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ABSTRACT

Propagation of rays in 2D and 3D corrugated waveguides is performed in the general framework of stability indicators. The analysis of stability
is based on the Lyapunov and reversibility error. It is found that the error growth follows a power law for regular orbits and an exponential
law for chaotic orbits. A relation with the Shannon channel capacity is devised and an approximate scaling law found for the capacity increase
with the corrugation depth.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0043782

We investigate the propagation of a ray in a 2D waveguide whose
boundaries are two parallel horizontal lines with a periodic cor-
rugation on the upper line. The reflection point abscissa on the
lower line and the ray horizontal velocity component after reflec-
tion are the phase space coordinates and the map connecting two
consecutive reflections is symplectic. The dynamic behavior is
illustrated by the phase portraits, which show that the regions of
chaotic motion increase with the corrugation amplitude. For a 3D
waveguide, the 4D map connecting two consecutive reflections on
the lower plane is symplectic, but its orbit cannot be examined by
looking at the intersections with a 2D phase plane, since a con-
tinuous interpolation of the orbits is not available. In this case,
the fast dynamic indicators allow to perform a stability analy-
sis. For each point of a grid in a 2D phase plane, one computes
the orbit for a chosen number of iterations and the correspond-
ing value of the fast indicator, which is conveniently visualized
using a color plot. After the fast Lyapunov indicator, many other
indicators have been introduced. Our analysis is based on the
Lyapunov error (LE) due to a small random initial displacement
and the reversibility error occurring when the orbit is reversed
in presence of a small additive noise [reversibility error (RE)]

or roundoff [modified reversibility error (REM)]. For integrable
maps, the growth of LE and RE follows a power law and for quasi-
integrable maps the same growth occurs close to a stable fixed
point. More generally, the error growth follows a power law for
regular orbits and an exponential law for chaotic orbits. Near the
boundary between two invariant regions of regular and chaotic
motion, we find sticky orbits for which the error grows first fol-
lowing a power law, possibly for long periods, switching to an
exponential at later times. There is numerical evidence that REM
grows as RE though with large fluctuations. The channel capacity
is related to LE and the dependence of its phase space average on
the corrugation amplitude is considered. Our indicators confirm
their reliability for the stability analysis of the ray propagation in
a 2D and 3D waveguide, providing a measure of the sensitivity of
the orbits to initial conditions, noise, and roundoff.

I. INTRODUCTION

The equivalence between geometrical optics and mechanics
was established in a variational form by the principles of Fermat
and Maupertuis. If a ray propagates in a uniform medium with
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a reflecting boundary, then the trajectory is the same as a parti-
cle freely moving and elastically colliding with the same boundary.
As a consequence, a waveguide and a billiard are equivalent optical
and mechanical systems.1 Since the velocity of the particle does not
change, we can assume that it has unit modulus, just as the ray veloc-
ity normalized to the speed of light. The trajectory is determined
by the collision points and the velocity direction after the collision.
The billiards with polygonal or smooth convex closed boundaries
have been intensively investigated and the mathematical literature
is very rich (see Refs. 2–6). The behavior of level spacing of quan-
tum chaotic billiards was investigated7,8 and related to spectrum of
random matrices.

We first consider the 2D waveguide whose boundary is a
straight line and a corrugated parallel line. The trajectory is a polyg-
onal line specified by the abscissa x of the reflection points on the
straight line and the parallel component vx of the velocity after
reflection. The Fermat principle establishes that, given two points
of abscissas x1, x2 on the lower straight line, the ray starting form
x1, colliding once with the corrugated line, and reaching x2 follows
the path of minimal length and the collision is just a reflection. In
addition, the ray minimal path length h(x1, x2) is the generating
function of the area preserving map M connecting two subsequent
reflections on the straight line. A similar procedure allows us to
obtain a symplectic map for the ray propagation in a 3D waveguide
made of an horizontal plane and an upper parallel plane with a peri-
odic corrugation. If the medium between the waveguide boundaries
is not uniform, the piecewise linear path joining two consecutive
reflection points on the lower line or plane is replaced by the
geodesic with respect to the metric n ds, where n is the refraction
index.

The transition from ordered to chaotic motion in 2D billiards
and waveguides has been considered;9–11 the transport and diffusion
properties have been extensively analyzed.12–18 The stability proper-
ties of the map depend on the corrugation amplitude. For the 2D
waveguide, the phase portrait of the corresponding 2D map allows
us to detect the regions of regular and chaotic motion. Finite time
indicators such as the Fast Lyapunov Indicator (FLI)19,20 have been
first proposed to analyze the orbital stability (see Appendix A).

Many other fast Lyapunov indicators were introduced. For an
extensive list and numerical comparison for symplectic maps see.22,23

Recently, the Lyapunov and reversibility errors have been
introduced26,27 to measure the sensitivity of the orbits to a small
random initial displacement and to a small additive noise along
the orbit. The Lyapunov error (LE) and the reversibility error are
simply related28 so that the computation of RE does not require
expensive Monte Carlo procedures. The relevant difference of LE
with respect to previous variational indicators such as FLI, is that
LE does not depend on the initial deviation vectors. A full set
of Lyapunov error invariant indicators (LEIs), whose asymptotic
behavior is related to the partial sums of the Lyapunov exponents,
just as GALI,21 and which independent from the initial deviation
vectors, has been introduced jointly with reversibility error invari-
ant indicators (REIs).29 The REIs are asymptotically governed by
the partial sums of positive Lyapunov exponents. The logarithms
of the last REI is the reversibility entropy, whose asymptotic behav-
ior is governed by the sum of positive Lyapunov exponents, just as
the Ruelle upper-bound to the measure theoretic entropy,24 which is

related to the topological entropy, the information entropy, and the
Kolmogorov–Sinai entropy.25

The LE and RE grow following a power law, for the regular
orbits of quasi-integrable symplectic maps as the previous varia-
tional indicators, exponentially for chaotic orbits. The reversibility
error due to roundoff (REM) was first introduced in Ref. 30 and
its features were examined in Ref. 31. For previous works on the
round effect in the computation of orbits for Hamiltonian systems,
see Ref. 32. Previous numerical investigations of Hamiltonian sys-
tems and symplectic maps confirm that LE grows linearly with
oscillations (due to the loss of rotational symmetry when the coor-
dinates are not normal) for regular orbits, whereas the growth of RE
is almost oscillations free. Neglecting its large fluctuations REM is
comparable with RE, even though no rigorous proof is available.

For the 3D waveguide, no direct inspection of the orbits is pos-
sible, since the section of the orbits of the symplectic 4D map with
a 2D plane would require a continuous interpolation, available only
when an interpolating Hamiltonian is known. Normal forms pro-
vide the interpolating Hamiltonian for quasi-integrable symplectic
maps, but their recursive computation is possible just for polyno-
mial maps, and, in addition, the interpolation is not exact due to the
presence of a nonintegrable remainder. The variational indicators,
computed for the orbits issued from the points of a regular grid in
a 2D phase plane for the 4D map and visualized with a color plot,
allow us to determine the stability properties just as for the 2D map.
We have analyzed only LE and RE for a limited number of itera-
tions. Indeed, as stated by Froeschlé et al., the variational indicators
as FLI computed for short times exhibit some dependency on the
initial deviation vectors. Since LE, RE, and REM do not depend on
the initial deviation vectors our choice is justified. A careful inves-
tigation of the sticky chaos, which requires longer orbits, and more
extensive numerical exploration of the reflection maps based on the
full set of invariant indicators LEI and REI and a comparison with
the standard variational indicators, will be the object of a future
work.

Only a few hundred iterations of the map are required to obtain
a reliable stability picture, unless one is interested in the details of
a small region. To obtain the analytic form of the tangent map is
rather cumbersome for the 3D waveguide case. The shadow orbit
method provides a simple, though less accurate, alternative, which
consists in evaluating the orbits for initial conditions with small dis-
placements along an orthogonal basis, which amounts to replace the
partial derivatives with finite differences. For any initial condition,
four additional evaluations of the orbit are required (two for the 2D
map) in order to obtain LE and RE, whereas just one is required to
compute REM.

We have analyzed a model of 2D waveguide for different val-
ues of the corrugation amplitude, showing that the LE, RE, and
REM provide comparable results, which describe the orbits sensi-
tivity to a small initial random displacement, to an additive noise
along the orbit and to round off. For a model of 3D waveguide, the
same error plots for initial conditions on 2D phase planes exhibit a
similar behavior, though the structure is richer with respect to the
2D waveguide due to the presence of the Arnold web of resonances.
The effectiveness of the proposed method, already experienced in
celestial mechanics26,27 and beam dynamics33 models, is confirmed
in these examples of 2D and 3D waveguides.
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This paper is organized as follows. In Sec. II, we present the
variational derivation of the reflections map for a 2D waveguide. In
Sec. III, the extension to the 3D waveguide is outlined. In Sec. IV, our
dynamical indicators are defined and their basic properties are illus-
trated. In Secs. V and VI, the numerical results of these indicators
show how the instability regions grow when the corrugation ampli-
tude increases. In Sec. VII, the link between our indicators and the
channel capacity is established and it is shown how its phase space
average increases with the corrugation amplitude. Conclusions and
perspectives are presented in Sec. VIII.

II. THE 2D WAVEGUIDE

Given two parallel reflecting lines z = 0 and z = 1 in the (x, z)
plane, the light ray direction after each reflection on the lower line is

the same being specified by the unit vector v = (xx, vz =
√

1 − v2
x)

T
,

where T denotes the transpose of a matrix or a vector. The time
τ between two reflections on the upper and lower line is given by
τvz = 1. We choose as phase space coordinates (x, vx) so that the
sequence of reflections (xn, vx n) on the lower line is given by

vx n+1 = vx n,

xn+1 = xn + 2τvx n = xn +
2vx n

√

1 − v2
x n

.
(1)

This map is integrable and area preserving. If we let
v = (cos θ , sin θ)T, where 0 ≤ θ ≤ π , the map becomes

θn+1 = θn xn+1 = xn + 2 cotθn, (2)

and this preserves the measure dµ = sin θ dxdθ . If our phase space
is a cylinder T([−π ,π])] × [−1, 1] rather than the infinite strip IR
× [−1, 1], then x is an angle variable and vx is an action variable.

The frequency � = 2vx(1 − v2
x)

−1/2
diverges for vx → ±1 and

the interpolating Hamiltonian is H = −2
√

1 − v2
x. Since also �′

diverges when vx → ±1, any perturbation renders the map chaotic
as any perturbed integrable map near the separatrix where � van-
ishes but its derivative diverges. The 2D waveguide is obtained by
corrugating the upper line according to

z = 1 + εf(x), (3)

where f(x) is a periodic function of period 2π such that f(x) > −1
and 0 ≤ ε ≤ 1. The curvilinear abscissa s(x) of a point Q on the
corrugated line of coordinates (x, z) is given by (4),

s(x) =
∫ x

0

√

1 + ε2f ′2(x′) dx′. (4)

Consider a ray which starts from P0 = (x0, 0) and reaches corru-
gated line at Q = (x, z). After reflection, the ray reaches the x axis
at the point P1 = (x1, 0). Keeping P0 and P1 fixed and letting Q vary
the path length H of the segments P0Q and QP1 is a function of s(x)

H(s) = h(x0, s)+ h(x1, s),

h(x0, s) =
√

(x − x0)
2 + (1 + εf(x))2,

h(x1, s) =
√

(x − x1)
2 + (1 + εf(x))2,

(5)

where x = x(s) is the inverse of the function s = s(x) defined by (4).
Referring to Fig. 1, we define ψ and ψ ′ the angles which the veloc-
ities v0 and v of the incoming and outgoing ray at Q form with the
tangent τ . The angles between the vectors −v0 and v and the normal
ν at Q are π/2 − ψ and π/2 − ψ ′. As a consequence

v0 =
(x − x0, 1 + εf(x))T

h(x0, s)
, v =

(x1 − x, −1 − εf(x))T

h(x1, s)
,

τ =
(1, εf ′(x))T
√

1 + ε2f ′2(x)

, ν =
(εf ′(x), −1)T
√

1 + ε2f ′2(x)

.

(6)

We denote with v1 the velocity of the ray reflected at P1 and with θ0

and θ1 the angles v0 and v1 form with the positive x axis [see (1)].
The derivatives of h(x1, s) and of h(x1, s) are given by

∂

∂s
h(x0, s) =

x − x0 + (1 + εf(x) εf ′(x)

h(x0, s)

√

1 + ε2f ′2(x)

= v0 · τ = cosψ ,

∂

∂x0

h(x0, s) =
x0 − x

h(x0, s)
= −vx 0 = − cos θ0,

∂

∂s
h(x1, s) =

x − x1 + (1 + εf(x) εf ′(x)

h(x1, s)

√

1 + ε2f ′2(x)

= −v · τ = − cosψ ′,

∂

∂x1

h(x1, s) =
x1 − x

h(x0, s)
= vx 1 = cos θ1. (7)

The stationary point H with respect to s, when x0 and x1 are kept
fixed, is met for s = s∗(x1, x2) where ψ = ψ ′, which corresponds to
the reflection condition. We introduce the function F(x0, x1) equal to
H at the stationary point s = s∗(x0, x1) and compute its differential

F(x0, x1) = h(x0, x1, s∗)+ h(x0, x1, s∗),

dF(x0, x1) = −vx 0 dx0 + vx 1 dx1.
(8)

Equation (8) shows that F(x0, x1) is the generating function of the
canonical transformation M from (x0, vx 0) to (x1, vx 1). After n iter-
ations, the phase space point (xn, vx n) is reached and is mapped
into (xn+1, vx n+1) by M. In the physical space, the ray issued from
the point Pn = (xn, 0) with horizontal velocity vx n is reflected
at Qn = (xn, 1 + εf(xn)) and reaches Pn+1 = (xn+1, 0), where the
horizontal velocity after reflection is vx n+1 (see Fig. 1).

In order to obtain the map, we first compute the time τ needed
for the transit between Pn and Qn. Then, we determine the horizon-
tal component of the velocity vx n+1 of the ray outgoing from Pn+1,
which is equal to vx ∗, where the velocity v∗ of the ray from Qn to
Pn+1 is determined by the reflection condition v∗ = vn − 2 ν (ν · vn)

and the normal of the guide at Qn is given by (6) . Finally, xn+1 − xn

is given by vx nτ + vx n+1τ
′, where the transit time from τ ′ from Qn
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FIG. 1. Geometry of the reflections. On the right frame for n = 0, we have
α0 = π/2 − ψ , where ψ is defined on the left frame.

to Pn+1 is given by vz n+1 τ
′ = vz nτ ,

vz nτ = 1 + εf(xn + τvx n), vz n =
√

1 − v2
x n,

vx n+1 = vx n − 2νx(ν · vn)

= vx n − 2
ε2 f ′2 vx n − ε f ′ vz n

1 + ε2 f ′2
,

f ′ = f ′(xn + τ vx n),

xn+1 = xn + τ

(

vx n + vx n+1

vz n

vz n+1

)

,

vz n+1 =
√

1 − v2
x n+1.

(9)

The map (xn+1, vx n+1) = M(xn, vx n) is symplectic since it is implic-
itly defined by the generating function F(xn, xn+1) according to
vx n = −∂F/∂xn and vx n+1 = ∂F/∂xn+1. The computation of the
tangent map is given in Appendix B.

III. THE 3D WAVEGUIDE

In this case, we consider two planes z = 0 and z = 1 and the
ray velocity is the unit vector v, which can be written in Cartesian
coordinates according to

v = (vx, vy, vz) vz =
√

1 − v2
x + v2

y . (10)

With v, we denote the velocity of the ray reflected by the lower plane
z = 0 so that vz > 0. The time τ between a reflection on the lower
and upper plane is τvz = 1 so that, choosing (x, y, vx, vy) as phase

space coordinates, the map between two consecutive reflections
reads

vx n+1 = vx n,

vy n+1 = vy n,

xn+1 = xn + 2τvx,n = xn + 2
vx n

vzn

,

yn+1 = yn + 2τvy,n = xn + 2
vy n

vzn

.

(11)

If the map is defined on T
2([−π ,π])× [−1, 1]2, then vv, and vy

are the action variables and the interpolating Hamiltonian is

H = −2
√

1 − v2
x − v2

y . In the 3D waveguide, the plane z = 1 is

corrugated, namely, it is replaced by the surface

z = z(x, y) = 1 + ε f(x, y), (12)

where f(x, y) is a periodic function in x and y with period 2π and
f > −1 with 0 < ε < 1. As a consequence, the map describing the
rays propagation can be defined on T

2([−π ,π])× [−1, 1]2. As in
the 2D case, we consider the sequence of points P0, P1, . . . , Pn, . . . on
the z = 0 plane. We denote by Qn the point on the upper corrugated
plane hit by the ray issued from Pn, which after reflection reaches
the z = 0 plane at Pn+1. The sequence points P0, P

′
1, . . . , P

′
n, . . . on

the torus T
2 is simply obtained taking the modulus with respect to

2π so that (x′
n, y′

n) ∈ [−π ,π]. Letting ν(x, y) be the normal at the
corrugated surface at the reflection point Q = (x, y, z = 1 + f(x, y)),
which explicitly reads as follows:

ν(x, y) =
(ε fx, ε fy, −1)T
√

1 + ε2(f2x + f2y)
. (13)

The map (xn+1, yn+1, vx n+1, vy n+1) = M(xn, yn, vx n, vy n) specifying
the ray trajectory is given by

τ vz n = 1 + εf(xn + τvx n, yn + τ vy n),

vz n =
√

1 − v2
x n − v2

y n,

vx n+1 = vx n − 2 νx (ν · vn), ν = ν(xn + τ vx n, yn + τ vy n),

vy n+1 = vy n − 2 νy (ν · vn),

xn+1 = xn + τ

(

vx n + vx n+1

vz n

vz n+1

)

,

yn+1 = yn + τ

(

vy n + vy n+1

vz n

vz n+1

)

,

vz n+1 =
√

1 − v2
x n+1 − v2

y n+1.

(14)

The first equation implicitly defines the propagation time τ
from Pn to Qn, the remaining equations define the map M which
is symplectic. Indeed starting from the Fermat variational principle,
it is shown in Appendix C that this map is obtained from a gener-
ating function F(xn, yn, xn+1, yn+1). We do not quote in this case the
expression of the tangent map since it is rather involved.
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IV. DYNAMICAL INDICATORS

We will present a numerical analysis of the 2D and 4D sym-
plectic maps whose orbits describe the propagation of a ray in a
2D and 3D periodic waveguide. The stability analysis is intended
to discriminate the regions of regular and chaotic motions using
the recently introduced fast stability indicators, denominated Lya-
punov and Reversibility error. The first one is closely related to fast
Lyapunov indicator first proposed to analyze the growth of a small
initial displacement. We shall not present a comparison with other
fast indicators, because it has been performed for other models and
since our indicators are independent from the initial displacement.

A. Lyapunov error

For a symplectic map in a phase space of dimension 2d map,
the Lyapunov error (LE) describes the growth of an initial random
displacement ε ξ , where ξ ∈ IR2d is a random vector with zero mean
and unit variance

〈ξ〉 = 0, 〈ξ ξT〉 = I (15)

in the zero amplitude limit ε → 0. Denoting with 4n the random
displacement after n iteration and with DM(x) the tangent map

4n(x) = lim
ε→0

Mn(x + εξ)− Mn(x)

ε
= Ln(x) ξ ,

Ln(x) = DMn(x) = DM(xn−1) Ln−1(x).

(16)

The square of the Lyapunov error EL n(x) is defined as the variance
of the random vector4n or the trace of its covariance matrix

E2
L n(x) = 〈4n ·4n〉 = Tr (62

n), 62
n = 〈4n 4

T
n〉 = Ln LT

n . (17)

We might define the error EL n(x, η) for a given initial displacement
εη with ‖η‖ = 1, when ε → 0. Its logarithm is just the fast Lya-
punov indicator. We observe that letting ej be any orthonormal base
the sum of E2

L n(x, ej) extended to all the vectors of base is equal to
E2

L n(x). Our definition is independent from the initial displacement.
An expression for the Lyapunov error equivalent to (17) is given by

E2
L n(x) = Tr (LT

n(x) Ln(x)) = Tr
(

(DMn(x))T DMn(x)
)

. (18)

The stability analysis is performed by fixing n and observing
the change of ELn when x varies on a 2D phase plane (or a
2D manifold). Oseledet theorem34 states that if x belongs to an

ergodic component, then (LT
n Ln)

1/2n
has a limit W e3 WT inde-

pendent from x, where W is an orthogonal matrix, 3 is diagonal
and its entries λ1 ≥ λ2 ≥ · · · ≥ λ2d are the Lyapunov exponents
with λd+k = −λd−k+1 and λk ≥ 0 for 1 ≤ k ≤ d. As a consequence,
asymptotically E2

L n ' e2nλ1 + e2nλ2 + · · · + e2nλ2d ' e2nλ1 and more
rigorously limn→∞ (EL n)

1/n = λ1. However, we are not interested
in the n → ∞ limit but rather on the dependence on x for a finite
(possibly large) value of n, when x varies in phase space.

B. Reversibility error

We consider now the iteration of the map n times followed
by the iterations of the inverse map still n times. Inserting a small
additive noise at each forward and backward iteration, the final dis-
placement with respect to the initial condition is a stochastic process,

whose variance defines the square on the reversibility error (RE).
More precisely, letting xε, 0 = x be the initial conditions, we consider
the noisy orbit

xε, k = M(xε, k−1)+ εξk, 4k = lim
ε→0

xε, k − xk

ε
(19)

for k = 1, . . . , n. Starting from xε, n we consider the reversed noisy
orbit

xε, n,−k = M−1(xε, n−k+1)+ εξ−k,

4n, −k = lim
ε→0

xε, n,−k − xn−k

ε
.

(20)

The random vector 4k satisfies a linear recurrence with initial con-
dition40 = 0, whereas4n, −k satisfies another recurrence initialized
by 4n, 0 = 4n (see Refs. 27 and 28 for an explicit expression). We
choose the random vectors ξ k and ξ−k′ independent for k, k′ > 0,

〈ξ k ξT
k′ 〉 = I δk, k′ , 〈ξ−k ξT

−k′ 〉 = I δk, k′ ,

〈ξ−k ξT
k′ 〉 = 〈ξ k ξT

−k′ 〉 = 0.
(21)

Letting 4R n = 4n, −n be the stochastic displacement with respect to
the initial condition x after reversing the orbit and62

R n(x) the corre-
sponding covariance matrix, we define the reversibility error ER (x)
according to

E2
R n(x) = 〈4R n ·4R n〉 = Tr

(

62
R n(x)

)

,

62
R n(x) = 〈4R n (4R n)

T〉.
(22)

The covariance matrix that 62
R n(x) can be expressed in terms of the

tangent maps DMk(x) and their inverses DM−k(x). We do not quote
their expression, which can be found in Refs. 26 and 27 since it can
be proved29 that for a symplectic map M in IR2d, the error RE is
related to LE by the following expression:

E2
R n(x) = E2

L 0(x)+ E2
L n(x)+ 2

n−1
∑

k=1

E2
L k(x),

E2
L 0 = Tr (I) = 2d,

(23)

or by the following recurrence starting with n = 1:

E2
R n = E2

R n−1 + E2
L n + E2

L n−1, E2
R 0 = 0, E2

L 0 = 2d. (24)

We finally define the reversibility error due to roundoff (REM). Let-
ting Mε(x) the map computed with a finite precision ε (typically
in the 8 bytes representation of reals ε ' 10−17) and with M−1

ε the
inverse of M computed with finite accuracy, so that M−1

ε (Mε(x))
6= x, the modified reversibility error (REM) is defined according to

EREM n(x) =
∥

∥M−n
ε

(

Mn
ε(x)

)

− x
∥

∥

ε
. (25)

Letting xε, n = Mε(xε, n−1) be the orbit computed with round off,
the local error

(

Mε(xε, n−1)− M(xε, n−1)
)

/ε is similar to a random
vector, possibly correlated, if the map has a sufficiently high compu-
tational complexity (see Refs. 32 and 31). The difference with respect
to the additive noise, we have considered to define RE, is that we
have just a single realization. As a consequence, even though the
behavior of RE and REM is similar, the last one exhibits large fluctu-
ations, when n varies. On the other hand, the computation of REM
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is really trivial since it requires a few lines of code, if the inverse map
is available. This is the case of the reflection map for a waveguide.
Indeed, to reverse the evolution after n iterations, we must simply
change the sign of the horizontal velocity components(s) and iterate
again the same map n times.

V. THE MODEL OF A 2D WAVEGUIDE

We present first a numerical analysis of the orbits for the map
of the 2D waveguide where the corrugation is given by

f(x) = cos(x). (26)

The phase space coordinates are (x, vx) and the map is defined on
the cylinder T([−π ,π])× [−1, 1], where T(([−π ,π]) is the inter-
val [−π , π] with identified ends. The map has an elliptic fixed point
at x = 0, vx = 0, where f(x) has a maximum and is approximated by
f(x) = 1 − 1

2
x2 + O(x4). We expand the map retaining only the lin-

ear terms in x, vx. The first equation in (9) gives τ = 1 + ε, neglect-
ing second order terms in x and vx. Since f ′(x) = −x + O(x3) in the
second equation, the square of f ′ is neglected and vz n is replaced with
1. Accordingly, the second and third equations become

vx n+1 = vx n − 2ε (xn + τvx n),

xn+1 = xn + τ(vx n + vx n+1).
(27)

Letting M(x) = Lx be the linear map, we have

L =
(

1 − 2ε τ 2τ − 2ε τ 2

−2 ε 1 − 2ε τ

)

, (28)

so that det L = 1 and 1
2

Tr L = 1 − 2ε τ . The map is conjugated to a

rotation L = VR(ω)V−1, where sin2(ω/2) = τε = ε(1 + ε). In this
case, we have Ln = Ln. Close to x = 0, the profile z = 1 + ε − εx2/2
is a concave mirror and the elliptical trajectories in phase space
(x, vx) correspond to caustics in configuration space, namely, the
plane (x, z) where the rays propagate. Close to x = π , the profile
is approximated by z = 1 − ε + 1

2
ε (x − π)2 + O(x − π)4 so that

τ = 1 − ε and the linearized map is (xn+1, vx n+1)
T = L (xn, vx n)

T,
where L is given by (27) with ε → −ε. The map L is conjugated to a
hyperbolic rotation RH(α), where sh2

(α/2) = ετ = ε(1 − ε).
Near x = π , the waveguide corresponds to an optical system

given by a plane and convex mirror.1

The map defined by (9) was computed by solving the equation
for τ with the bisection method initialized by τ1 = 0.5/

√

1 − v2
x n

and τ2 = 1.5/
√

1 − v2
x n. The convergence is achieved also when vx n

approaches 1 or −1. The number of iterations to reach machine
accuracy varies between 40 and 60. Newton’s method is faster and
machine accuracy is reached in less 10 iterations, but convergence
problems are met when vx n approaches 1 or −1.

We have also computed the tangent map and the explicit
expression is written in Appendix A. Writing the implicit equation
G(xn, vx n, τ) = 0, the solution is not defined if ∂G/∂τ = 0 a condi-
tion numerically never met. In Fig. 2, we compare the phase portraits
with the color plots of LE, RE, and REM for the corrugation ampli-
tude ε = 0.1 and orbits length N = 200. The correspondence is quite
good and RE appears to be the smoothest indicator since it is free
from oscillations and fluctuations when n varies. Increasing N does
not change the plots significantly. Higher values of N are needed if

(a)

(b)

(c)

(d)

FIG. 2. From the top: (a) Phase portrait of the map for the 2D waveguide with
corrugation z = 1 + ε cos(x) and ε = 0.1. (b) Color plot of LE for N = 200 iter-
ations of the map. (c) Plot of RE for N = 200 iterations of the map. (d) Plot of
REM for N = 200 iterations of the map.

one wishes to observe details in small regions where the transition
from ordered to chaotic orbits occurs.

In Fig. 3, we compare the Lyapunov and reversibility indica-
tors LE, RE, and REM for a single orbit of the reflection map with
corrugation amplitude ε = 0.1 vs the iteration number n. The first
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initial condition corresponds to a regular orbit and all the indica-
tors for n > 100 follow a power law nα with power α = 1 for LE
and α = 3/2 for RE ad REM. The second initial condition is at the
boundary of the chaotic region. The third initial condition belongs
to the chaotic region and the exponential rise is observed until satu-
ration is reached. Indeed, in order to make a comparison with the 4D
map, we have used the algorithm, where the derivatives are replaced
with finite differences (the saturation occurs as long as the distance
of the shadow orbit from the reference one is comparable with the
diameter of the domain filled by the chaotic orbit). In Fig. 4 we com-
pare the phase portraits with the color plots of LE, RE, and REM for
corrugation amplitude ε = 0.2 and orbits length N = 200. Doubling
the corrugation amplitude with respect to Fig. 2 determines a sig-
nificant increase of the chaotic region, and a good correspondence
between the phase portraits and the color plots of the Lyapunov and
reversibility indicators LE, RE, and REM is found just as for the
previous lower value of the corrugation amplitude.

VI. THE 3D MODEL

For the 3D waveguide, we choose the corrugated profile
according to

f(x, y) = cos x cos y =
1

2
cos(x + y)+

1

2
cos(x − y). (29)

We remark first that for initial conditions y0 = vy 0 = 0, we are
back to the 2D case. If we choose x0 = y0 and vx 0 = vy 0, the
ray propagates in the x = y plane as for the 2D waveguide. After
a rotation of π/4, the ray propagates on the x′, z plane where

x′ =
√

2 x, v′
x =

√
2 vx, the corrugation function depends only on

x′ as f = 1
2

[

cos(
√

2 x′ )+ 1
]

and its period is
√

2π .

When the ray does not propagate in a plane, the simplest case
to analyze corresponds to the almost vertical propagation of the ray
close to a critical point (xc, yc) of the corrugation function, where
gradf = 0. The fixed point of the map (xc, yc, vx = 0, vy = 0) is ellip-
tic if f has a maximum at (xc, yc) and the corrugated surface near
(xc, yc) behaves as a concave mirror.

If f has a minimum at (xc, yc), then the surface behaves as a con-
vex mirror and the critical point of the map is hyperbolic. For our
model near x = y = 0, we have f ' 1 − 1

2
(x2 + y2). The linearized

map becomes

vx n+1 = vx n − 2ε (xn + τvx n),

xn+1 = xn + τ(vx n + vx n+1),

vy n+1 = vy n − 2ε (yn + τvy n),

yn+1 = yn + τ(vy n + vy n+1),

(30)

where τ = 1 + ε. Since τ is constant in this approximation,
the maps in the (x, vx) and (y, vy) phase planes decouple and
each of them is area preserving. The linear frequencies are
equal and given by sin2(ω/2) = ε τ as for the 2D case. The
degeneracy can be removed choosing for instance f(x, y) = cos x
+ A cos y with A 6= 1.

Near x = 0, y = π , we have f ' 1 + 1
2
(x2 + (y − π)2) and

the fixed point of the map is hyperbolic. More generally,
(0, 0), (±π , ±π), and (±π , ∓π) are elliptic and (0, ±π) and

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Orbits of the 2D waveguide with ε = 0.1 for three different initial condi-
tions x0/2π = 0.25, 045, 0.48, and vx = 0 [panels (a), (c), and (e), respectively]
and corresponding indicators LE, RE, and REM vs n [panels (b), (d), and (f)].

(±π , 0) are hyperbolic. We do not examine the projections of indi-
vidual orbits on 2D phase space planes nor on 3D hyperplanes. Close
to the elliptic fixed points, single 2D tori are recognizable in the pro-
jections on 3D hyperplanes and even 2D phase space planes, but the
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(a)

(b)

(c)

FIG. 4. From the top: (a) Phase portrait of the map for the 2D waveguide with
corrugation z = 1 + ε cos(x) and ε = 0.2. (b) Color plot of LE for N = 200
iterations of the map. (c) Plot of RE for N = 200 iterations of the map.

projection of several orbits does not provide any useful information.
For this reason, we show here the plots of our short term indicators
LE, RE, and REM of orbits whose initial points belong to 2D phase
planes.

The plots are obtained by computing our indicators for initial
conditions (x0, vx 0, y0, vy 0) in a family of 2D phase planes, where

y0 and vy 0/vx 0 are kept fixed. Letting vx 0 = v0 cos(φ0) and vy 0

= v0 sin(φ0), we compare the errors for fixed values of y0, φ0 let-
ting x0, v0, which vary in [−π , π] × [−1, 1], where we choose a
regular grid of Ng × Ng points. We have fixed the corrugation ampli-
tude at ε = 0.1 because there is a good balance between regular and
chaotic regions. We have computed LE by using the shadow orbit
to evaluate the tangent map, namely, we have replaced the partial
derivatives ∂Mi/∂xj by finite differences, avoiding the cumbersome
analytic evaluation. To this end, we have chosen four different initial
conditions x0 + ej δ for ≤ j ≤ 4 where ej are the orthonormal base
vectors in IR4, namely, (ej)k = δjk

. The tangent map is approximated
by

DMn(x0)ej ' wj(n) ≡
Mn(x0 + ej δ)− Mn(x0)

δ
, (31)

so that the Lyapunov error becomes

E2
L n '

4
∑

j=1

‖wj(n)‖2. (32)

The discrepancy is of order δ and the choice δ = 10−14 was made
using double precision accuracy.

For φ0 = 0, we recover the plot computed with the tangent map
for the 2D waveguide since the ray propagates in the x, z plane, but
only if the sum in Eq. (32) runs only up to 2 (corresponding to the
phase space coordinates to x, vx). This is equivalent to defining LE
by replacing DMn with its first 2 × 2 block, which corresponds to
tangent map for the 2D map. Indeed even though the orbits of the
2D and 4D map are the same for initial conditions y0 = vy 0 = 0,
the components of 4D tangent map, not belonging the 2 × 2 block,
are nonzero. On the contrary, REM does not change with respect
to 2D map, because the (x, vx) plane is invariant. To recover agree-
ment between REM and RE, when LE is computed according to (32),
which corresponds to the trace of (DMn)T DMn, one can add a small
random displacement of amplitude δ before reversing the orbit, in
order to bring the orbit out of the invariant plane. When there is no
invariant plane, the agreement between REM and RE is recovered
without any random kick.

The regions of regular motion correspond to neighborhood of
elliptic points of the resonant structures and the regions of chaotic
motion to the separatrices joining the hyperbolic points. In addi-
tion the double resonances, due to single resonances intersection
in action space, create other chaotic regions. The Fourier analysis
might be used to classify the resonances because the resonant per-
turbation theory cannot be easily developed. In Fig. 5, we show the
color plots of LE and RE for initial conditions in the (x, vx) plane
of LE and RE for corrugation amplitude ε = 0.1 choosing φ = 0
and y0 = π/4. The regions of regular motion correspond to the
neighborhood of the elliptic points of resonances and the regions
of chaotic motion to separatrices joining the hyperbolic points. In
addition, the double resonances, due to single resonances inter-
section in action space, create other chaotic regions. The Fourier
analysis might be used to classify the resonances, because, due to
the nature of the reflection map, the perturbation methods used for
the 2D and 4D standard like maps are difficult to implement. In
Fig. 6, we show the projections on the (x, vx) plane of the orbits with
the same initial conditions in this plane as for the 2D map shown
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(a)

(b)

FIG. 5. From the top: (a) Plot of LE for the 4D reflection map of the 3D waveg-
uide with corrugation amplitude ε = 0.1. The initial conditions (x0, y0, vx 0, vy 0)
where vx 0 = v0 cosφ0 and vy 0 = v0 sinφ0, are chosen in a 2D plane obtained
by keeping fixed y0 = π/4 and φ0 = 0. The error LE is computed for N = 200
iterations of the map. We let (x0, v0) vary on a regular grid of Ng × Ng points, with
Ng = 200, chosen in the rectangle [−π ,π ] × [−1, 1]. (b) The same plot of RE.

in Fig. 3. The first frame shows clearly the projection on an orbit
belonging to a torus T

2. Also, the remaining figures show the effect
of the 2D projection of a 4D system. In Fig. 7, we show the color
plots of LE and RE for initial conditions in the (x, vx) plane and a
higher value of the corrugation amplitude ε = 0.2 choosing φ = 0
and y0 = π/2.

VII. SHANNON CHANNEL CAPACITY

The possibility of computing fast stability indicators allows us
to establish interesting properties that depend on them. Among oth-
ers, in information theory, it is important to introduce the so called
Shannon–Hartley channel capacity,

C = lim
t→∞

1

t
log2

(

Y

X

)

, (33)

where the time-dependent relation between input (X) and out-
put (Y) describes the time evolution of the transfer process taking

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Orbits of 4D waveguide with ε = 0.1 for initial conditions x0/2π
= 0.25, 045, 0.48, y0/2π = 0.125, v0 = 0 [panels (a), (c), and (e), respec-
tively] and corresponding indicators LE, RE, andREM vs n [panels (b), (d), and (f)].

the message from transmitter to receiver. Equation (38) gives the
maximum (ideal) information bit data-rate achievable in a physi-
cal system that carry electric signals/electromagnetic waves. In the
high-frequency asymptotic, the propagation of waves through the
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(a)

(b)

FIG. 7. Same plots as Fig. 6 for LE, RE, and REM for ε = 0.1 and fixed values
of y0 = π/2 and φ0 = 0. The number of iterations and grid points are the same
N = 200, and Ng = 200.

corrugated channel in Fig. 1 has an isomorphism with classical
ray trajectories underlying waves that bounce around the channel,
given by the symplectic map (9). Therefore, one can think that the
maximum Lyapunov exponent has an isomorphism with the Shan-
non–Hartley channel capacity. This has been recognized in Ref.
36 to be valid for any dynamical system and hence for a contin-
uous time system. The relation between the channel capacity and
the Lyapunov exponents of random matrices was first proposed by
Ref. 37,

C = λ1 = lim
t→∞

1

t
log EL(t) = lim

t→∞

1

t
log ER(t). (34)

For recent works on the subject relating channel capacity to
Lyapunov exponents and entropy (see Refs. 38 and 39). The use of
the maximum Lyapunov exponent to capture the growing transfer
impedance in linear chains of cascaded chaotic cavities has been
used in Ref. 40. Consequently, fast dynamical indicators26,27 allow
an estimation of the channel capacity. For a map like the waveg-
uide map depending on one parameter ε, given a finite number of

(a)

(b)

(c)

FIG. 8. Phase space portraits of the 2D map with the separatrix, black line,
given by Eq. (38), for different values of the corrugation amplitude. Top frame:
ε = 0.005. Center frame: ε = 0.025. Bottom frame: ε = 0.1.

iterations n, we introduce the sequences

CL n(x, ε) =
1

n
log EL n(x, ε),

CR n(x, ε) =
1

n
log ER n(x, ε),

(35)

having the same limit C(x, ε) as n → ∞. The channel capacities
depend on the initial condition x; however, if x belongs to an ergodic
component, the result is the same for almost any choice of x. For
a parallel waveguide ε = 0, the channel capacities CL n(x, ε) and
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(a)

(b)

(c)

FIG. 9. Top panel: phase portrait of the 2D ray map for ε = 0.25. The blue and
red dots correspond to the initial conditions. Middle panel: dependence on n of
CL
n and C

R
n for the chaotic orbits whose initial points are the first two red dots in

left panel (LE pink, RE orange for the first orbit, LE purple, RE red for the second
orbit) and the regular orbit whose initial point is the last red point (LE blue, RE
green). Bottom panel: Growth of the average channel capacities (computed on a
regular grid of 400 × 400 points) with ε for two values of n: CL n cyan for n = 100,
blue for n = 200 and CR n, orange for n = 100. The black line is a quadratic fit
given by Eq. (39).

CL n(x, ε) vanish asymptotically according to

CL n(x, ε) =
1

n
log n + O(n−1),

CR n(x, ε) =
3

2n
log n + O(n−1).

(36)

For a corrugated waveguide, the phase plots of CL n(x, ε) and
CR n(x, ε) for fixed n are of the same as the plot of EL n and ER n in
a logarithmic scale shown in the Fig. 3 for the 2D waveguide and 6
for the 4D waveguide, up to the constant factor n−1.

The 2D ray reflection map for ε � 1 is almost integrable and
exhibits two distinct regions delimited by a separatrix, which can be
approximated by

vx = ±2
√
ε cos

(x

2

)

(37)

(see Fig. 8). For ε ∼ 0.1, the separatrix becomes a thin stochastic
layer, whose area grows by further increasing ε. We have com-
pared the dependence on n of the channel capacities CL n(x, ε) and
CR n(x, ε) for one regular and two chaotic orbits (see Fig. 9). For the
first orbit, the channel capacity vanishes as n−1 log n, whereas for
the last two chaotic orbits, a finite limit is approached.

In order to appreciate how the limit for n → ∞ is reached
and the dependence on the corrugated amplitude, we compute the
following phase space averages [Fig. 9(c)]:

CL n(ε) =
1

µL(E )

∫

E

CL n(x, ε) dx,

CR n(ε) =
1

µL(E )

∫

E

CR n(x, ε) dx,

(38)

where E denotes the phase space and µL(E ) its volume. We have
analyzed the dependence on the corrugation amplitude ε of the aver-
age values of CL n(ε) and CR n(ε) for n = 100 and n = 200 [see Fig. 9
(bottom panel)]. The channel capacity varies almost monotonically
from 0 to 0.8 and corresponds to the phase space average of the max-
imum Lyapunov exponent, since for n = 200 the asymptotic value
appears to be reached. We have found the following quadratic fit
with ε,

C(ε) = 2.4 ε − 1.6 ε2, 0 ≤ ε ≤
1

2
. (39)

A similar analysis can be performed for the 4D map by computing
the phase space average with a Monte Carlo sampling rather than on
a regular grid as for the 2D map.

VIII. CONCLUSIONS

We have analyzed the propagation of a ray on 2D and 3D
waveguide, given by two parallel lines or planes, one of which has
a periodic corrugation. In both cases, the ray reflection maps on the
uncorrugated line or plane are symplectic. The stability properties
are relevant for the long term propagation of the rays. Indeed, in the
chaotic regions, a diffusion occurs preventing the coherent propa-
gation of a signal. We have analyzed the reflection maps using the
short time indicators recently proposed: the Lyapunov error (LE),
the reversibility errors (REs), and REM. The square of LE is the trace
of the covariance matrix of the displacement, after n iterations of the
map, induced by a small initial random displacement. The square of
RE is the trace of the covariance matrix of the displacement from
the initial condition, when the map is iterated forward and back-
ward n times, adding at each step a small random displacement.
Replacing the random displacement with the round off allows us to
define a modified reversibility error REM, which is similar to RE,
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though affected by large fluctuations due to the absence of averaging.
In the 2D case, a good qualitative agreement with the phase por-
trait is found. For a fixed number n of reflections of the rays on the
uncorrugated plane, all the indicators exhibit a similar behavior with
a power law growth for regular orbits and exponential growth for
chaotic orbits. For small corrugations, the motion is regular almost
everywhere except in the neighborhood of the separatrix, occurring
when the rays hit a minimum of the corrugated line or surface and
for rays propagating almost parallel to the waveguide.

For the orbits of the 4D map, describing the ray dynamics of the
3D waveguide, LE and RE provide a satisfactory stability portrait,
just as REM. A stability analysis in this case cannot be performed
by looking at the projection of orbits on a 2D phase plane. Alto-
gether these indicators quantify separately the effect of small initial
displacements, additive noise and round off. The limited computa-
tional load and the simplicity of implementation of these indicators
make them a convenient tool also for a parametric study of 2D and
3D waveguides. We have also considered the relation of our indi-
cators with the channel capacity C. Indeed, the limit of n−1 log EL n

and n−1 log ER n for n → ∞ gives the maximum Lyapunov expo-
nent, which is isomorphic to the channel capacity. The dependence
on n for a given initial condition is consistent with theoretical esti-
mates. The phase space average of the channel capacity is found to
rise with the corrugation amplitude ε following a quadratic law.
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APPENDIX A: STABILITY OF EQUILIBRIA AND ORBITAL

STABILITY

We recall the definitions of orbital stability to establish the cor-
respondence with the frequently used terms such as regular, sticky,
and chaotic orbits. The rigorous definitions of stability of an equi-
librium point and of a trajectory for a deterministic dynamical sys-
tems data back to Lyapunov.35 Given a continuous time dynamical
system,

d

dt
x(t) = 8(x(t)) x ∈ D ⊂ IRd x(t) = St(x) = et D8 x, (A1)

where 8(x) : A → IRd is a smooth vector field, D8 =
∑d

i=1 8(x)
∂/∂xi is the Lie derivative and Kt = et D8 denotes the Koopmann
evolution operator. An equilibrium point xc defined by8(xc) = 0 is
(Lyapunov) stable if to any x0 ∈ A and ε > 0 such that Bε(x0) ∈ A,
we can associate 0 < r(ε) ≤ ε continuous with r(0) = 0 such that

‖x0 − xc‖ < ε −→ ‖x(t)− xc‖ < r(ε), ∀ t > 0. (A2)

If in addition limt→+∞ x(t) → xc, then xc is stable and attractive
or according to Lyapunov asymptotically stable. If ‖x(t)− xc‖ <
C‖x0 − xc‖e−λt ∀t > 0, the point is exponentially stable. Such a con-
dition is fulfilled if 8(x) is a real analytic function in a poly-disk
centered at xc and its linear part is A(x − xx) and the spectrum of
the matrix A is in the half plane Re(z) ≤ −λ < 0. Indeed, in this
case, the Poincaré Dulac theorem ensures the existence of an analytic
linearizing diffeomorphism.

Let A ⊂ IRd be any invariant set St(A) = A. The orbit x(t)
≡ St(x) issued at t = 0 from any x ∈ A such Bε(x) ⊂ A is stable for
∀ε � if the orbit y(t) ≡ St(y) issued from a point y sufficiently close
to x, namely, remains for any t > 0 close to the orbit issued from x,
namely, to any ε > 0, we can associate a r(ε) > 0 such that

‖y − x‖ < ε −→ ‖y(t)− x(t)‖ < r(ε) ∀ t > 0. (A3)

If in addition St(x) is asymptotically dense on a set A ⊂ A, namely,
limt→∞ d(St(x), A ) = 0, then the orbit is stable being asymptotically
attracted by the attractor A . Typical examples are the stable cycles
and the stable attracting tori T

k with k < d.
This is the rigorous definition of orbital stability according to

Lyapunov. To any invariant subset A ⊂ IRd where the orbital sta-
bility is fulfilled, one usually refers as stable region or region of
regular orbits. Any other invariant compact subset B ⊂ IRd where
‖y(t)− x(t)‖/‖y − x‖ have an asymptotic exponential growth with
t for y → x, is called chaotic, since the orbits stretch and fold.

To conclude, the Lyapunov stable orbits are called regular or
stable. The unstable orbits with exponential divergence in compact
invariant domains are called chaotic or unstable.

The extension of these definitions to maps M(x) = Kx, from
an open set A ⊂ IRd into IRd, where K is Koopmann operator, is
obvious. The continuous orbit x(t) = St(x) = Ktx is replaced by the
discrete orbit provided by xn = M◦ n(x) = Kn x or by the recurrence
xn = M(xn−1) = K xn−1. The symplectic maps in IR2m is particu-
lar since there are no attracting points, d = 2m is even, the vol-
umes in IR2m are preserved just as the even dimensional Poincaré
parallelotopes with 2k edges with 1 < k ≤ m.

APPENDIX B: TANGENT MAP FOR 2D WAVEGUIDE

The equation that determines τ(x, v) is

G(x, v, τ) = 1 + ε f(x + τv)− τ
√

1 − v2 = 0,

∂τ

∂x
= −

∂G
∂x
∂G
∂τ

=
ε f ′

√
1 − v2 − εvf ′

,

∂τ

∂v
= −

∂G
∂v
∂G
∂τ

=
ε τ f ′ + τ v/

√
1 − v2

√
1 − v2 − εvf ′

.

(B1)

Letting vx = cos θ ≡ v and vz = sin θ ≡
√

1 − v2 the recurrence
which determines the symplectic map M = (x, v) is given by

G(xn, vn, τ) = 0,

vn+1 = vn − 2
ε2f ′2 vn − εf ′

√

1 − v2
n

1 + ε2f ′2
,

xn+1 = xn + τvn + τ

√

1 − v2
n

√

1 − v2
n+1

vn+1.

(B2)
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The tangent map is given by

∂vn+1

∂xn

=
2ε f ′′

(1 + ε2 f ′2)
2

[

−2ε vn f ′ +
√

1 − v2
n (1 − ε2f ′2)

]

×
(

1 + vn

∂τ

∂xn

)

,

∂vn+1

∂vn

= 1 −
2 ε f ′

1 + ε2 f ′2

(

ε f ′ +
vn

√

1 − v2
n

)

+
2ε f ′′

(1 + ε2 f ′2)
2

[

−2ε vn f ′ +
√

1 − v2
n (1 − ε2f ′2)

]

×
(

τ + vn

∂τ

∂vn

)

,

∂xn+1

∂xn

= 1 +



vn + vn+1

√

1 − v2
n

√

1 − v2
n+1





∂τ

∂xn

+ τ

√

1 − v2
n

(1 − v2
n+1)

3/2

∂vn+1

∂xn

,

∂xn+1

∂vn

= τ +



vn + vn+1

√

1 − v2
n

√

1 − v2
n+1





∂τ

∂vn

+ τ

√

1 − v2
n

(1 − v2
n+1)

3/2

∂vn+1

∂vn

− τ
vn

√

1 − v2
n

vn+1
√

1 − v2
n+1

. (B3)

In all the previous formulas, f = f(xn + τ vn) with f ′ = f ′(xn + τ vn)

and f ′′ = f ′′(xn + τ vn).
In order to check the limit ε → 0, we recall that the map is

given by

τ

√

1 − v2
n = 1, vn+1 = vn,

xn+1 = xn + 2
vn

√

1 − v2
n

.
(B4)

In this case, the tangent map is given by

∂xn+1

∂xn

= 1,

∂xn+1

∂vn

=
2

(1 − v2
n)

3/2
,

∂vn+1

∂xn

= 0,

∂vn+1

∂vn

= 1.

(B5)

In our example, we choose f(x) periodic of period 2π and scale the
coordinates according to x = 2π x′ so that the new tangent map is

given by

∂x′
n+1

∂x′
n

=
∂xn+1

∂xn

,

∂x′
n+1

∂vn

=
1

2π

∂xn+1

∂vn

,

∂vn+1

∂x′
n

= 2π
∂vn+1

∂xn

.

(B6)

APPENDIX C: THE 3D WAVEGUIDE

The equation for the corrugates waveguide is given by Eq. (12),
where f(x, y) is a periodic function. The normal vector ν and the
tangent vectors τ x, τ y are given by

ν(x, y) =
(ε fx, ε fy, −1)T
√

1 + ε2(f2x + f2y)
,

τ x =
(1, 0, εfx)

T

√

1 + ε2 f2x
,

τ y =
(0, 1, εfy)

T

√

1 + ε2 f2y

,

(C1)

where fx ≡ ∂f/∂x and fy ≡ ∂f/∂y. For an analogy with the 2D case,
we might introduce the curvilinear abscissas sx, sy on the lines on the
corrugated plane having y fixed and x fixed, respectively,

sx(x, y) =
∫ x

0

√

1 + ε2 f2x(x
′, y) dx′,

sy(x, y) =
∫ y

0

√

1 + ε2 f2y(x, y′) dy′,

(C2)

so that, keeping y fixed, dsx =
√

1 + ε2 f2x(x, y) dx and, keeping

x fixed, dsy =
√

1 + ε2 f2x(x, y) dy. The transformation from (x, y)
to (sx, sy) is invertible. Letting P0 = (x0, y0, 0) be a point on the
plane, Q = (x, y, z(x, y)) a point on the corrugated plane, and P1

= (x1, y1, 0) a new point on the plane we consider a ray whose path
is P0, Q, P1. We denote with v0 and v the velocity of the ray directed
from P0 to Q and from Q to P1. As for the 2D case, we keep P0 and
P1 fixed letting Q vary and consider the ray path length H, which
depends on Q,

H(x, y) = h(x0, y0, x, y)+ h(x1, y1, x, y),

h(x0, y0, x, y) =
√

(x − x0)
2 + (y − y0)

2 + (1 + εf(x, y))2.
(C3)

The velocities v0 and v, denoting for brevity h0 ≡ h(x0, y0, x, y) and
h1 ≡ h(x1, y1, x, y), are given by

v0 =
(x − x0, y − y0, 1 + εf(x, y)) T

h(x0, y0, x, y)
,

v =
(x1 − x0, y1 − y0, 1 + εf(x, y) )T

h(x1, y1, x, y)
.

(C4)
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We first compute the derivatives of h0 and h1 with respect to x and
y,

∂

∂x
h0 =

x − x0 + (1 + εf) ε fx

h0

= v0 · τ x

√

1 + ε2 f2x,

∂

∂y
h0 =

y − y0 + (1 + εf) ε fy

h0

= v0 · τ y

√

1 + ε2 f2y ,

∂

∂x
h1 =

x − x1 + (1 + εf) ε fx

h1

= −v · τ x

√

1 + ε2 f2x,

∂

∂y
h1 =

y − y1 + (1 + εf) ε fy

h1

= −v · τ y

√

1 + ε2 f2y .

(C5)

Choosing h0 and h1 a functions of sx, sy rather than x, y one has
∂h0/∂sα = v0 · τ α and ∂h1/∂sα = −v · τ α for α = x, y. The function
H is stationary when v0 · τ x = v0 · τ x and v0 · τ y = v0 · τ y, namely,
when the projection on the tangent plane of the incoming and out-
going ray velocities are equal. This corresponds to the reflection
condition since the normal components of v0 and v are opposite.
The derivatives with respect to x0, y0 and x1, y1 are given by

∂h0

∂x0

=
x0 − x

h0

= −vx 0,
∂h0

∂y0

=
y0 − y

h0

= −vy 0,

∂h1

∂x1

=
x1 − x

h1

= vx 1,
∂h1

∂y1

h1 =
y1 − y

h1

= −vy 1.

(C6)

Finally, letting (x∗, y∗) the point where H is stationary and which
depends on end points (x0, y0) and (x1, y1), we introduce the func-
tion F defined as the value of H evaluated at the stationary point and
compute its differential

F(x0, y0, x1, y1) = h(x0, y0, x∗, y∗)+ h(x1, y1, x∗, y∗),

dF = −vx 0 dx0 − vy 0 dy0 + vx 1 dx1 + vy 1 dy1.
(C7)

As a consequence, F is the generating function of a canonical
transformation M, which maps (x0, vx 0, y0, vy 0) into (x1, vx 1, y1, vy 1).

Denoting with xn = (xn, vx n, yn, vy n)
T the phase space point reached

after n iterations of the symplectic map M, the recurrence from
xn to xn+1 is obtained first by computing the transit time τ from
Pn = (xn, yn) to the point Q = (x∗, y∗) on the corrugated surface.
Then, we notice that the horizontal plane projections of the veloc-
ities v∗ = vn − 2ν(vn · ν) and vn+1 of the ray reflected at Q and
Pn+1 = (xn+1, yn+1) are equal. Finally, we determine the displace-
ment from Pn to Pn+1. The equations defining the recurrence from
xn to xn+1 are given by (14).

DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able in https://github.com/gabrielegradoni/WaveguideStability,
Ref. 41.
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