57 µm and the FWHM bandwidth is 0.08 µm. The predicted measurement errors for the phase profile are 

shown in the left-hand graph, while the predicted errors in the coherence profile are in the right-hand graph. 

In the simplest EFO modeling, the use of the obliquity factor   defined by Eq. (2) and Eq. (3) is equivalent to averaging 

the frequency projections along the vertical zf axis, so that we can use linear 2D TFs. In this approximation, we lose all 

of the detail of the 3D TF regarding the variation in possible zf values as a function of xf . At low NA values, this is not 

serious: in the limit of very small NA, the cross-section of the 3D TF would appear as a broad line parallel to the lateral 
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xf  axis shown in Figure 13, with a magnitude distribution given by the TF shown in Figure 6. However, at high NA 

values, the shape of the 3D TF is not well represented by this obliquity factor approximation.  

The practical difference in signal simulation between 2D and 3D TFs at high NA is illustrated in the example shown in 

Figure 14, which shows the predicted measurement error for a sinusoidal object profile having an amplitude of 0.15 µm 

and a period of 10 µm, for a 50× interference objective and diffraction-limited optics. For the phase profile, the 

approximations in EFO modeling with an obliquity factor are acceptable; whereas for the coherence profile, which is much 

more dependent on the signal shape rather than its mean phase, the EFO model underestimates the error. This is consistent 

with the limits of applicability described in Section 5, which have been verified by comparison with a virtual CSI model 

based on 3D TFs [8]. 

7. SUMMARY AND FUTURE WORK 

Modern interference microscopes for surface topography measurement often employ coherence scanning methods with 

spectrally broadband light sources to extend the measurement range beyond one interference phase cycle. Within well-

defined limits, a Fourier optics model, using familiar concepts from conventional imaging systems analysis, can predict 

the interference signals and measured surface profiles for these instruments. A defining simplification is the modeling of 

the surface topography as a complex-valued reflecting aperture function for which the surface heights are encoded as phase 

shifts—a common concept for topography measurement using interferometry. With this approximation in hand, we 

propose the EFO model summarized by Table 1 for CSI signals and measurement results. 

Practical uses for EFO models include evaluating instrument response for the specification of lateral resolution and 

frequency response [39]. Using the EFO model presented here, we also find that errors in CSI microscopy encountered in 

practice can often be attributed to the wavelength dependence of the imaging transfer function, even for diffraction-limited 

optical systems, particularly when using the fringe contrast envelope to measure surface heights. Software developments 

since the discovery of CSI three decades ago target these error sources; but it is nonetheless useful to predict their 

magnitude using simplified data processing, to configure measurement to minimize their influence.  

We find that the instrument response when using interference phase is adequately represented by the EFO model for the 

most commonly-used interference objectives; however, there are limitations to the accuracy of the model at higher NA 

values, especially when using the fringe contrast to measure surface heights. In all cases we find that a full 3D model is 

more reliable because it has fewer geometrical approximations, with the greatest benefit at NA values above 0.2. 

The several additional simplifying assumptions of both 2D and 3D modeling as presented here, including scalar diffraction, 

optically smooth surfaces (relative to wavelength), neglect of material and polarization effects, and the absence of thin 

partially-transparent surface films, provide opportunities for further work. These developments help with obtaining the 

most realistic results from existing instruments, while generating ideas for new methods and techniques for optical non-

contact areal surface topography measurements. 
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