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Abstract. In classification tasks, feature selection (FS) can reduce the data dimensionality and may also improve classification accuracy, both of
which are commonly treated as the two objectives in FS problems. Many meta-heuristic algorithms have been applied to solve the FS problems
and they perform satisfactorily when the problem is relatively simple. However, once the dimensionality of the datasets grows, their performance
drops dramatically. This paper proposes a self-adaptive multi-objective genetic algorithm (SaMOGA) for FS, which is designed to maintain
a high performance even when the dimensionality of the datasets grows. The main concept of SaMOGA lies in the dynamic selection of five
different crossover operators in different evolution process by applying a self-adaptive mechanism. Meanwhile, a search stagnation detection
mechanism is also proposed to prevent premature convergence. In the experiments, we compare SaMOGA with five multi-objective FS algorithms
on sixteen datasets. According to the experimental results, SaMOGA yields a set of well converged and well distributed solutions on most data
sets, indicating that SaMOGA can guarantee classification performance while removing many features, and the advantage over its counterparts

is more obvious when the dimensionality of datasets grows.
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1. Introduction

As a crucial branch of machine learning, classifica-
tion has received great attention [1,2,3]. The models
used for classification are often referred to as classi-
fiers [4,5]. In fact, one instance, which serves as the
input of the classifiers, is always composed of a set
of features and its label. To better solve the classifica-
tion problems, a large amount of features are often in-
cluded, however, most of them are irrelevant or redun-
dant in many cases, resulting in the possibility of re-
duction of classification accuracy, model complexity,
etc [6,7,8]. Classification is a fundamental task in ma-
chine learning [9,10] which enables a range of appli-
cations such as medicine [11,12,13,14] with numerous
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application in diagnostics based on electroencephalo-
gram [15,16,17]. Other studies, more broadly, focus
on neurobiology [18,19].

In the early days, researchers either optimized
only one objective, i.e., classification accuracy, or ag-
gregated multiple objectives into a single objective for
optimization [20]. These practices often cause some
weaknesses such as inferior optimization results. Re-
cently, FS has been considered as a multi-objective op-
timization problem (MOP), see [21,22]. Meanwhile,
metaheuristic techniques go viral, and they have been
applied in many fields [23,24,25,26,27]. Metaheuris-
tic techniques include for example evolutionary com-
putation (EC) techniques [28] such as genetic algo-
rithm (GA) [29], ant colony optimization [30], parti-
cle swarm optimization (PSO) [31,32,33], differential
evolution [34], artificial bee colony [35], ant colony
optimization [36,37], pattern search [38] etc. The main
reasons for their popularity are: (i) there is no need of
prior knowledge of the problem; (ii) the population-



based search approach is capable of obtaining multi-
ple solutions in a single run; (iii) they specialize in
global search. Benefit from these advantages, there
have been many attempts to solve FS with EC tech-
niques [39,40]. Among these methods, GA is often
used due to its simple encoding scheme, excellent gen-
eralization and global search strategy [41].

Generally, most of the multi-objective FS meth-
ods based on GA are using non-dominated sorting ge-
netic algorithm II (NSGA-II) [42,43]. However, most
of existing studies only use the original algorithm to
solve FS, or just study the population size, crossover
probability, and mutation probability of the algorithm.
In particular, only a single crossover operator with a
single mutation operator is usually used in the search
process. As the number of features (NF) increases, the
search space accordingly grows at a tremendous rate
[44,45,46]. For instance, suppose NF is n, the number
of all possible feature subsets is 2" — 1. If only a single
crossover operator is used for the entire evolutionary
process, then the superior genes of the parents may not
necessarily be retained to the offspring in some cases,
which leads the algorithm to get stalled and end up
finding the local optima. Indeed, selection, crossover,
and mutation operations in genetic algorithms play a
very important role, and all of these three operations
contribute to the final optimization result. In this pa-
per, we only focus on the crossover operations and try
to improve the behavior of the crossover operation to
get better performance of the algorithm.

In this work, we treat FS as a MOP, where classi-
fication error and solution size are considered as two
objective functions. To solve it, a self-adaptive multi-
objective genetic algorithm (SaMOGA) is proposed.
Different from previous studies based on NSGA-II
for FS, in SaMOGA, five crossover operators with
different search characteristics work in conjunction
with one mutation operator by applying a self-adaptive
mechanism. Concretely speaking, the performance of
each crossover operator in the evolutionary process is
recorded, and at different evolutionary stages, the self-
adaptive mechanism selects the currently preferred
crossover operator for the crossover operation based
on their previous performance, followed by the mu-
tation operation. Besides, a search stagnation detec-
tion mechanism (SSDM) is also proposed to detect the
search stagnation, with which the exploration can be

more effectively. To verify the efficiency of SaMOGA,
we conducted experiments on sixteen datasets vary-
ing widely in dimensionality, and the obtained results
are also compared with five multi-objective FS algo-
rithms.

The contributions of this work are listed as fol-
lows:

* The most appropriate crossover operator is used at
different stages using an self-adaptive mechanism

* The self-adaptive mechanism and SSDM are com-
bined to improve search capabilities.

2. Related Work

In this section, the introduction of the concept of
multi-objective optimization and NSGA-II is firstly
given. Subsequently, a brief review of FS approaches
using multi-objective GAs is provided.

2.1. Multi-objective Optimization Problems

Some problems have multiple objectives to be opti-
mized [47], and these objectives are often contradic-
tory to each other, in other words, they cannot obtain
the best optimization results for each of them at the
same time. Such problems are called MOPs [48,49,50,
51]. The mathematical expression of a rough multi-
objective minimization problem is shown as follows:

minF(X) = (fl(X)va(X)vafm(X))

(1)
st.X€QCR"
where X = (x1,x2,...,X,) is a solution to the problem
that falls within the search space Q, x; means the ith
decision variable, and F(X) represents the objective
functions, see [52,53,54].

2.2. NSGA-1I

NSGA-II is one of the most classic evolutionary al-
gorithms and is an improved version of traditional ge-
netic algorithms for tackling MOPs [55]. It incorpo-
rates the Pareto dominance relationship and the crowd-
ing distance mechanism to drive the evolution of pop-



ulation so that a set of trade-off solutions, which are
also named as Pareto front (PF), can be obtained. The
key flow of the algorithm is simply described in the
following paragraph.

Let’s assume that the size of parent population in
iteration P; is N. After undergoing the genetic op-
erations, i.e., crossover and mutation, N offspring are
generated that make up the offspring population Q.
Then, these solutions are combined together to form
the combination population R; and the next generation
of individuals are selected from R; according to the
following steps. Firstly, individuals in R, are classified
into multiple hierarchies by applying non-dominated
sorting procedure. Then, individuals are selected into
the next generation in a hierarchical order. As can be
seen from Figure 1, individuals in H; - H3 have been
added into the next generation. When Hj is about to be
added, the size of population would exceed the prede-
termined one, in which case, the individuals with the
bigger crowded distance have priority in entering the
next generation P .

The non-dominated sorting, crowding distance
calculation are summarized as follows:

tth

2.2.1. Non-dominated sorting

Firstly, for each solution p in the population, two prop-
erties are calculated, one is domination count 7y, i.e.,
the number of solutions which dominate the solution
p, another one is S, i.e., a set of solutions that dom-
inated by the solution p. Since the domination counts
of the solutions in the first non-dominant front equal to
0, for each solution p with n,, = 0, visit each member
q in its S, and reduce 1 from its domination count, if
the domination count of g becomes 0, it is put in a list
Q. Thus, Q includes the solutions belong to the sec-
ond non-dominated front. After that, the process is re-
peated for the solutions in queue Q till the third front
is found. This process continues till all the fronts are
found.

2.2.2. Crowding distance calculation

To begin with, the population is sorted according to
each objective function values in ascending order. Af-
ter that, for each objective function, the boundary solu-
tions are assigned an infinite distance value, and each
mediate solution is assigned a distance value equal to

H,
: P

Figure 1. The Brief Evolution Process of NSGA-II

the absolute normalized difference of two adjacent so-
lutions. This calculation process is repeated with other
objective functions. The crowding distance value is
calculated as the sum of individual distance of each
objective.

2.3. Multi-objective GAs for F'S

FS is now commonly considered as a MOP in many
works, and GAs are highly preferred to solve it in
these studies. In [56], the fault classification error is
minimized, and the accuracy of dissolved gas analy-
sis and diagnosis of power transformer is improved
by selecting the optimal feature subset and the opti-
mal feature number. Labani et al. [57] considered the
relevance of the text features to the target class and
the correlation between the features as two objectives
in text FS, and proposed a multi-objective algorithm,
namely MORDC. Karasu and Sarag [58] used NSGA-
II to find the optimal solutions for two different fitness
functions, i.e., NF and classification accuracy. In [59],
NSGA-II are used to obtain a set of Pareto-optimal
solutions in different pattern recognition domains, the
number of used features and the classification error are
set as two objectives, see [60]. Das et al. [61] proposed
a multi-objective GA with mutation pool to solve FS
problem. Two objective functions are based on rough
set theory and multivariate mutual information so that
the most precise and informative feature subsets can
be obtained. In [62], the application of MOGA to FS
based on different filter importance criteria are evalu-
ated. Bouraoui et al. [63] introduced a novel approach
to optimize the proper kernel function, its parameters,
SVM parameters and FS for SVM classification at the
same time based on NSGA-II. These works have ver-
ified the feasibility of using MOGA to solve FS, and
have also achieved relatively decent results, yet most



of them simply applied the NSGA-II framework with-
out making any improvement. Therefore, this paper
aims at improving NSGA-II for solving FS problems,
so that the improved algorithm has better performance
in both improving the classification performance and
cutting the features.

3. The Self-adaptive Multi-objective Genetic
Algorithm (SaMOGA)

This section describes the main framework of SaMOGA,

as well as the details of some important procedures.

Algorithm 1 SaMOGA

Input:
maxF Es: Maximum number of fitness evaluations
N: Population size
D: Number of raw features
Q: Number of operators in the crossover set
C: Number of fitness evaluations for updating SPs
Output: PF
1: Pop < initializePop(N,D)
2: Pro < initializePro(Q)
3: Initialize R, P according to Eq. (4)
4: nFE <0
5: c+0
6:
7
8

Poppey < 0
while nFE < maxFEs do
stagFlag < 0
Select non-dominated solutions in Pop as PF_Lg
10: fori=1toN/2 do
11: Randomly select two individuals as parents: Par

0 X

12: Idx < rouletteW heelSelection(Pro)

13: Ch_c + crossover(Par,1dx)

14: Ch_m < uniformMutation(Ch_c)

15: nFE < nFE +2

16: {R, P} + crossoverOperatorsEvaluation(Par,Ch_m,Idx)
17: Add Ch_m to Popyey

18: end for

19: Rec <— Pop U Popye,

20:  Pop < environmentalSelection(Rec)

21: Select non-dominated solutions in Pop as PF

22: cc+1
23: if c X N = C then

24: if PF_Lg = PF then

25: stagFlag < 1

26: end if

27: Pro < updatePro(R, P, stagFlag)
28: c+0

29: end if

30: end while
31: return PF

3.1. Procedure of SaMOGA

The multi-objective FS algorithm proposed in this
study, i.e., SaMOGA, embeds the self-adaptive mech-
anism and SSDM to improve the performance of
NSGA-II for solving FS problems. The flowchart of
SaMOGA is shown in Figure 2. Meanwhile, Algo-
rithm 1 demonstrates the pseudo-code of SaMOGA.
Firstly, vector R and P used to record the performance
of different operators in the crossover operator set, as
well as N discrete-encoded individuals are initialized.
Then, the probability corresponding to each crossover
operator is initialized (see line 1-3 from Algorithm
1). Assuming Q crossover operators are used, each of
them is assigned a probability of 1/Q. After that, the
following procedures keep repeating until the stop cri-
teria is satisfied. It is worth noting that the second, fifth
and the last steps are where SaMOGA distinguishes it-
self from the genetic algorithm in terms of innovation.

* Retention of PF of current population. The SSDM
proposed in this paper is based on the change of PF
of two adjacent generations of populations during
the evolution process, so before evolving the current
population, PF of current population is stored using
PF _Lg. Meanwhile, the stagnation marker stagFlag
is initialized to 0, 0 means the search is not stag-
nated while 1 is the opposite (see line 8-9 from Al-
gorithm 1).

Crossover operation. Based on the current proba-
bility assigned to each crossover operator, one of
them is first selected using roulette wheel selection.
Then, two parent individuals are randomly selected
from the population Pop and the crossover opera-
tion is performed using the selected crossover oper-
ator. Note that the individuals already selected are
not selected again in the current generation (see line
11-13 from Algorithm 1).

Mutation operation. The uniform mutation operator
is performed on two offspring individuals generated
by the crossover operation (see line 14 from Algo-
rithm 1).

Fitness evaluation. The obtained two offspring indi-
viduals are evaluated for fitness. Then, the number
of fitness evaluation is increased by 2 (see line 15
from Algorithm 1).



* Operator evaluation. The purpose of this step is to
evaluate the crossover operator used for this evolu-
tion by comparing the two generated offspring with
the parents (see line 16 from Algorithm 1). If the
generated offspring are decent, the crossover oper-
ator is rewarded, otherwise a penalty is given. Both
the reward and penalty serve to update the proba-
bility of the corresponding crossover operator being
assigned. The specific procedures are illustrated in
Section 3.6.

Elitist selection. If all individuals in the current gen-
eration have undergone reproduction, and offspring
population Pop,,,, are produced. The two popula-
tions are combined together into population Rec,
the non-dominated sorting and crowding distance
calculation are then performed on it. After that,
N individuals are selected according to the non-
dominance hierarchy and crowding distance. After
that, PF of new generation is stored to PF (see line
19-21 from Algorithm 1).

Update of the selection probability (SP) assigned to
each crossover operator. After C fitness evaluation,
it is necessary to determine that whether PF _Lg
is the same as PF, if not, stagFlag is assigned
to 1. Thereafter, SPs are updated using R, P and
stagFlag. Variable c is then initialized to O after the
update (see line 22-30 from Algorithm 1).

3.2. Chromosome Encoding

GAs encode a solution to the problem as a vector,
which is also known as chromosome. In the applica-
tion of FS, there are roughly two general encoding
schemes [64], i.e., continuous encoding scheme and
discrete encoding scheme. Since in the former, it is
often necessary to set a threshold value for conver-
sion, which is often difficult to determine, in this pa-
per, we adopt the discrete encoding scheme to repre-
sent a chromosome. The length of each chromosome
is the same as NF in the dataset and each locus can be
either a value of O or 1, where 0 means the feature is
unselected and 1 means the feature is selected.

Suppose that six features are included in a dataset,
if the coded chromosome is represented as 101000,
then it denotes that the first and third feature are se-
lected while the remaining ones are unselected.

Initialization

| Crossover Crossover Crossover
: Selection Operation Evaluation
Mutation
Operation
Selection

Y
Optimal
Subset

Figure 2. Flowchart of SaMOGA

3.3. Objective Function

The objective function is the basis for evaluating the
goodness of the individual. In this study, we use the
wrapper-based FS approach, so the classification error
is used as one of the objective functions, while NF, i.e.,
solution size, is used as the second objective function
in order to remove useless features.

3.3.1. Classification error

By calculating the quotient of the misclassified in-
stances and the total instances, the classification error
can be obtained as follows:

@

where X is a solution, & is the parameter in h-fold
cross-validation, Ng, and Ny, are the number of mis-
classified instances and all instances, respectively.

3.3.2. Solution size
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minf>(X) =Y x; 3)

i=1

where x; means the i'" decision variable, D denotes the
number of raw features.

3.4. Crossover Operator Set

Offspring inherit genes from the parents through
crossover operations, and promising genes are highly
expected to be inherited. Thus, the selection of the
appropriate crossover operator is critical to the per-
formance of the offspring in terms of fitness values.
However, picking out the appropriate crossover op-
erator is time-consuming. In this paper, we intend
to apply crossover operators with different proper-
ties to compensate for this deficiency, so five popular
and commonly used crossover operators, i.e., single-
point crossover operator [65], two-point crossover op-
erator [66], uniform crossover operator [67], shuf-
fle crossover operator [68] and reduced surrogate
crossover operator [69] are adopted to form a crossover
operator set for the crossover operation. A detailed
description of them can be obtained in their referred
papers.

By applying different crossover operators at dif-
ferent stages of evolution process, superior genes in
the parents have a greater chance of being passed on
to the offspring, resulting in the better performance of
offspring individuals.

3.5. Search Stagnation Detection Mechanism

In the process of searching for a set of more optimal
solutions, search stagnation frequently occurs, i.e., the
PF is not updated after one generation of evolution,
which affects the convergence rate of the population.
Therefore, the SSDM is proposed, which lies in detect-
ing the change between the PF obtained in the previ-
ous generation and the PF obtained in the current gen-
eration. Take the two-objective minimization problem
as an example, in total, four different scenarios exist,
and the specific examples are shown in Figure 3.
With each generation of the population, we ex-
pect the PF to move in the direction of the coordinate
origin, or to complement itself. In Figure 3(b)-(c), so-
lution(s) on last PF is/are dominated by offspring so-
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Figure 3. Search Stagnation Detection Mechanism

lution(s), and in Figure 3(a) that there exits offspring
solution(s) complementing the solutions on last PF. It
is favorable in these three cases since PF is updating.
When it comes to Figure 3(d), last PF neither moved
nor is complemented, so it can be assumed that the
search of this generation is stagnant. As mentioned in
Section 3.1, SSDM is used as a complementary tech-
nique to the update of SPs, mainly because it is nor-
mal for PF to remain unchanged for several genera-
tions at a late stage of population evolution, and using
this technique alone to determine whether the search
being stagnated can disrupt the search direction of the
population, leading to a reduction in the speed of con-
vergence as well as in the likelihood of searching for
the global optimal.

3.6. Crossover Operators Evaluation

The multiple crossovers are handled in an ensemble
fashion [70] by means of a success-based adaptation
similar to that of hyperheuristics [71].

Assume that Q operators are included in the
crossover operator set, and the ¢’ one is selected for
the crossover operation. After undergoing crossover
and mutation operations, it is intended to evaluate



the selected crossover operator based on the perfor-
mance of children. The selected crossover operator is
rewarded if the produced children is promising, oth-
erwise a penalty is given. We therefore employ two
vectors for this purpose and they are implemented as
follows:

4)

where R and P are initialized with all elements at
Zero.

Algorithm 2 crossoversOperatorEvaluation(Par,Ch,q)

Input:
Par: List of two parents
Ch: List of two children
q: The selected crossover operator
Output: R,P
1: Compare the Pareto dominance relationship of two parents

2: if One dominates the other, assume Par| < Par; then
3: fori=1t02do
4. if Par; < Ch; then
5: Py P;+1
6: else
7 Ry Ry +1
8: end if
9: end for
10: else
11: fori=1r02do
12: if Pary 4 Ch; && Pary 4 Ch; then
13: Ry Ry +1
14: else
15: Py P+1
16: end if
17: end for
18: end if

Based on the relationship between the children
generated by the crossover operator and the corre-
sponding parents in the objective space, we record in-
formation on the use of the crossover operator using
the Pareto dominance relationship between them. Two
potential scenarios can be found below.

Scenario 1: One of the parents dominates the
other one. In this case, the two children merely have
to compare the Pareto dominance relationship with the
superior parent. If the child do not dominated by it, R,
+ 1, otherwise P, + 1 (see line 3-9 from Algorithm 2)

Scenario 2: Two parents do not non-dominate
each other. Slightly different from the first case, the

two children need to be compared with the two par-
ents respectively. If the child is not dominated by two
parents at the same time, R, + 1, otherwise F, + 1 (see
line 11-17 from Algorithm 2).

After a certain number of fitness evaluation, R and
P will be reinitialized again. The specific process is
shown in Algorithm 2.

Algorithm 3 updatePro(R, P,stagFlag)

Input:
R: Reward information of different operators
P: Penalty information of different operators
Q: Number of operators in the crossover set stagFlag: Stagna-
tion flag
Output: R, P
1: if 30in Pro && stagFlag = 1 then
2 Pro < initializePro(Q)
3: else
4 forg=1t0Qdo
5 if R; = 0 then
6: Ry« ¢
7
8
9
0
1:

end if

Update the probability of the operator g using Eq. 5
end for
Normalize the probabilities for all operators using Eq. 6

10:
11: endif

3.7. Update of Selection Probabilities Assigned to
Crossover Operators

After the number of fitness evaluations set in ad-
vance is reached, SPs are updated based on R, P
and stagFlag, which serves as a symbol indicat-
ing whether the PF of two adjacent generations has
changed. For easy implementation, number of fitness
evaluations for updating SPs C is set as a multiple of
the population size. Suppose the population size is N,
C = c x N, where c is a pre-defined constant. The spe-
cific steps are shown in Algorithm 3. First, in order
to avoid the search stagnation caused by one certain
crossover operator not having a chance to be selected,
it is necessary to determine whether there is one or
more elements in vector Pro that are 0 and stagF'lag is
1 at the same time. If so, Pro needs to be reinitialized
the same way as mentioned before (see line 1-2 from
Algorithm 3). Otherwise, SP for ¢’ crossover operator
is calculated as follows:



mp Ry
Prog " = R1E, 5)

In fact, SP of ¢'* operator is calculated by divid-
ing the reward R, by the sum of reward R, and penalty
P,. However, there are cases where operator ¢ may not
be selected once in the uF E fitness evaluations, result-
ing in both R, and P, being 0. Therefore, a very small
positive number €, which is not equal to 0, is assigned
to R, to avoid the situation where the divisor is 0.

Finally, we normalize SP assigned to operator g
as follows:

rmp
Prog

I prol ©

Pro, =

4. Experimental Settings

In this section, the experimental datasets and classi-
fier are first introduced, followed by the comparison
algorithms and the setting of relevant parameters, the
metrics for evaluating the experimental results are de-
scribed at last. The proposed algorithm and its coun-
terparts are implemented using Matlab language. All
the experiments are conducted on an Intel Core (TM)
15-9500 CPU with 8 GB of RAM and ITB of hard
disk.

4.1. Datasets and Classifiers

Eighteen datasets are used to train and test the pro-
posed algorithm and its counterparts. The full descrip-
tions of them are available in the UCI Machine Learn-
ing Repository [72]. These datasets are composed of
different numbers of features (NF in Table 1), labels
(NL in Table 1) and instances (NI in Table 1). All
datasets are split into training sets (70% of the raw
datasets) and test sets (30% of the raw datasets) at ran-
dom. As can be seen from Table 1, the number of fea-
tures ranges from 30 to 1300. In addition, the number
of classes varies from 2 to 26 and the number of in-
stances varies from 32 to 1080. Thus, the ability of the
algorithms to solve the feature selection problem can
be effectively evaluated with these comprehensive and
complex characteristic datasets.

A learning algorithm is usually required in wrapper-

based feature selection methods to evaluate the clas-
sification performance of the feature subset. In fact,

Table 1. Details about Used Datasets

Datasets NF NL NI
DSO01 30 2 596
DS02 34 2 351
DS03 36 2 6435
DS04 41 2 1055
DS05 56 3 32
DS06 60 2 208
DS07 64 10 1000
DS08 256 10 675
DS09 301 2 1062
DS10 500 2 600
DS11 522 3 900
DS12 561 6 900
DS13 561 12 1200
DS14 617 26 1040
DSI15 649 10 1000
DS16 856 9 1080
DS17 1024 2 1687
DS18 1300 2 360

*Note: NF, NL and NI represent the number of features, num-
ber of labels, and number of instances.

*DS01 to DS18 in the table represent Wdbc, Ionosphere,
Satellite, QSARbiodegradation, LungCancer, Connectionist-
BenchData, OpticalRecognitionofHandwritten, SemeionHand-
writtenDigit, grammaticalfacialexpression01, MadelonValid,
UllIndoorLoc, Har, HAPT, Isolet5, MultipleFeaturesDigit,
CNAE, QSARandrogenreceptor, MicroMass.

many classifiers can be used for this purpose. In
this paper, k-NN is applied due to its simplicity and
promising classification performance. Since the divi-
sion of datasets have an impact on the generalization
of the model, in order to avoid this situation as much
as possible, three-fold cross-validation is introduced
to reduce the over-fitting and under-fitting problems
[73].

4.2. Comparison Algorithms and Parameter Setting

Five multi-objective algorithms for FS are adopted for
comparison. They are NSGA-II [55], NSPSOFS [74],
CMDPSOFS[74], SPEA2 [75] and MOEA/D [76]. All
the algorithms have been implemented in Matlab by



the authors on the basis of their original description
[77]. Among them, NSGA-II is one of the most clas-
sic MOEAs, and SaMOGA is an improvement on
NSGA-II. NSPSOFS and CMDPSOFEFS are two multi-
objective PSO proposed for feature selection. SPEA2
is based on the concept of Pareto dominance relation-
ship for fitness value assignment and selection opera-
tions, and it applies the niche method and elite mecha-
nism. Meanwhile, SPEA?2 is known for its strong con-
vergence ability. MOEA/D introduces the decompo-
sition strategy into the evolutionary algorithm frame-
work, and uses the decomposition strategy to divide
the multi-objective optimization problem into a set
of single-objective sub-problems, and then optimizes
these sub-problems simultaneously. For each algo-
rithm, 30 independent runs are performed on each
dataset. Meanwhile, All algorithms run the same num-
ber of fitness evaluations (nF' E). The parameter setting
of SaMOGA is listed in Table 2. The parameter values
of benchmark algorithms are set as in their referred
papers.

Table 2. Parameter Setting of SaMOGA

Parameters Value
maxFE's 300,000
N 100

M 2

(0] 5

C 500

P. 0.9

Py 1/D

4.3. Performance Metrics

Since a set of non-dominated solutions are obtained
in the final results, this paper uses two popular per-
formance metrics to evaluate them, namely inverted
generational distance (IGD) [78] and hypervolume
(HV) [79,80,81,82]. Generally speaking, the smaller
the IGD values are, the better performance an algo-
rithm gains, which is opposite for HV. Specially, they
are able to evaluate both the convergence and the di-
versity of the obtained Pareto solution sets.

5. Results

SaMOGA is compared with five comparison algo-
rithms in three aspects in this section, i.e., the IGD
and HV metrics, best PFs evolved on training sets and
average PFs obtained on test sets. The IGD and HV
are introduced to evaluate the convergence and diver-
sity of the results achieved by these six algorithms on
both training and test sets. Moreover, the Wilcoxon
test[83] with a confidence level of 95% is also used on
the IGD and HV metrics to check whether the perfor-
mance of SaMOGA is significantly different from that
of its counterparts. Since the true Pareto front is un-
known, we first combine all the solutions obtained by
the algorithms and compute the non-dominated solu-
tion among them as the true Pareto front to obtain the
IGD and HV values.

To perform the experiments over all the datasets
above, SaMOGA required approximately six hours.

5.1. Analysis of IGD and HV

Table 3 - Table 6 show the mean values and standard
deviations achieved by all comparison algorithms in
terms of IGD and HV on training and test sets. Best
mean value for each dataset is presented in bold. In
addition, symbol “W” (it stands for Wilcoxon) indi-
cates whether there is a significant difference between
the compared algorithms and SaMOGA. “+” or “-” in-
dicates that SAMOGA is significantly better or worse
than compared algorithms, “=" means there is no sig-
nificant difference between them.

From Table 3, it can be observed that SaMOGA
obtains the minimum IGD values on sixteen out of
eighteen training sets. It also achieves much smaller
values than other algorithms do on DS08 - DS18. Note
that a common characteristic of these datasets is the
large number of features. For DS08, NSGA-II and
NSPSOFS achieve the similar results and are worse
than the other four algorithms. Meanwhile, SaMOGA
is slightly superior to SPEA2, followed by CMDP-
SOFS and MOEA/D. This is also the similar case
for DS09. However, CMDPSOFS is more promis-
ing than SPEA2 on DS10 and DS11. As NF of the
dataset increases, SaMOGA is always in first place,
and CMDPSOFS and SPEA2 achieve similar IGD val-
ues and are in second and third place, followed by



Table 3. Results of Mean IGD Values on Training Sets

Datasets NSGA-II NSPSOFS CMDPSOFS SPEAZ2 MOEA/D SaMOGA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
DSOo1 1IGD 0.44 0.28 0.19 0.18 0.19 0.19 0.24 0.31 0.92 0.51 o.16 0.21
W + + “+ = “+
DSO2 IGD 0.36 0.31 0.34 0.22 0.19 0.11 0.2 0.11 0.39 0.2 0.09 0.12
W + + + . “+
DSO3 1IGD 0.34 0.24 0.24 0.13 0o.14 0.07 0.45 Oo.14 1.94 0.33 0.18 Oo.14
W -+ -+ -+ -+ -+
DSso4a 1IGD 0.95 0.84 0.58 0.2 0.59 0.3 1.15 0.37 1.87 0.66 0.45 0.26
W —+ -+ -+ -+ -+
DSOS5 IGD 2.02 1.3 2.35 1.06 0.62 0.25 0.84 0.31 1.48 0.63 1.13 0.3
W + + - - .
B 1.62 1.05 2.58 0.95 0.33 0.22 0.68 0.26 1.37 0.74 0.21 0.14
W -+ -+ -+ -+ -+
DSO7 1IGD 1.16 0.65 1.65 0.34 0.59 0.23 0.88 0.36 2.84 0.45 0.49 0.2
W -+ -+ -+ -+ -+
DSsos 1IGD 37.57 6.43 31.61 8.92 8.84 2.32 2.8 1.06 10.25 3.74 1.71 0.76
W + . . . .
DS09 1GD 63.17 5.25 60.1 12.17 11.53 2.54 3.99 1.72 23.82 5.96 3.09 0.82
wW -+ -+ -+ -+ -+
DS10 I1IGD 132.57 7.68 122.4 20.11 6.31 3.52 17.33 4.1 50.63 13.15 0.96 0.67
W -+ -+ -+ -+ -+
DS11 1IGD 139.27 o.44 130.53 17.68 5.27 3.69 27.03 6.32 55.8 11.07 o [e]
Ao % + “+ “+ “+ “+
DS12 1GD 148.67 8.86 131.3 23.92 22.63 5.1 22.17 7.94 11.6 0.38 0.28
W -+ -+ -+ -+
bsi1s 16D 144.23 9.66 132.23 18.95 19.8 5.07 19.11 5.54 15.78 0.87 0.45
W -+ -+ -+ -+
DS14 1IGD 154.37 10.92 141.24 26.42 14.79 3.75 15.15 6.1 17.28 0.83 0.4
W + + “+ +
Dsi1s IGD 175.62 o.4 157.85 23.24 29.69 5.00 24.46 7.28 15.33 0.57 0.28
W + + + +
DsS16 1IGD 212.89 11.37 195.73 26.26 30.95 5.62 36.82 8.67 16.47 8.09 2.01
A4 -+ -+ -+ -+
DS17 IGD 307.23 9.02 273.9 41.76 74.9 13.23 48.23 7.23 4.9 28.62 1.72 1.24
W —+ -+ -+ -+ -+
DS18 IGD 410.07 12.49 353.23 54.72 45.03 9.61 87.57 13.58 140.63 27.72 1.21 0.93
W + + + +
Table 4. Results of Mean IGD Values on Test Sets
Datasets NSGA-II NSPSOFS CMDPSOFS SPEA2 MOEA/D SaMOGA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
DPSOo1 1GD 0.67 0.43 0.39 0.27 0.71 0.34 0.93 0.17 1.12 0.47 0.86 0.26
W = - = = —+
DSO02 I1IGD 0.67 0.38 0.65 0.29 0.68 0.06 0.61 0.18 0.45 0.27 0.66 0.16
W -+ -+ -+ -+ -
DSO3 1IGD 0.71 0.26 0.36 0.05 o0.44 0.25 0.24 0.15 1.07 0.25 0.27 0.12
W + + “+ +
DSo4 IGD 1.07 0.69 0.99 0.36 0.71 0.5 0.8 0.59 0.79 0.44 0.55 0.31
W + + + + +
DSOS 1IGD 2.48 1.67 3.01 1.3 0.9 0.36 1.11 0.39 1.69 0.94 1.21 0.53
W -+ -+ - = -+
DSso6 1IGD 2.37 1.32 3.43 1.16 0.67 0.27 0.9 0.41 1.99 0.96 0.73 0.28
W —+ -+ = = -+
DSO7 IGD 1.44 0.8 2.29 0.53 0.56 0.19 0.39 0.15 1.43 0.28 0.4 0O.16
W + + = = +
DSOo8 1IGD 36.66 6.08 30.94 8.4 11.8 2.33 5.66 2.44 12.67 3.56 4.78 2.1
W -+ -+ -+ -+ -+
DS0o 1IGD 69.23 5.25 66.17 12.17 15.67 2.83 5.2 2.43 28.9 6.88 0.33 0.21
W -+ -+ -+ -+ -+
DS10 1IGD 136.17 7.68 126 20.11 .27 4.21 20.93 4.1 54.23 13.15 0.42 0.26
W + + . + +
DS11 1IGD 139.27 o.44 130.53 17.68 5.27 3.69 27.03 6.32 55.8 11.07 o o
wW -+ -+ -+ -+ -+
DS12 1IGD 142.59 8.86 125.22 23.92 21.04 4.19 21.34 6.35 43.11 10.65 6.23 1.71
W -+ -+ -+ = -+
DS13 1IGD 150.77 9.66 138.77 18.95 26.03 5.3 25.22 5.96 54.57 15.79 1.48 0.72
W + “+ “+ +
DS14 1GD 162.08 10.92 148.95 26.42 21. 4.37 7.13 52.58 17.32 1.94 0.91
W -+ -+ -+ -+
DS15 I1IGD 173.33 o.4 155.57 23.24 31.77 5.44 6.52 57.94 13.91 5.25 0.78
W -+ -+ -+ -+ -+
DSs16 1IGD 235.69 11.37 218.49 26.38 41.71 6.95 42.35 10.8 77.66 19.68 10 2.92
W + + “+ -+ +
DS17 IGD 251.83 9.02 218.5 41.76 64.17 10 72.77 1.3 71.1 12.37 56.93 11.65
W + + + + +
DS18 1IGD 410.99 12.49 354.16 54.72 45.96 9.61 88.49 13.58 141.56 27.72 1.7 1.06
A\ 4 -+ -+ -+ -+ -+




Table 5. Results of Mean HV Values on Training Sets

atasels NSGA-II NSPSOFS CMDPSOFS SPEAZ2 MOEA/D SaMOGA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

DSso1 HYV 0.04 0.02 0.01 (o] 0.05 (o] 0.06 0.01 0.02 0.01 0.06 0.01
W + + “+ = -+

DsSo2 HYV 0.12 0.04 0.05 0.02 0.18 (o] 0.18 0.01 0.09 0.03 0.18 0.01
W + -+ -+ = “+

DSO3 HYV 1.26 0.04 1.17 0.01 1.3 o 1.36 o 1.05 0.08 1.37 o
W = -+ = -+

Dso4 HYV 0.8 0.21 0.66 0.04 1.11 0.02 1.19 0.02 0.75 0.13 1.2 0.02
W -+ -+ -+ = -+

DSOS HYV 0.69 0.42 0.07 0.09 1.88 0.06 1.9 0.17 0.89 0.41 1.57 0.45
W + -+ - - “+

DSOo6 HY 0.18 0.12 0.01 0.01 0.57 0.05 0.69 0.05 0.2 o.14 0.76 0.03
W -+ -+ -+ -+ -+

DSO7 HYV 17.69 1.24 15.63 0.57 20 0.23 20.56 0.06 17.83 0.79 20.69 0.03
W -+ -+ -+ -+ -+

Dsos HYV 17.61 4.43 20.48 5.8 41.1 2.19 51.05 1.49 36.05 4 55.97 0.36
W + + “+ “+ “+

DS09 HYV o o o o 1.5 0.2 2.63 0.25 O0.46 0.36 3.69 0.11
wW -+ -+ -+ -+ -+

DS10 HYV o o o (o] 0.54 0.61 o o o o 3.26 0.05
W -+ -+ -+ -+ -+

DS11 HYV (o] (o] o [e] (o] [e] (o] [e] (o] (o] 1.00E-25 5.84E-41
W + + “+ “+ “+

DS12 HYV (o] o (o] (o] 0.01 0.05 0.05 0.15 o o 7.55 0.23
W -+ -+ -+ -+ -+

DS13 HYV o o o o 3.8 2.09 4.3 2.54 0.17 0.55 17.79 0.32
W -+ -+ -+ -+ -+

Ds14 HYV (o] (o] o (o] 18.83 3.37 19.68 5.91 2.15 3.45 40.9 1.39
W + + “+ “+ “+

DsS15 HYV (o] (o] (o] (o] 0.34 O0.64 1.79 2.43 o o 18.6 0.49
W -+ + “+ + +

DS16 HY o o 1.17 4.97 101.4 4.95 100.72 7.65 55.97 11.86 142.46
W -+ -+ -+ -+ -+

DS17 HYV (o] (o] o (o] o (o] o (o] (o] o 2.27 0.22
W -+ -+ -+ -+ -+

DS18 HYV [e] (o] o (o] (o] [e] (o] [e] (o] (o] 1.75 0.5
W + -+ + “+ “+

Table 6. Results of Mean HV Values on Test Sets
Datascts NSGA-II NSPSOFS CMDPSOFS SPEAZ2 MOEA/D SaMOGA
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

DPSOo1 HY 0.05 0.06 0.04 0.04 0.12 0.03 o.14 0.03 0.03 0.04 0.13 0.03
W -+ -+ = = -+

DS02 HYV 0.02 0.04 0.01 0.02 0.13 0.03 0.12 0.04 0.1 0.04 O.11 0.03
wW -+ -+ - = =

DSO3 HYV 0.56 0.03 0.54 0.04 O.6 0.02 0.6 0.01 0.58 0.07 0.62 0.01
W = = = =

D>SOo4 HY 0.04 0.02 0.02 0.05 0.07 0.06 0.2 0.07 0.08 0.05
W -+ = = -

DSOS HYV 0O.16 0.01 0.03 0.13 0.15 0.16 0.25 O.14 0.15 O.14 0.26
W = -+ = = =

DSo6 HYV 0.02 0.04 (o] 0.01 0.14 0.09 0.12 0.09 0.07 O.11 0.15 0O.11
W -+ -+ = = -+

DSO7 HYV 9.69 1 8.2 0.53 11.96 0.22 12.07 0.19 10.12 0.7 12.19 0O.11
W + “+ + + +

DSOos HYV 16.92 3.58 19.71 4.61 35.29 1.71 41.09 1.37 37.09 3.79 43.86 1.36
W -+ -+ -+ -+ -+

DSsSoo HYV (o] o (o] o o o o 0.01 o (o] 0.05 0.02
W —“+ -+ -+ -+ -+

DS10 HYV (o] (o] (o] o 0.01 0.05 (o] (o] (o] (o] 0.65 0O.11
W + “+ + + +

DS11 HYV o o o o o o o o o o 8.33K-26 3. 79E-26
wW -+ -+ -+ -+ -+

DS12 HYV (o] o (o] o 13.82 2.03 13.39 3.09 3.37 2.63 26.08 0.58
W —“+ -+ -+ -+ -+

DsS13 HYV (o] (o] (o] o 0.01 0.04 O.16 0.5 (o] (o] o4 0.37
W “+ “+ + + “+

DS14a HY o (o] (8] (o] 13.44 3.07 13.75 5.11 0.9 2.07 32.17 1.24
W -+ -+ -+ -+ -+

DS15 HYV o o o o 30.14 3.22 32.84 3.84 12.96 6.83 50.94 0.65
W -+ -+ -+ -+ -+

DSs16 HYV (o] (o] (o] o 2.07 2.77 3.17 3.53 (o] (o] 27.55 2.99
W “+ “+ -+ + -+

DS17 HY o o o (8] 6.45 1.27 6.89 1.07 6.92 1.5 11.23 2.31
W + + -+ + +

DS18 HYV o (o] o o o o o o (o] o 1.37 0.52
W -+ -+ -+ -+ -+




MOEA/D. NSGA-II and NSPSOFS are also at almost
the same level, but the IGD values of them are the
worst among all algorithms. It is also worth noting that
SaMOGA is significantly better than all compared al-
gorithms on DS08 - DS18. When it comes to training
sets with relative small number of features, i.e., DSO1
- DS07, SaMOGA achieves the smallest IGD values
on all of them except on DS03 and DS05. CMDP-
SOFS can obtain better or similar IGD values on DS01
- DS07 when compared to SPEA2. On DSO1, there
is no significant difference among SaMOGA, NSP-
SOFS, CMDPSOFS and SPEA2. On DS04, it is sig-
nificantly better than the other five algorithms. On
DS05, CMDPSOFS obtain the smallest IGD value,
followed by SPEA2, and SaMOGA is in the third
place.

In terms of IGD values on the test sets, as pre-
sented in Table 4, SaMOGA still obtains the mini-
mum IGD value among all compared algorithms and
it is also significantly better than all compared algo-
rithms on DS08 - DS18. On DS01, NSPSOFS achieves
the smallest IGD value and it is significant better than
SaMOGA. On DS02, MOEA/D obtains the best re-
sult, and SaMOGA achieves result similar to NSGA-
II, NSPSOFS, CMDPSOFS and SPEA2. CMDPSOFS
performs well on DS05 and DS06. It can be observed
that SaMOGA is significantly better than CMDPSOFS
and SPEA?2 on training sets of DS06 and DS07, but
is not significantly different from CMDPSOFS and
SPEA?2 on the test sets of DS06 and DS07.

From Table 5, SaMOGA obtains the maximum
HV values on fourteen out of sixteen training sets.
SaMOGA performs well on DS08 - DS18. CMDP-
SOFS and SPEA2 are ranked in the second and third
place on DS12 - DS16, followed by MOEA/D, NSGA-
II and NSPSOFS. On DS01, DS02 and DS05, SPEA2
achieves the biggest HV values among all comparison
algorithms. Although SaMOGA achieves the biggest
HYV values on DS03 and DS04, it is not significantly
different from SPEA2. From DSO01 - DS02, we can ob-
serve that SPEA2 is very promising.

Table 6 presents the HV values on test sets. From
Table 6, SAMOGA obtains slightly worse HV values
than that on the training sets but it is still able to
achieve the biggest HV values on twelve out of sixteen
test sets. In particular, its performance remains stable
on test sets with a large number of features. On DSO1

- DS05, SPEA2 achieves the biggest HV values for
two times while CMDPSOFS and MOEA/D achieve
the biggest HV values once each. SaMOGA is signifi-
cantly superior to NSGA-II, NSPSOFS and MOEA/D
on DS06 and it obtains slightly bigger HV value than
all compared algorithms on DS07.

From IGD and HV values on both training and
test sets presented in Table 3 - Table 6, we can find
that SaMOGA wins on most training and test sets
and it never lose on datasets with relative large num-
ber of features. Meanwhile, on datesets with rela-
tive small number of features, CMDPSOFS performs
well in terms of IGD metric while SPEA2 is good
in terms of HV metric. From these results, we can
conclude that SaMOGA outperforms NSGA-II, NSP-
SOFS, CMDPSOFS, SPEA2 and MOEA/D on most
datasets in terms of IGD and HV values, especially for
those with large number of features.

5.2. Analysis of Best PFs Evolved on Training Sets

In this subsection, we present the best PFs evolved on
training sets to analyze the convergence and diversity
of the obtained solutions by different algorithms. For
each algorithm, we first merge all PFs obtained from
30 independent runs to form the PF ensemble, and then
perform non-dominated sorting operation to it and se-
lect the non-dominated solutions to obtain the best PF.
Considering the length of the article, we only present
the plots of the best Pareto front for the six train-
ing sets here, which are named as DSO1_Tr, DS02_Tr,
DS07_Tr, DS08_Tr, DS10_Tr and DS11_Tr in Figure 4,
the remaining ones are shown in the Appendix. Mean-
while, the number of raw features and the classifica-
tion error obtained by using them for classification on
each training sets is presented at the bottom of the cor-
responding subfigures.

It can be seen from DSO1_Tr and DS02_Tr that
the final solutions obtain by SaMOGA are well-
converged. Meanwhile, it achieves the similar results
to SPEA2 and CMDPSOFS on most cases. Among all
comparison algorithms, the final solutions obtained by
NSPSOFS are inferior. Despite the wide distribution
of solutions in the results obtained by NSPSOFS, it is
difficult to obtain better convergence. On DS07_Tr, all
comparison algorithms perform well and achieve the
same results. It is also noticeable that NSGA-II and



NSPSOFS tend to obtain solutions with small classifi-
cation error and big solution size.

Meanwhile, SaMOGA outperforms other five
comparison algorithms on DSO08_Tr, DS10_Tr and
DS11_Tr. Notably, SaMOGA is good at searching out
the solution that has small solution size and high clas-
sification error. Perhaps it is with these solutions that
SaMOGA can ensure population diversity and pro-
mote population convergence to prevent stagnation.
On DS08_Tr, which has 256 raw features, the gap be-
tween CMDPSOFS, SPEA2, MOEA/D and SaMOGA
is not so obvious. However, MOEA/D starts to become
quite inferior as NF increases. It can be also observed
that CMDPSOFS and SPEA?2 have better search abil-
ity, CMDPSOFS outperforms SPEA2 on DS10_Tr,
DS11_Tr while SPEA2 outperforms CMDPSOFS on
the other eight training sets.

From best PFs evolved on the training sets, we no-
tice that the best PF obtained by SaMOGA is great.
Besides, better final solutions are obtained when train-
ing on the datasets with a larger number of features.
Therefore, we can conclude that SaMOGA has strong
search capability and the advantage over its counter-
parts is more obvious when NF in the dataset is larger.

5.3. Analysis of Average PF's on Test Sets

To evaluate the performance of different algorithms on
the test sets, the average PFs obtained on the test sets
are analyzed. Considering the length of the article, we
only present the plots of the average Pareto front for
the six test sets here, which are named as DS01_Te,
DS02_Te, DS07_Te, DS08_Te, DS10_Te and DS11_Te
in Figure 4, the remaining ones are shown in the Ap-
pendix. Since each algorithm is run 30 times on each
dataset, 30 obtained PFs invariably contain solutions
with the same solution size but different classification
errors. To obtain the average PF of each algorithm on
each dataset, we average the classification errors of so-
lutions with the same solution size so that one solution
size will correspond to one classification error. The PF
obtained in this way is called average PF. Meanwhile,
the number of raw features and the classification error
obtained by using them for classification on each test
sets is presented at the bottom of the corresponding
subfigure.

According to DSO1_Te, DS02_Te and DS07_Te,
all the comparison algorithms achieve the similar re-

sults, i.e., small classification error and small solu-
tion size, and they can obtain a feature subset with
only one feature on all low-dimensional datasets ex-
cept for NSPSOFS. In addition, on these three test
sets, SAMOGA can obtain solutions with smaller or
slightly higher classification errors than using all fea-
tures, but with more feature cuts, e.g., 93% of features
on DSO1_Te and 94% of features on DS02_Te.

In terms of the classification error, it can be ob-
served that MOEA/D wins on DS08_Te, however, it
has a deteriorated performance on the other datasets,
achieving similar or worse results than NSGA-II and
NSPSOFS. In almost all cases, SaMOGA obtains sim-
ilar or smaller classification errors than that of CMDP-
SOFS and SPEA2, achieving smaller classification er-
rors than it does without using the FS operation. From
the perspective of solution size, NSPSOFS is able to
obtain smaller solution size than that of NSGA-II, yet
inferior to MOEA/D. On most test sets, CMDPSOFS
and SPEA?2 obtain feature subsets with similar solu-
tion size. Furthermore, SaMOGA is capable of achiev-
ing feature subsets with minimum solution size among
all comparison algorithms on all test sets, especially
when NF increases, its strength in cutting features
becomes stronger. The most outstanding one is that
SaMOGA gets a classification error of 0 with only one
feature on DS11_Tr. Overall, SaMOGA is great at re-
moving irrelevant or redundant features and ensuring
a low classification error.

On the basis of the results of this study, a future
direction of our research will include the hybridiza-
tion of the proposed SaMOGA with modern ingenious
paradigms in neural systems and classification such as
Enhanced Probabilistic Neural Network [84], Neural
Dynamic Classification Algorithm [85], Dynamic En-
semble Learning Algorithm [86], and Finite Element
Machine for Fast Learning [87].

Another direction of future research is the appli-
cation of the proposed self-adaptive multi-objective
logic to other algorithmic structures for optimization
such as distributed neural dynamic algorithms [88],
spiral dynamic algorithms [89], harmony search al-
gorithm [90], water drop algorithm [91], and central
force metaheuristic optimization.
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Figure 4. Best and Average PFs Evolved on Training and Test Sets



6. Conclusions

This paper considers FS as a MOP, and proposes
SaMOGA to handle it. By adopting the self-adaptive
mechanism and SSDM simultaneously, SaMOGA
commits to a sufficient search in the search space to
yield a set of solutions with the small classification er-
ror and solution size without ending up finding local
optima. Experiments are conducted on sixteen datasets
with the number of feature from 30 to 1300. In addi-
tion, five multi-objective optimization algorithms for
FS are adopted for comparison. The results reveal that
SaMOGA is able to obtain a lower classification error
using fewer features than the comparison algorithms.
Meanwhile, SaMOGA is able to obtain better results
than other comparison algorithms on most training and
test sets in terms of IGD and HV. The success of the
proposed SaMOGA over the other multi-objective ap-
proaches resides in its flexibility due to the integrated
set of crossover operators in an ensemble fashion.

In the future work, we intend to investigate
whether individuals can be encoded with variable
length to narrow the search space, and then apply
SaMOGA to further improve the classification perfor-
mance.
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Appendix

In this section, two conventional wrapper feature se-
lection methods, i.e., linear forward selection (LFS)
[92] and greedy stepwise backward selection (GSBS)
[93], are adopted to further examine the performance
of SaMOGA.

LFS and GSBS were derived from sequential for-
ward selection and sequential backward selection, re-
spectively. LFS limits the number of features to be
considered in every single step of forward selection so
that the number of evaluations can be reduced. GSBS
starts with the full set and keeps removing features un-
til the classification error no longer decreases.

The results obtained by LFS, GSBS and SaMOGA
in some of the datasets are shown in Table 7. “Size-A”
and “Size-B” represent the average and smallest size
of feature subsets in 30 runs, respectively. “Err-A” and
“Err-B” represent the average and smallest classifica-
tion error in 30 runs, respectively. For each dataset,
LFS and GSBS obtain a unique feature subset. So they
don’t have the value smallest size of feature subsets
and the smallest classification error, we use the symbol
“-” to represent this.

From Table 7, we can see that SaMOGA achieves
better classification performance and reduces more
features than LFS and GSBS do. It is also worth noting
that SaMOGA is able to obtain only one feature on all
of the datasets. The results indicate that SaMOGA has
better performance compared to the traditional feature
selection method.

Figures 5 and 6 show the plots that were not in-
cluded in the paper.

Table 7. Results of LFS, GSBS and SAMOGA

Dataset Algorithm | Size-A | Err-A | Size-B | Emr-B
LFS 10 11.11 - -

Wdbc GSBS 25 16.37 - -
SaMOGA 3 3.56 1 2.73
LFS 4 13.33 - -

Ionosphere GSBS 30 21.90 - -
SaMOGA 2.50 7.01 1 447
LFS 6 10 - -

LungCancer GSBS 33 10 - -
SaMOGA 3 16.55 1 4.76
LFS 7 35.38 - -

MadelonValid | GSBS 489 48.72 - -
SaMOGA 4.82 15.97 1 9.54
LFS 24 1.66 - -

Isolet5 GSBS 560 2.84 - -
SaMOGA 26.40 23.17 1 9.73
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Figure 6. Average PFs Obtained on Test Sets
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