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Abstract

Discontinuous dynamic recrystallization (dDRX) is considered an effective way to obtain

fine grain microstructures during hot working of materials with low-to-medium stacking fault

energy (SFE). However, to date, investigation and modeling of dDRX in complex hot working

processes are not appropriately performed, which hinders further control of the microstructure

and forming quality of products during hot working. In this study, a multiscalemodeling

framework, namely the MCAFE-dDRX model, was constructed by coupling the multilevel

cellular automaton (MCA) and finite element (FE) method. The data acquired via the FE

method was used as an input for MCA simulation by discretizing the increment in FE time to

consider the deformation history of materials. Compared to previous studies where only the

effects of constant strain rate and temperature on the deformation of materials are analysed, the

MCAFE-dDRX model can evaluate the dDRX microstructure evolution at different Zener-

Hollomon levels, which has been validated by hot extrusion in this study. Thedeveloped

simulation framework facilitates the prediction of microstructure evolution during

heterogeneous and non-isothermal deformation of materials.
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1. Introduction

Thermomechanical processing is an effective way to control the microstructure and grain

refinement of commercial metals and alloys (Chatziathanasiou et al., 2016; Yang et al., 2020).
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During the past two decades, significant efforts have been devoted to realizing the

thermomechanical processing of materials more cost-effectivly. Among the varioustechniques,

promoting the occurrence of dynamic recrystallization (DRX) is the most well- developed

method to refine grains under hot working conditions (for example, hot extrusion, hot rolling,

and hot forging) (Galiyev et al., 2001; McQueen, 2004; Sakai et al., 2014; Lieou and

Bronkhorst 2018; Tang et al., 2019).

In the past few decades, the DRX of metals and alloys under hot working conditions has

been mainly examined by theoretical and experimental studies (Sakai et al., 2014). The most

comprehensive reviews on DRX have been performed by top researchers in this field (Doherty

et al., 1997; Raabe, 2002; Rollett, 2004; McQueen, 2004; Sakai et al., 2014; Huang et al., 2018).

It has been commonly acknowledged by both industry and academia that there are primarily

two different DRX mechanisms: discontinuous DRX (dDRX) and continuous DRX (cDRX).

dDRX involves the nucleation of recrystallized grains followed by long-range migration of

high-angle grain boundaries (HAGBs). In materials with low-to-medium stacking fault energy

(SFE), the local difference in dislocation density provides the driving force for the nucleation

of new grains. Relatively dislocation-free nuclei can be formed due tothe bulging of corrugated

grain boundaries (Ponge and Gottstein, 1998). The new recrystallized grains are separated from

the adjacent deformed matrix by HAGBs, which continue to grow into the surrounding

dislocated matrix and substantially decrease the local dislocation density, finally softening the

material. The term dynamic emphasizes the continuous occurrence of recrystallization during

plastic deformation. Moreover, dDRX occurs in two separate stages: nucleation and growth of

new undeformed grains (Sakai et al., 2014). However, as for cDRX, during the growth of new

undeformed grains, competition arises between the accumulation of dislocations owing to work

hardening and annihilation of dislocations caused by dynamic recovery (DRV), which is the

dominant factor leading to the formation of subgrains with strain (Tsuzaki et al., 1996; Rollett

et al., 2004; McQueen et al., 2004; Sun et al., 2018). As reported by Gourdet and Montheillet

(2003), subgrain boundaries change from low-angle grain boundaries (LAGBs) to HAGBs,

thus finally leading to the generation of new recrystallized grains with the accumulation of

deformation.

In the last two decades, numerous studies have been conducted to discover an efficient way

to simulate hot working with DRX (Qu et al., 2005; Lin and Dean, 2005; Fan and Yang, 2011;

Puchi-Cabrera et al., 2013, 2014, 2018; Zhao et al., 2016, 2018; Cho et al., 2019; Tang et al.,

2019; Lieou et al., 2019). Some pioneering studies have been reported by Sellars et al. (1985),

Busso (1998), and McQueen et al. (2004) in this regard. Based on these studies, the evolutions

of DRX volume fraction, DRX grain size (Lin and Liu, 2003; Lin et al., 2008), grain boundary

fraction, subgrain size (Sellars and Zhu, 2000), and mobile dislocations and different types of

immobile dislocations (Roters et al., 2000; Fan and Yang, 2011) were modeled and coupled as

a few internal state variables (ISVs) into a constitutive model. More recently, Puchi-Cabrera et

al. (2018) innovatively proposed physically-based constitutive equations for R260 steel, which

undergoes both DRV and DRX during high-temperature
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deformation. The corresponding model employed an appropriate differential of the Avrami

equation to describe the flow stress at various Zeller-Hollomon parameters. To date, simulating

the hot working with DRX by a combination of finite element (FE) and the established

constitutive equations is considered an effective method. However, the success of this coupled

method significantly depends on the accuracy of parameter identification. Therefore, in the past

few years, research on the ISV method has been mainly focused on identifying the related

parameters (Andrade-Campos et al., 2007; Qu et al., 2008; Spranghers et al., 2014), and

evaluating the calculation efficiency of complex constitutive equations. Nevertheless,

developing a model that can accurately describe the complex thermal and deformation histories

of materials during actual hot working is particularly challenging. Furthermore, these

simulations cannot provide a visible evolution of the virtual microstructure of materials during

hot working with DRX.

To obtain an insight into the DRX mechanisms during hot working, other methods on a

mesoscale and their combinations have also been constructed. Among them, cellular automaton

(CA) is an effective way to study the DRX behavior of materials during hot working because

of its high computational efficiency and flexibility. Based on the physical metallurgy principles

of DRX, complex physical phenomena and morphologies can be explained by only establishing

local switching rules without the need of calculating complex differential equations (Raabe,

1999, 2000; Janssens, 2003, 2010). Since the pioneering research of Goetz and Seetharaman

(1998), the CA model has been attracting extensive attention and has become one of the

important reach topics in the field of hot working with DRX. Ding and Guo (2001) further

proposed a model based on the model constructed by Goetz and Seetharaman (1998), in which

the metallurgical principles of plastic deformation and crystallographic information were

considered for the first time. Janssens (2003) studied the intrinsic characteristics of a three-

dimensional (3D) CA model for the first time tosimulate the microstructure evolution during

recrystallization and grain growth. Kugler and Turk (2004) provided the possibility of the

commercial application of the CA model by clearly defining the CA time step. In addition,

Xiao et al. (2008), Yazdipour et al. (2008), Zheng et al. (2008), Svyetlichnyy et al. (2010,

2014), Chen et al. (2010, 2012, 2014, 2020), and He et al. (2020) promoted the development

of the theories of CA simulation of DRXfrom the aspects of the topological structure of grain

boundaries and the discrete accuracy of the two-dimensional (2D)/3D CA model. In summary,

although improved CA models and related theories for describing hot working with DRX have

been proposed, most studies primarily focus on the deformation of materials under constant

strain rate and temperature conditions. Moreover, practical applications of this method in actual

metal forming arelimited due to the intrinsic characteristics of non-uniform and non-isothermal

deformation under hot working conditions.

Accordingly, some previous studies have focused on the investigation of heterogeneous

deformation of grains via a combination of crystal plasticity finite element method (CPFEM)

and CA model (CPFEM-CA). Raabe and Becker (2000) made a creative contribution in this
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regard by establishing a coupling method, which was used to simulate microstructure evolution

in heterogeneously deformed polycrystalline aluminum. Subsequently, CPFEM-CA was

applied to titanium (Wu et al., 2013) and magnesium alloys (Popova et al., 2015, 2016). In

addition, a coupled method reported by Li et al. (2016) explained the relationship between the

morphological characteristics of dynamic recrystallized grains and heterogeneous deformation

by CPFEM and CA. The accuracy of the simulation was verified by isothermal compression

tests of the TA15 alloy. Recently, this approach was further improved by Zhang et al. (2020),

who modeled the thermal interface grooving and deformation anisotropy of titanium alloys

with a lamellar colony by a combination of the Monte Carlo (MC) methodand CPFEM.

Lately, Nagra et al. (2020) creatively improved the rate-tangent-crystal plasticity-fast Fourier

transform framework proposed by Nagra et al. (2017, 2018) to model the DRX behavior of

hexagonal closed-packed (HCP) AZ31 alloys and further investigated the formability of the

alloys by coupling the M-K approach with the CA method. The improved numerical framework

has the advantage of quantifying the intrinsic characteristics, including macro stress, strain,

twining volume fraction, micromechanical fields, texture evolution, and local dislocation

density of HCP alloys. Although the abovementioned models can substantially reflect the

physical metallurgy principles from macroscale forming to microscale microstructural

evolution, they do not consider the variations in the Zeller- Hollomon parameter. Compared

with the traditional CA model describing the evolution of dislocation density by the Kocks-

Mecking (KM) model (Mecking and Kocks, 1981), CPFEM can accurately demonstrate

heterogeneous deformation in a single grain. However, large plastic deformation and

inaccuracy of identification parameters may lead to significant challenges in the application of

this coupled model in actual metal forming.

Efforts have also been made to develop other hybrid models to meet the practical demands

in metal forming. Lee and Im (2010) proposed a new way to describe the DRX of copper during

non-isothermal hot compression using the traditional CA method and FE. According to the

acquired results, this approach could predict local microstructures during non-isothermal

forming. In addition, Takaki et al. (2014) established a novel multiscale hot- working model

with DRX, which tracked the microstructure evolution by the multi-phase- filed DRX (MPF-

DRX) model and synchronized the macroscopic mechanical behavior according to the J2 flow

theory. Zhao et al. (2016) innovatively proposed a model for DRXby integrating a fast Fourier

transform-based elastic-viscoplastic model with a phase-field recrystallization model. The

novelty of this model is that it systematically and simultaneouslyconsiders the relationship

between the microstructural changes and the mechanical properties of materials during hot

plastic deformation. This approach was further improved in a subsequent study by Zhao et al.

(2018). These studies offer the possibility of a more realistic simulation of hot working with

DRX, specifically for heterogeneous and non-isothermal hot working processes.

This study aims to develop a straightforward and effective method that can be easily

combined with commercial FE computer codes to predict microstructure evolution during
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actual hot metal forming with dDRX. Furthermore, recent studies on all aspects of the

multilevel CA (MCA) model (Chen et al., 2020) have been discussed for further improvement.

To the best of our knowledge, this is the first study on the application of multiscale modeling

to predict microstructure evolution under real hot-working conditions with dDRX.

The study is organized as follows: the materials used herein, macroscopic extrusion

experiment, and microscopic investigations are briefly introduced in Section 2; basic theories

of the MCAFE-dDRX model are comprehensively discussed in Section 3; critical results with

an emphasis on the evolution of local microstructure during hot extrusion and detailed

discussions are presented in Section 4; and conclusions are provided in Section 5.

2. Materials and experiment

Commercially pure copper was used for model calibration and verification. Hot extrusion

was conducted to estimate the accuracy of the dDRX prediction for pure copper at different

Zener-Hollomon parameters.

To obtain a uniform initial microstructure, the cylindrical billet was vacuum annealed at 390
oC for four hours and then furnace-cooled to room temperature. A test campaign was chosen to

acquire high-deformation level characteristics of extrusion. Moreover, owing to the

heterogeneous plastic deformation of a billet section, the same billet presented a wide gradient

of plastic strain. The experiments were carried out at a combined initial temperature of 300 oC

and a speed of 3 mm/s. The billet was heated to the target temperature in a vacuum furnace and

then moved to a container. A k-type thermocouple temperature measurement system was

employed in the test campaign. Herein, two thermocouples were mounted on the inner surface

of the container to efficiently monitor the thermal conditions of the reduced billet section during

hot-extrusion.

After the test campaign, the extruded billet was quenched with water and further sliced.

Specimens were obtained by cutting the sliced billet parallel to the extrusion axis and were

polished with SiC papers and diamond suspensions to fully achieve a mirror surface for further

electron-backscattered diffraction (EBSD) investigations at several points. A VEGA 3XMU

(LaB6) field emission scanning electron microscope equipped with an Oxford/Nordlys EBSD

detector was used to examine the microstructure evolution during dDRX. To obtain a relatively

high indexing rate of the EBSD pattern, the specimens were initially mechanically polished

with SiC papers having 600, 800, 1200, and 4000 grit sizes, followed by fine polishing with 3,

1, and 0.3 μm diamond suspensions and a 0.05 μm alumina suspension. To eliminate the small 

deformation and residual stress on the polished surface, vibratory polishing was performed

using 0.02 silica suspension for two hours. Measurement campaignswere executed at an

acceleration voltage of 15 kV and a working distance of 20 mm. The scanned area and step

size were 125 μm 125 μm and 0.25 μm, respectively. Data were processed by the AZtec 

system (Oxford Inst.).

3. MCAFE-dDRX model
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3.1. 3D MCA modeling of dDRX

In the proposed MCAFE-dDRX numerical framework, the idea of multilevel cellular space

was incorporated into the traditional CA simulation for ensuring closer to the real deformation

process and higher accuracy of grain morphology. Herein, the integrated MCA model consisted

of four main sub-modules: (1) physical metallurgical parameter calculation (PMPC) module,

which could track the dislocation density, calculate the driving forces, and record the

orientations; (2) multilevel recrystallized nucleation (MRN) module, which introduced the

concept of effective nucleation into the traditional CA model; (3)recrystallized grain growth

(RGG) module, which included the theory of grain growth driven by the dislocation density

difference; and (4) full-field grain boundary identification (FGBI) module, which determined

whether the cell was located at the grain boundary. Figure 1shows the basic integration

scheme as an example of the application of MCA.

Fig. 1. Schematic of the implementation of MCA.

••

•
•
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At first, the initial microstructure was described using the regular geometry, such as square

lattice for 2D (w0 h0 ) and cube for 3D; then, the PMPC and MRN modules were set up to

explain the nucleation and equiaxed growth of newly recrystallized nuclei/grains in the same

coordinate system at different levels of cellular space, respectively. Furthermore, theoretical

models were described in detail to better understand how to introduce the physical metallurgy

principle of dDRX into MCA.

Moreover, to appropriately explain the nucleation and growth of a newly recrystallized grain

in dDRX, 2D MCA was further extended to 3D space in this study. In addition, the basic 3D

MCA principles in terms of the neighborhood type, boundary conditions, state variables, and

cellular state switching rules were comprehensively introduced (see Appendix A1).

3.1.1. Modeling of dislocation evolution

The dislocation density in the ith grain, which was speculated to be uniform in a grain,

was calculated by the KM model as follows (Mecking and Kocks, 1981):

where is the effective strain, k1 represents the working hardening, and k2

(1)

is a function of

the Zener-Hollomon parameter that represents the dislocation annihilation due to DRV.

By integrating Eq. (1), the dislocation density was calculated as follows:

௜ൌߩ ൬
ଵ݇

ଶ݇
−

ଵ݇

ଶ݇
݁ି

௞మ
ଶߝǁ൅ ඥߩ଴݁

ି
௞మ
ଶߝǁ൰

ଶ (2)

where ρ0 can be derived from the Bailey-Hirsch equation:

2
0 (3)
b

where 0 is the initial stress, is a dislocation interaction term which is taken as 0.5, is

the shear modulus, and b is the Burgers vector. In practice, 0 can be extracted from the true

stress-strain curves. In most cases,

In the MCA simulation, the dislocation densities of all the cells are calculated by Eq. (1) at

various forming temperatures and strain rates, and then, the average dislocation density

can be obtained as follows:

(4)

0
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where
Ntotal is the total number of cells in the MCA model. According to the Bailey-Hirsch

equation, the macro stress can be acquired by .

When d
0 , the saturation dislocation density can be achieved by

d

(5)

By substituting Eq. (5) into Eq. (4), we obtain

(6)

where work _ hardening is the flow stress when work hardening plays a dominant role.

Considering that changes with the deformation temperature, the following equations is

acquired.

k1 (7)

where T is the deformation temperature, and Tm

material. The saturated stress is calculated as follows:

is the melting point of the deformed

(8)

3.1.2. Modeling of nucleation and growth

To simplify the model, the dislocation density in each recrystallized nucleus returns to the

initial value, which is set to 10-10/m2, when nucleation takes place. Then, the dislocation density

evolves differently for the matrix and the newly recrystallized grains. Without loss of

generality, the onset of nucleation is associated with the bulging mechanism of grain

boundaries owing to the accumulation of dislocations. When the dislocation density of a

deformed matrix reaches a critical value called the threshold energy of dDRX, nucleation

occurs. The critical dislocation density

1978)

can be calculated by (Robers and Ahlblom,

(9)

critial
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where is the grain boundary energy per unit area; l is the average mean free path of the

mobile dislocation, which can be calculated by l (Takaki et al., 2014); M is the

grain boundary mobility, and is the dislocation line energy, which is expressed by

b2 2 . The detailed derivation of for dDRX is presented in Appendix A2.

is calculated by the Ready-Shockley equation:

m 15o

m 1 ln 15o

m m

(10)

where is the misorientation between the ith cell and its neighboring cells. The values of

range from 1 to 6 as the total number of neighboring cells for 3D MCA is 6. The detailed

method to calculate is presented in Appendix A3. The energy for HAGBs can be directly

calculated as follows (Chen et al., 2009):

b m

m 4 (1 ) (11)

where m and m are the boundary energy and the misorientation for HAGBs, respectively,

and is Poisson’s ratio.

The nucleation rate per unit grain boundary area for dDRX is calculated as

(12)

where CdDRX is a constant, which can be determined by an inverse

analysis method (Jin andCui, 2010; Chen et al., 2020) and can also be calculated by an

experimental measurement method for a specific deformation condition; Qactivation is the

activation energy; and R is the universal gas constant.

The energy difference in terms of dislocation density between the recrystallized grains and

the matrix supplies the thermodynamic driving force for the growth of nuclei.

Considering the solution drag effect, the equiaxed growth velocity of nuclei/grains can be

expressed as

v (13)

where represents the solution drag effect; F is the driving force; D , n and Q are

material constants; is the characteristic grain boundary thickness; Dob is the boundary

self-diffusion coefficient; Qb is the grain boundary diffusion activation energy; K is the
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Boltzmann constant; is the dislocation density of the matrix; is the dislocation

density of the
ith

cell; and ri
is the equivalent average radius of a recrystallized grain, which

is expressed by

ri

where Ni is the total number of cells belonging to a recrystallized grain, and Vcel

(14)

is the

volume of each cell.

In MCA simulation, the time step

maximum grain boundary velocity vmax

is defined as the ratio of the cell diameter and to the

, which is calculated by

(15)

where d0 is evaluated using Eq. (14) when Ni

Then, the strain increment is expressed as . The grain boundary migration

distance at time t is calculated as lt lt t v t .

3.2. FE modeling

In this study, a simulation campaign was conducted using the commercial software FORGE

developed based on a rigid-viscoplastic thermo-mechanical FE formulation. Figure 2 shows

meshed FE models for the initial billet and dies.

Fig. 2. Schematic of meshed finite element models.

The entire billet was analyzed based on the geometrical characteristics of the container

entrance. A 10-node tetrahedron element was used in the meshed billet. A refinement window

was employed to achieve a higher mesh density around the container entrance region

2

Y

Z
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than those in other regions. The mesh density ratio between the region inside and outside the

window was specified as 10. The total number of elements for the billet was 336,000. This

number was kept constant to ensure proper element size. The numbers of tetrahedron elements

employed for the punch and container were 93,438 and 180,628, respectively. The container

and punch were considered perfectly rigid, whereas the copper bar billet was regarded as rigid-

plastic. The elements for the two dies were only used to calculate the temperature fields. During

the FE simulation, the copper bar billet was remeshed when the mesh was distorted in terms of

zero/negative Jacobian. The data acquired using the old mesh were automatically interpolated

to the new mesh, and then, the FE simulation was continued. The boundary conditions in the

FE simulation and thermophysical properties of the deformed billet were as follows: (1) The

friction condition with oil lubricant was used, and the friction coefficient of 0.15 was employed;

(2) Radius and height of the initial billet: 30 and 40 mm, respectively, and extrusion ratio: 1.6;

(3) Speed of the punch: 3 mm/s; (4) Environment temperature: room temperature, and

temperature of the billet: 300 oC; (5) Heat transfercoefficient between the billet and the dies: 5

N/s/mm/oC; (6) Convection coefficient to the environment: 0.02 N/s/mm/oC; and (7) Tabular

data format was used to represent the flow behavior of the studied pure copper, which is widely

used and recommended for FORGE.

3.3. Integration scheme of the MCAFE-dDRX model

Figure 3 depicts the flowchart of the current numerical simulation procedure. The integrated

modeling approach mainly includes the following two parts: a plastic deformation FE model

and MCA. Macroscopic physical fields, such as temperature, strain, and strain-rate fields, of

the dispersed element nodes, were calculated by FE simulation. Herein, element nodes were

recognized as the material points of the billet. After tracking the thermal and deformation

histories of the element nodes, the MCA model was employed to predict the microstructure

evolution during the entire hot deformation history for each element node. Themacroscopic

physical fields were used as the input data in MCA (See Appendix B). Finally, the macroscopic

physical fields were obtained by FE calculation, and the size and morphology of the

recrystallized grains and recrystallization volume fraction of element nodes changed with

deformation. According to the distribution of data, the global microstructural information of

the deformed billet and the local microstructure represented byelement nodes were also

quantified by MCA.
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Fig. 3. Flowchart of the multiscale modeling method.

4. Results and discussion

4.1. Verification of the 3D MCA model

To verify the 3D MCA model, initially, simulations were conducted, and then, the simulation

results were compared with the findings of the classical experimental study on the dDRX

behavior of pure copper under isothermal hot compression reported by Blaz et al. (1983).

Material parameters employed in the present simulations and their physical meanings are

provided in Table 1.

Table 1

Material constants for pure copper (Ding and Guo, 2001).

Qactivation

Qb

Qb

Symbol Physical meaning
Shear modulus (MN/m2)

Value
4.21 104

Initial conditions

Grain information

Calculation of MCA time increment

Calculation the number of MCA simulation steps

Calculation of dislocation density hardening

NO

YES

dDRX nucleation

dDRX grain growth

Final step

YES

Output

NO

MESO-MCA simulation

MACRO-FE simulation

Activation energy for dDRX (kJ/mol) 261

Boundary diffusion activation energy (kJ/mol) 104

Boundary self-diffusion coefficient (m3/s) 5.0 10-15

Grain boundary diffusion activation energy (kJ/mol) 104

Dob
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7.60 104

1075K

Tm
Melting temperature (K) 1356

K Boltzmann’s constant (J/K) 1.38 10-23

b Burgers vector (m) 2.56 10-10

R Ideal gas constant (J/mol) 8.314

D

n Material constants for solution drag effect

1.72 104

0.29

4.1.1 Features of the flow stress curves

Flow stress links the flow behavior with microstructure evolution. It is commonly believed

that predicting the flow stress in hot working is highly fundamental to understanding the plastic

flow behavior of materials. Moreover, the typical characteristics of the flow stress curves of

dDRX correspond to the microstructure evolution and mechanical behaviors of materials.

Therefore, the intrinsic characteristics of the measured flow curves were systematically

investigated.

Stress-strain curves were predicted by MCA under a wide range of deformation conditions

and were compared with the experimental data shown in Fig. 4. Generally, the simulated results

suitably agree with the experimental data. However, a slight discrepancy is evident during the

work-hardening stage. This is caused by the limitation of the current KM dislocation density

model (Mecking and Kocks, 1981) in determining the flow stress of the material during the

initial stage of hot compression in the MCA simulation. Nevertheless, the simplicity of the

dislocation density model appropriately balances the calculation precision and efficiency

accordingly. Furthermore, note that the oscillation of flow stress occurs at a

small Zener-Hollomon parameter (for example, 875K, 975K and 1075K) at

the strain rate of 2 10-3s-1 and initial grain size of 78 μm. This phenomenon has also been 

examined by both theoretical and experimental studies (Jonas et al., 2009).
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Fig. 4. Comparison between the flow stress curves obtained by MCA simulation at different
temperatures and a strain rate of 2 10-3s-1, and the experimental data reported by Blaz et al.
(1983) using the initial grain size of 78 μm for both simulation and experiment. 
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critical

-2[10 m ]
peak cycle critical cycle critical peak

critical

Shape characteristics of true stress-strain curves significantly depend on the relationship

between the threshold for the initiation of dDRX ( ) and the strain required for the

completion of one cycle of recrystallization ( if , complete

recrystallization occurs before the critical strain in the newly recrystallized grains is achieved,

and the flow stress is characterized by multipeak oscillations. In contrast,

indicates that a subsequent recrystallization cycle is again initiated in the newly recrystallized

grains in which the previous cycle has not been completed, and finally, the flow stress curve

shows only one peak and no oscillation. Moreover, the oscillation may be more easily observed

in the flow stress curve at high temperatures or low strain rates (that is, at small Zener-

Hollomon parameters).

To better analyze the oscillation in the true stress-strain curves, the values of

determined by Eq. (9), and predicted by MCA according to the Zener-Hollomon

parameters are presented and compared in Table 2.

Table 2

Critical material parameters for pure copper at various Zener-Hollomon parameters.

1.28 1016 210.24 0.113 0.42 1.017 0.11 0.27

7.82 1014 108.44 0.073 0.25 0.607 0.12 0.29

7.63 1012
31.69 0.039 0.14 0.185 0.21 0.28

1.92 1011
12.35 0.030 0.11 0.128 0.23 0.27

9.63 109 3.68 0.025 0.098 0.082 0.30 0.26

cycle is generally larger than

the relationship between

flow stress. However, note that

in the Zener-Hollomon range. It is hypothesized that

and cycle may not be the only reason for the oscillation of

always results in oscillation. As reviewed

by Huang and Logé (2016), oscillation primarily depends on the combined effects of the

accumulation rate of dislocations in newly recrystallized grains and the grain boundary volume

of the matrix. Thermomechanical processing parameters, such as temperature and strain rate,

play a dominant role in the accumulation of dislocations in newly recrystallized grains. The

grain boundary volume of the matrix is substantially influenced by the initial grain size of the

matrix (Blaz et al., 1983; Sakai et al., 2014). The combined effects of these two factors govern

the accumulation rate of dislocations during hot working and eventually control the shape

characteristics of the true stress-strain curves.

To reveal the correlation between the grain boundary volume fraction and oscillation, the

relationships between the initial matrix grain size, the evolution of the grain boundary area, and

the true stress-strain curve were investigated. Figure 5 depicts the effects of the initial

critical

critical

Zener-Hollomon[-]
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grain boundary volume fraction on the flow stress curves and the mean grain size at the strain

rate of 2 10-3s-1 and temperature of 725 K.
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Fig. 5. Evolution of the grain boundary volume fraction, flow stress curves, and mean grain size
with different sizes of the initial matrix at a temperature of 725 K and a strain rate of 2 10-3s-

1 determined by MCA simulation. The initial grain boundary volume fractions were 5.7%,
10.1%, 15.6%, 29.9% and 50.9%, corresponding to the initial grain sizes of 157, 78, 45,
21, and 11 μm, respectively. 

According to the experimental data, the steady grain size dsrex eventually reaches 9.8 μm 

(Blaz et al., 1983), and the predicted value is 10.7 μm. As can be noticed in Fig. 5, flow stress 

oscillates when d0 is decreased to 21 μm ( d0 ), which corresponds to the initial

grain boundary volume fraction of 50.9%. Oscillation considerably increases with a further

decrease ind0 to 11μm. The simulated results of the influence of grain boundary volume of 
the matrix on flow stress appropriately agree with the common empirical criterion proposed

by Sakai et al. (2014) and the numerical simulation results reported by Ding and Guo (2001):

if d0 , adequate quantities of grain boundaries are provided for the nucleation of

dDRX in the matrix, and the growth of the newly recrystallized grains (also termed the
migration of LAGBs) proceeds effectively and continuously. The nearly synchronous
recrystallization finally leads to the oscillation of flow stress with multiple peaks.

Nevertheless, ifd0 , the increase ind0 (indicating a decrease in the grain boundary

volume) commonly results in the lack of grain boundaries for the nucleation of the next cycle

of dDRX. Under this condition, recrystallization progresses asynchronously, and the flow

stress curves have only one peak with no oscillation.

Another interesting finding of this simulation is that the steady-state average grain size is

almost independent of the initial grain size (initial grain boundary volume fraction), whereas

the recrystallization kinetics and the flow stress curve significantly depend on the initial grain

size (Fig. 5). A potential reason for this is that smaller initial grain size provides sufficient grain

boundary cells as potential nucleation sites. Furthermore, recrystallization can be promoted by

a fine-grain matrix because the newly recrystallized grains may impinge earlier to achieve a

certain grain boundary migration rate (Yazdipour et al., 2008; Chen and Cui,
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2012). In contrast, the lowest initial grain boundary volume fraction of 5.7% leads to a

noticeably coarser mean grain size of 11.5 μm. Note that with an increase in the volume 

fraction, the steady-state is not realized in the simulated strain range.

Based on the abovementioned simulation and analysis, the classifications

and were slightly oversimplified to determine the occurrence of oscillation,

mainly because cycle was substantially dependent on the average grain size, which varied when

dDRX continuously proceeded. Although the empirical criterion proposed by Sakai et al.

(2014) reflects the effective nucleation mechanism to a certain extent (Peczak and Luton,

1993, 1994), in reality, it is difficult to obtain the steady grain size dsrex

experiments.

without performing

Many other theories aim to explain more specific metallurgical mechanisms of oscillation in

flow stress curves. For example, dislocation density has been divided into two parts:

homogenous dislocation density stored in the subgrain walls and dislocation density in the

interior of the subgrains. The subgrain interior dislocation density provides the driving force

for the grain boundary migration, indicating that the accumulation and annihilation rates of this

dislocation density govern the shape characteristics of the flow stress curve (Ding and Guo

2001). Thus, designing microscopic experiments to separately quantify the effects of these two

types of dislocation densities on the flow stress curve would be of considerable interest.

4.1.2 Influence of temperature on the recrystallization kinetics

Recrystallization kinetics presents a phenomenological description of the degree of dDRX.

To study the influence of temperature on the recrystallization kinetics, the simulated

recrystallized volume fractions under a wide range of deformation conditions are plotted in Fig.

6. The simulated data were compared with the theoretical results by converting them to the

Johnson-Mehl-Avrami-Kolmogorov (JMAK) plot (Rollett, 2004) using the following

equation:

V (16)

where V is the recrystallized volume fraction, and B and n are material constants providing

information about the dDRX nucleation rate and growth. At a constant strain rate , the time

t in Eq. (16) can be calculated by t . The fitting results of straight lines

imply that the slopes of m range from 1.3 to 1.5, which are consistent with the values of m for

pure copper undergoing dDRX (Goetz and Seetharaman, 1998; García et al., 2000; Zhao et al.,

2016, 2018).
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Fig. 6. Evolution of the average grain size at different temperatures and a strain rate of 2 10- 3s-

1 predicted by MCA simulation. Comparison between the average grain sizes obtained by
simulation and experiment using an initial grain size of 78 μm. 

In addition, the relationship between critical and is of significant practical importance

(Poliak and Jonas, 2003; Huang and Logé, 2016). Therefore, the values of during

dDRX in the tested Zener-Hollomon range are also summarized in Table 2. The simulated

values of are very close to those reported by Zhao et al. (2016, 2018); however,

they are smaller than the : ratio according to the experimental observations

(Manonukul and Dunne, 1999), which suggests that the very first recrystallization cycle occurs

when the critical strain is typically between 0.65 and 0.85 peak strain. As comprehensively

explained by Zhao et al. (2018), owing to the limitations of the statistical observation of

recrystallization nuclei in terms of bulging mechanism (McQueen, 2004) and transition band

mechanism (Sakai et al., 2014), the critical strain of dDRX determined by the metallographic

identification of a random 2D cross-section is always larger than the actual strain corresponding

to the initiation of dDRX nucleation.

4.1.3 Nucleation and growth features during dDRX

Conventional dDRX has clear nucleation and growth stages. To obtain more detailed

information about the nucleation and growth features during dDRX, the evolution of the newly

recrystallized grains (except for those acquired after the first round of dDRX) was analyzed

(Fig. 7). Generally, the stored energy due to dislocations plays a key role in the driving force

of both nucleation and grain growth. As reported by Ghazi et al. (2018) and Wang et al. (2020),

grain boundary bulging is one of the typical nucleation mechanisms in pure metals, in which

effective nucleation of dDRX is speculated to occur when a subgrain reaches a critical value:

rcritical

(17)

Sim 725K
Fit 725K n=1.36
Sim 775K
Fit 775K n=1.43
Sim 875K

Fit 875K n=1.48
Sim 975K
Fit 875K n=1.35
Sim 1075K

Fit 1075K n=1.39

peak

4

ln
[-

ln
(1

-V
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critial

0.5 108[m 2

where rcritical
is the critical radius of the subgrain. This means that the difference between the

stored energies of the growing subgrain and the deformed matrix is sufficiently high to

overcome the capillary force of subgrain. By combining Eqs. (9) and (17), the following critical

radius expression is achieved for the subgrain i:

rcritical (18)

According to Eq. (18), rcritical for triggering effective dDRX nucleation was obtained at a

temperature of 875 K and a strain rate of 2 10-3 s-1 with a change in the misorientation

between the ith grain and its neighboring matrix. For example, when the subgrain

misorientation was in the range of 1-2o (LAGBs), the critical size of the subgrain was found

to be in the range of 0.604-0.835 μm. As demonstrated by Kassner and Barrabes (2005), the 

critical subgrain size typically ranges from one-tenth to one percent of the initial diameter.

Additionally, Zurob et al. (2006) have mentioned that once the size of the subgrain exceeds the

critical size, rapid growth of the subgrain takes place. As shown in Fig. 7, the strain near the

0.112 (corresponding to the subgrain size of 0.612 μm) grain rapidly increases. In addition to 

nucleation at the matrix, recrystallized grain boundaries are potential sites for dDRX

nucleation.

Fig. 7. Nucleation and growth of the newly recrystallized grains at different strains and a strain
rate of 2 10-3 s-1 and a temperature of 875 K predicted by MCA simulation. Here the blue color
represents the nucleus of dDRX with the initial dislocation density of 10-10/m2. Moreover, the
color bar represents the change in the dislocation density of recrystallized grains with an
increase in the deformation strain.

Furthermore, a new round of dDRX occurred at previously recrystallized grain boundaries

when the strain reached 0.152. Under this strain condition, the dislocation density of the

growing dDRX grain was 4.503 1013 m-2, which was higher than (3.169 1013 m-2)
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under the simulated Zener-Hollomon condition. Another interesting finding is that not all

subsequent nuclei would have an equal opportunity to grow and eventually reach the steady-

state grain size. In our simulation, the possible reason for this difference was attributed to the

inherent characteristics, namely, the probability of the CA method. Thus, further in-situ

observations with specially designed transmission electron microscopy (TEM) are required to

effectively reveal the physical metallurgical mechanisms.

4.2. Application and verification of the coupled model

4.2.1. Macroscopic physical field determination by FE simulation

Based on the spiral structure of the container entrance, the entire billet was simulated. More

details on the numerical implementation can be found in the literature (Calamaz et al., 2008;

Chen et al., 2013). Figure 8 depicts the effective strain and temperature fields over a cross-

section of the deformed billet.

Fig. 8. FE simulation of the temperature and strain of the deformed billet. Areas marked by the
red boxes with numbers ranging from 1 to 3 in the effective strain distribution figure represent
the material points for the following MCA simulation. Characterization positions from right to
left are 0.25, 1, and 3 mm from the billet surface.

Geometrical characteristics of the container result in a heterogeneous strain distribution.

Moreover, serve plastic deformation increases the temperature of the billet because of the

conversion of plastic work into heat. Heat transfer between the billet and the dies and the

temperature gradient of the billet were evaluated, as shown in Fig. 8. The obtained results were

in good agreement with the FE (Shahbaz et al., 2011) and experimental (Shahbaz et al.,
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2016) results calculated using a similar extrusion method, that is, vortex extrusion. To track the

history of hot working and demonstrate the inhomogeneous deformation of the billet, three

boxed areas are numbered in Fig. 8. These boxed areas represent the material points of the

deformed billet, which will be simulated by the MCA model. The qualitative characteristics of

these areas are as follows: 3 is close to the deformed billet surface where the material is

subjected to a large deformation; 2 represents moderate deformation; and 1 is located a quarter

away from the surface of the deformed billet.

To comprehensively investigate the macroscale physical fields, the effective strain , strain

rate , and temperature T data were extracted from the element nodes located at the three areas,

as shown in Fig. 9. During extrusion, deformation takes place in a nearlyenclosed environment,

and finally, T increases due to the transformation of the plastic work into heat. Additionally,

heterogeneous deformation leads to strain gradient and non-uniform

distribution of . These data simulated by FE calculations were employed as an input in the

following MCA simulation.
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Fig. 9. FE calculation of the temperature, effective strain, and strain rate of the investigated
element nodes of the deformed billet. The numbers from 1 to 3 represent the material points
for the following MCA simulation.

4.2.2. Mesoscopic microstructural features of dDRX

The microstructures at point 1 predicted by the coupled FE and MCA method are shown in

Fig. 10, which provides the full-field microstructural information during dDRX. As an

example, Fig. 10 presents two ways to illustrate the microstructure evolution during dDRX

with an increase in the strain at point 1 by MCA. As shown in Fig. 10, similar to optical images,

the cross-sectional view of the simulated microstructure shows the recrystallized grains, the

matrix, and the grain boundaries. Herein, one way demonstrates the necklace formation during

dDRX due to the occurrence of nucleation only at grain boundary cells. Theother way exhibits

only the recrystallized grains in the 3D space, which provides an insight into the full-field

recrystallized grains.
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V=1.34%

V=4.71%

V=10.54%

Fig. 10. Evolution of recrystallized grains under different strains at point 1 analyzed by MCA
simulation using an initial grain size of 60 μm. The left side of the figure represents the cross- 
sectional view of the simulated microstructure with a residual thickness of 10 μm. Here, the 
white color represents the matrix without dDRX, and the black color represents the grain
boundaries. The right side of the figure shows only the recrystallized grains. Here these colors
present the orientations of the recrystallized grains.

Figure 11 shows the microstructure and recrystallized fraction during dDRX simulated by

the developed 3D MCA model. Complete recrystallization occurred only at point 3, and the

average grain sizes at the three points were approximately around 22.8, 13.9 and 8.6 μm. 

Although the strain was higher than 1.2 at point 1, only partial recrystallization was observed

at this point.

The simulated mean grain size significantly decreased in all three cases shown in Fig. 11.

A similar phenomenon was also observed in an excellent modeling study of dDRX that is
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explained in detail by Zhao et al. (2018). This phenomenon is mainly attributed to the

artificial hypothesis of periodic nucleation of new dDRX grains in MCA simulation.

As is commonly known, the Avrami equation can be used to describe the recrystallization

kinetics (Rollett, 2004; Jonas et al., 2009; Zhao et al., 2018). According to Eq. (16), the

Avrami exponent is presented by m . As shown in Fig. 11, the

recrystallized volume fraction increases following S-type, which has been widely reported

previously (Busso, 1998; Janssens, 2003; Jonas et al., 2011; Huang et al., 2018). Based on the

simulated data, the Avrami exponents for different deformation conditions are depicted in Fig.

11. The fitting values of m are between 1.3 and 1.9, which are partly supported by experimental

results reported by García et al. (2000).

Fig. 11. dDRX kinetic curves, mean grain size evolution and grain topology predicted by FE-
MCA.

To study the effects of strain rate on recrystallization kinetics, the Avrami exponents were

calculated for the clear turning points on the strain rate curves shown in Fig. 11. A higher strain

rate may inhibit the increase in the recrystallized volume fraction, which is ascribed to the

availability of less time for the growth of newly recrystallized nuclei (Nicolaÿ et al., 2019).

Interestingly, according to the simulations, the inhibitory effect of strain rate rapidly attenuates,

as shown in Fig. 11. The most probable mechanism for this phenomenon is as follows: as the

nucleation rate substantially depends on the strain rate, which has beenevaluated in our

simulation using Eq. (12), the higher strain rate leads to insufficient time for the growth of the

newly recrystallized nuclei and finally for the formation of HAGBs. Nevertheless, these nuclei

may continuously grow to compensate for the increase in the recrystallized volume fraction

during subsequent strain accumulation.

4.2.3. Comparison between the experimental and numerical results

Figure 12 depicts the corresponding microstructures at the three material points after

extrusion. Accordingly, the simulated results are shown in Fig. 13. As shown in these figures,

due to the individually differences in hot deformation history, the final microstructures of the

deformed billet were not relatively uniform. Figure 14 shows a comparison between the

simulated and experimental grain radius distributions. The simulated results suitably agree with

the experimental results; however, the simulated steady-state grain size is slightly larger than

the experimental value. The primary reason for this overestimation may be that the
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random nucleation mechanism does not consider all possible nucleation sites (for example,

dislocation tangles and subgrain walls) in practice (Ding and Guo, 2001). Additionally, the

preferential nucleation and growth because of the heterogeneous deformation in the matrix

(Sakai et al., 2014; Huang and Logé, 2016) were ignored in the present simulation. This should

be a key consideration in future work.

Fig. 12. Microstructures at points 1, 2, and 3 by FCE.

1

Fig. 13. Microstructures at points 1, 2, and 3 predicted by MCAFE-dDRX simulation.
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Fig. 14. Comparisons between the grain size distributions at the material points 1, 2, and 3
predicted by the FCE experiment and FEMCA-dDRX simulation.

5. Conclusions

1. In this study, a new MCA-dDRX model was proposed. In this model, the essential

characteristics of dDRX were described by considering effective recrystallization

nucleation and grain growth. It provides a more physical way of understanding the origin

of oscillation of flow stress during dDRX.

2. Effects of the initial grain size on the kinetics of dDRX and flow behavior were

highlighted. It is suggested a smaller initial grain size offers sufficient grain boundary cells

as potential nucleation sites.

3. By integrating the proposed MCA-dDRX model into the FE simulation framework, the

intrinsic mechanisms of large plastic deformation at non-uniform, non-isothermal, and

varying strain rates were reasonably revealed. By comparing the simulation results with

the metallurgical principles and the results of hot extrusion experiments, it was proved that

the developed numerical simulation framework was capable of predicting the grain

evolution of materials with a complex deformation history.

4. The proposed MCA model with sub-level cells can explain subgrain formation andLAGB

migration during hot working. Due to this ability of the proposed model, it is beneficial to

apply the modeling idea of the present simulation framework in highstacking-fault energy

materials by defining the corresponding switching rules.
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(b) Local Grains

lz

3D coordinates of the neighboring cells:

(a) 3D Cellular Space

5 x {0,1,2, ,Nx _cell 1};

y {0,1,2, ,Ny _cell 1};

z {0,1,2, ,Nz _cell 1};

Appendix A1-The key factors of 3D MCA

Figure A1 shows a schematic of the mesoscale 3D MCA modeling idea. The main idea of

this model is to introduce the 3D von Neumann neighborhood into the entire cellular space in

the MCA simulation framework to efficiently simulate the equiaxed growth of recrystallized

grains. Figure A1 also shows the application of the von Neumann neighborhood in the 3D

MCA model.

Zlen

(c) 3D von Neumann Neighborhood

Fig. A1. Schematic of the mesoscale MCA modeling idea. In the current simulation, the size

of the sub-potential nucleus was set as a cube with the edge length of l0 =10 nm, and the

number of sub-cells in the potential nucleus was calculated by lx
ly

l0 l0

lz .
l0

As shown in Fig. A1a, the initial cellular space was set as 50 50 50, corresponding to

the computation volume of 100 100 100 μm3 in the real deformed billet. This means that

Nx _cell = Ny _cell = Nz _cell =50 and lx = ly = lz =s0 =2 μm. The cells present on the border of 

the 3D cellular space inevitably lose some of their neighboring cells (Ding and Guo, 2001;

Chen et al., 2009); to effectively solve this problem, periodic boundary conditions (PBCs)

were employed to reduce the interface effects. For example, the cells located on the <Y =49>

surface have their neighboring cells located on the <Y =0> surface. To accurately reflect the

physical metallurgy principles of recrystallization nucleation, the MRN module is set up to

describe the formation of effective nuclei when the critical condition of dDRX is reached.

Before the potential nucleus in the parent cellular space is discretized in time and space, the

cells present at the grain boundaries (including primary boundaries and newly recrystallized

grain boundaries) are identified. In this study, dual-layer cells were recognized as the grain

boundaries. The process of determining whether a cell with the (x,y,z) coordinates is located

: Newly recrystallized nucleus/grain (ith)
Here, the three-dimensional (3D) coordinates of

: Cell belongs to Grain I

: Cell belongs to Grain II

: Cell belongs to Grain III

Nx _cell

Ylen Ny _cell

Nz _cell

ly
lz
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initial

at the grain boundaries is as follows: the orientation of the cell with the (x

coordinates is different from that of the cell with the (x

criterion is also equally applicable to the other two directions.

coordinates. This judgment

As shown in Fig. A1b, the cell with the (x,y,z) coordinates (marked by pink color) was

randomly selected as a potential recrystallized nucleus. The dislocation density of the cell must

be higher than the critical value calculated by Eq. (9). Moreover, the cell should be located at

the grain boundaries. Then, the MRN module is set up to determine the final state (an effective

nucleus/cell or an ineffective nucleus/cell) of the potential nucleus that isdiscretized into a

sub/multilevel cellular space.

The next important issue is to simulate the growth of the effective nucleus. As shown in Fig.

A1c, the von Neumann neighborhood provides the closest cells to the central nucleus/cell with

the (x,y,z) coordinates. When the cell recrystallizes, the dislocation density

of the cell is set to . The difference between the dislocation densities of the

recrystallized cell and its closet neighbors offers the driving force for the subsequent grain

growth. The nucleus can reach a stable state by consuming the original grains/cells around it,

following the model of equiaxed growth. For example, Fig. A1c comprehensively depicts the

coordinates of the six closest neighbors of the cell with (x,y,z) coordinates. Within the MCA

time step defined by Eq. (15), the driving forces between the central cell and its six closest

neighbors were calculated according to F ( matrix i)
2 . IfF > 0 , the recrystallized
ri

fraction state variable of the neighboring cells is updated cumulatevely.

Another important component of the MCA model is the cellular state switching rules, which

control whether recrystallization would occur in the neighboring cells. Based on the

thermodynamic mechanism and the activation energy and considering the effect of the

curvature-driven mechanism, the control state switching rules have been established as follows:

(1) The driving force is positive. If more than one neighboring recrystallized cell consumes the

same cell within a CA time step, the driving forces are individually evaluated and then

compared. As a result, the cell with the maximum force will win the competition. (2)

The recrystallized fraction state variable calculated by f is

equal to 1. Figure A2 shows the detailed implementation process of updating the recrystallized

fraction variable of the neighboring cells during the growth of a newly recrystallized

nucleus/grain. (3) The cell is located at the grain boundary, and simultaneously,there is at least

one cell in its von Neumann neighborhood, which is already in the recrystallized state. (4) As

is commonly known, the most significant feature of a CA model isthe probability control

method, which was explained for the first time by a pioneer in thefield named Conway’s

Game of Life. In this study, the state transformation probability Pi depends only on the number

i of neighboring cells, which have a higher dislocation density
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i

when compared with that of the cell waiting for state transformation. If Ni / 100 (Ni is the

generated random number from 0 up to 100) is less than Pi i

occurs.

6 , the state transformation

Fig. A2. Schematic of calculating the recrystallized fraction variable of neighboring cells

during the equiaxed growth of the nucleus/grain.

In the MCA model, to calculate the physical fields and further update the crystallographic

information during hot working, state variables of the cell are extensively used to quantify the

features of microstructure evolution. In this study, each cell has seven state variables: (1) the

dislocation density variable that represents the stored energy. The initial dislocation

density of all primary grains is uniform and identical. When recrystallization occurs in a cell,

the dislocation density is set to , and then, the dislocation multiplication with an

increase in strain is measured according to Eq. (1); (2) The grain orientation variable Qi that

represents different grains and can also be used to calculate according to Eq. (10); (3)

The grain boundary variable that indicates whether the cell is located at the grain boundary;

(4) The fraction variable f t that represents the recrystallized fraction; (5) The grain size

variable ri that implies the recrystallized grain size, which can be updated according to Eq. (14);

(6) Grain number that quantifies the number of grains in the simulated volume of the material

point. Its value is increased by one when an effective nucleus is formed, which ensures that

each grain has a unique number. Noted that the real grain number in the
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critial

simulated volume is substantially lower than the accumulated value due to the consumption

of grains in the matrix; and (7) The number of recrystallization cycles that provide the sequence

of dDRX. Its value is increased by one when effective nuclei are formed within an MCA time

step. This means that the nuclei in the same recrystallization cycle demonstrate the same

priority in the following grain growth competition.

Appendix A2-Details of the calculation of for dDRX

Without loss of generality, a spherical nucleus with the radius r is introduced. As shown in

Fig. A3a, the difference between the dislocation densities offers the driving force for grain

boundary migration. The difference between the stored energies (

using Eq. (A1).

) can be calculated

Pre-existing grain boundary

(b)

Fig. A3. (a) Schematic of dislocation density evolution at a dDRX front. (b) Schematic of the

bulging nucleation mechanism of pre-existing grain boundaries during dDRX. (Robers and

Ahlblom, 1978) (Reproduced with permission from Elsevier)

(A1)

where is the dislocation line energy. The net free energy change is presented as follows:

(A2)

As shown in Fig. A3b, the bulge mechanism can be represented by the following expression

corresponding to Eq. (A2):

(A3)

where r . By neglecting the effects of DRV, the dislocation density can be

calculated as follows:

α L

Boundary position

Boundary motion



29 / 37

(A4)

where b is the Burgers vector, and l is the average mean free path of the mobile dislocation.

Furthermore, the grain boundary migration can be expressed by

dx
(A5)

dt

where M is the grain boundary mobility. By combining Eq. (A5) and Eq. (A6) and ignoring

the sign of x, we obtain

(A6)

By combining of Eq. (A7) and Eq. (A3) followed by differentiation to find maxima in

G(r), we acquire

L2 5 cos
sin L 2 sin 0 (A7)

critical blM
matrix 1 cos critical matrix

which provides the real critical size Lcritical only if

(A8)

Appendix A3-Details for the calculation of misorientation

As shown in Fig. A4, six neighboring cells belong to three different grains (I, II and III)

around the newly recrystallized grain (orientation_0) marked by pink. Hereinafter, the method

to calculate the misorientation for this case is presented.

bl

3blM

blM
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: Newly recrystallized nucleus/grain (x,y, z) 2 6 3

: Cells 2, 4 and 6 belong to Grain I (Matrix)
4

: Cells 3 and 5 belong to Grain II (Matrix)
Y

: Cell 1 belongs to Grain III (Matrix)
X

Z

1

5
Fβ (β=1, 2, 3, 4, 5, 6

 ϴ1 = abs(Orientation_0 – Orientation_1)
 ϴ3 = ϴ5 = abs(Orientation_0 – Orientation_3)= abs(Orientation_0 – Orientation_5)
 ϴ2= ϴ4= ϴ6=abs(Orientation_0 – Orientation_2)= abs(Orientation_0 – Orientation_4)

= abs(Orientation_0 – Orientation_6)

Fig. A4. Schematic of calculating the misorientation by MCA.

Appendix B- Data transfer from FE to MCA

During multiscale modeling of dDRX, the local physical fields are calculated at every node

via the governing equation by FE on the macroscale. The thermal and deformation histories in

terms of temperature, effective strain rate, and strain are provided as input to the MCA

simulation on the mesoscale. In other words, MCA can be understood as the FE post-

processing technique.

The FE time increment always occurs at a different level of MCA time increment. Normally,

the FE time increment has to be discretized according to the MCA time increment such that

MCA can be applied to non-uniform and non-isothermal processes. According to Eqs. (7) and

(15), the updated MCA time increment can be measured as follows:

(B1)

As an example, Fig. B1 shows the coupled computation of meso- and macro- physical fields.

Via FE simulation, the physical fields of the ith step were recorded, and then introducedinto Eq.

(B1); this afforded the time increment of MCA simulation from the (i step to

the ith step under the condition of strain increment can be obtained. Subsequently,

the number of MCA simulation steps corresponding to a time increment of FE was evaluated

by

Ni _num _MCA (B2)

How to calculate the misorientation during the growth of
newly recrystallized nucleus/grain?

1 0.91
300

0

Dobb
exp

(i 1) i
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1)
th

Fig. B1. Schematic diagram of the meso- and macro- computational simulation framework.

Here V is the volume, S is the surface, and means the boundary conditions in the

governing equations of FE simulation. and are the

physical fields for the (i and ith FE steps, respectively; Ni _num _MCA is the number of

MCA steps accordingly; provides the governing macro-physical

parameters of the mesoscale simulation. A section of a meshed billet with tetrahedron
elements was employed as an example.

To improve the calculation efficiency, it is not necessary to frequently update ti . A

threshold value should be defined to estimate when the value should be adjusted. Herein,

if the increase/decrease in the value exceeds 10% of the value in the previous step, the

strain rate and temperature are updated accordingly. This suggests that k1 of Eq. (1),

of Eq. (9), and ndDRX of Eq. (12) are also correspondingly updated owing to the change in

the effective strain rate and temperature.
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