
Localization and coalescence of imperfect planar FCC truss

lattice metamaterials under multiaxial loadings

A.S. Bhuwala, T. Liub,∗, I. Ashcroftc, W. Suna

aGas Turbine and Transmissions Research Centre, Faculty of Engineering, University of Nottingham,
University Park, Nottingham NG7 2RD, UK

bComposites Research Group, Faculty of Engineering, University of Nottingham, University Park,
Nottingham NG9 5HR, UK

cCentre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University
Park, Nottingham NG7 2RD, UK

Abstract

This study investigates the effect of stress triaxiality on the failure mechanisms of an-

isotropic perfect and imperfect planar FCC (Face Centred Cubic) truss lattice metama-

terials. Three types of imperfection have been considered in the numerical modelling,

namely, distorted struts, missing struts, and strut diameter variation. In order to main-

tain constant stress triaxiality during the simulations, a novel numerical framework was

developed to overcome computational difficulties within the existing numerical approaches

beyond elastic region. Three modes of microscopic localization were observed in perfect

and imperfect lattices before failure: crushing band, shear band and void coalescence.

A clear separation exists between the three modes of localization depending upon the

type and level of defects, as well as the stress triaxiality. Under compressive loading,

all lattices fail owing to crushing band; the distorted lattices are prone to shear band

localization with increase in distortion, whereas missing lattices majorly fail due to void

coalescence at high missing struts defect. Strut diameter variation, within the range of

the strut diameters selected, shows no significant influence on the macroscopic mechani-

cal response and strain localization. This work may open the door for predicting failure

mechanisms of imperfect lattices under variety of loading conditions.

Keywords: Stress triaxiality, FCC truss lattice metamaterials, Microscopic localization,

Shear band, Void coalescence

1. Introduction

Additive Manufacturing (AM) technologies have numerous advantages over most tra-

ditional manufacturing methods, the most distinct of which is its flexibility to manufac-

ture complex geometries with little or no cost or time penalty [1, 2]. Another advantage
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is in low volume manufacture, where the lack of moulds or tooling can make AM cost

effective, this is especially advantageous for tailored products. AM has spurred recent

interest in cellular lattice structures as the technology enables a range of cell types, func-

tional grading and conformity to complex external geometry not achievable with any

other manufacturing method [3, 4]. Many researchers are involved in designing com-

plex structures via the use of lattices with different unit cells and relative densities [5].

Köhnen et al. [6] studied plastic deformation behaviour of face centred cubic (f2cc,z) and

hollow spherical lattice structures under tensile, compressive and cyclic loadings. In this

study f2cc,z lattices revealed a stretch dominated deformation behaviour, while hollowed

spherical lattices revealed bending dominated deformation behaviour. Vigliotti et al. [7]

established a nonlinear constitutive model for truss lattice materials. In this study, the

influence of representative volume element (RVE) is discussed. The hexagonal and the

triangulated lattices were selected as case studies and discrete models compared to the

prediction of the continuous model. The results found a good qualitative and quantitative

agreement among models. Geng et al. [8] showed differences in the fracture modes of

three lattice structures and the evolution processes of damage variables using ductile and

shear damage models. Alsalla et al. [9] presented a method for estimating the local failure

mechanism of 316 L stainless steel lattice material under uniaxial tensile and three-point

bending loads. The results show that the tensile strength and fracture toughness of the

lattice structure in different directions are different.

The above research demonstrates research in the design of lattices for AM and both ex-

perimental and computational analysis of their mechanical properties and failure modes,

however, another important aspect that is less studied is the effect of defects on lattice

performance. It is inevitable that additively manufactured lattice structures will contain

defects not included in the designed (perfect) geometries [10, 11]. Real truss lattices

typically contain material and geometric imperfections that may strongly influence their

elastic and plastic responses and failure mechanisms. While predictive models of perfect

lattices have been used to evaluate both linear and non-linear responses under applied

stress [12, 13], they generally fall short in capturing the experimentally observed response

of imperfect lattices. Liu et al. [14] investigated the effect of geometric defects on the

elastic response, damage initiation and evolution of three-dimensional octet and rhom-

bicuboctahedron periodic structures manufactured by Laser powder bed fusion (L-PBF)

process. Wehmeyer et al. [15] presented analytical and reduced-order numerical solutions

to predict post buckling behaviour in cellular structures including the role of geometric

imperfections. They provided regime maps that shows lattice strut configurations that

lead to permanent deformation after unloading, strut failure and enhanced hysteresis

during cyclic loading. Other studies on imperfect lattice structures include [16, 17].

In metallic solids, ductile behaviour, and failure mechanisms such as localization and

void coalescence are the main failure mechanisms impacting structural integrity. The field
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Figure 1: Five generic scenarios of ductile fracture in isotropic solid materials [24]

of ductile fracture has been extensively researched for solid isotropic materials, resulting

in more reliable damage models and localization criteria. An example is the recent work

related to stress triaxiality dependency [18, 19, 20]. The micro-mechanisms governing

ductile shear failure was investigated by Tvergaard et al. [21] using a 2D plane strain nu-

merical cell-model of a single row of equal sized circular cylindrical voids under shearing.

As a first, Tvergaard et al. [22] demonstrated that a maximum load bearing capacity for

a ductile material was attained in a shear field due to micro-void interaction. Anderson

et al. [23] showed that, during shearing, the voids flattened to form micro-cracks, which

rotate and elongate until interaction with neighbouring micro-cracks results in coales-

cence. Failure mechanisms are thereby seen to change with different conditions of stress

triaxiality.

The five generic scenarios of localization and void coalescence failure mechanisms

in solids are illustrated in Figure 1. Mechanism 1 is localized plastic flow failure in

pure metals only, Mechanism 2 is void nucleation after macroscopic localization into

shear band, Mechanism 3 is shear band localization owing to porosity present in the

metals, Mechanism 4 is failure by void coalescence or occurrence of localization and void

coalescence simultaneously, and Mechanism 5 is the subset of Mechanism 4, distinguished

as cluster localization of few voids instead of macroscopic localization extending over

many voids. The ductile failure of solids is often related to progressive nucleation, growth,

and coalescence of micro-voids and microscopic localization.

It is proposed that lattice structures may exhibit comparable mechanisms of micro-

localization before final failure depending upon the type of defects and state of stress. It is

further proposed that imperfections present in lattices will lead to the onset of microscopic

localization or void coalescence, which may serve as an effective indicator of a material’s

ductility. This is the precursor to failure and marks the limit that a uniform strain can

be imposed on the material. Pursuant of this hypothesis, the effects of triaxiality on
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Figure 2: Representation of FCC truss lattice metamaterials with and without manufacturing defects
(a) perfect lattice, (b) distorted lattice, and (c) missing struts lattice

imperfect lattices and their failure behaviour are comprehensively studied in this paper

for the first time.

The paper is organized as follow. A classification and modelling of lattice defects are

presented in Section 2 along with possible failure mechanism identified in this paper. The

development of the model, along with numerical implementation is described in Section 3.

The results of the numerical simulations are presented and discussed in detail in Section

4. Section 5 contains concluding remarks and suggestions for further research.

2. Imperfect lattice structures and failure mechanisms

2.1. Classification and modelling of imperfect lattices

Common geometric defects in the manufacture of FCC (Face Centred Cubic) truss

lattice metamaterials through powder bed fusion can be classified into the following cat-

egories [25, 26], as shown in Figures 2 (a) to (c).

1. Distorted struts can be characterized by node deviation from the collinear axis

of the as-designed struts [27]. As shown in Figure 2 (b), nodal distortion of FCC

truss lattices causes misalignment in the attached struts. Modelling of distorted

struts was achieved through introducing geometrical perturbation to the nodes of

a perfect FCC truss lattice. Let (xi1, x
i
2) represent the spatial coordinates of the

ith node within a perfect FCC truss lattice. The new position of the node
(
xi1, x

i
2

)
after perturbation can be written as:

xi1 = xi1 + β

(
α

√
l2 + h2

4

)
(1)

xi2 = xi2 + β

(
α

√
l2 + h2

4

)
(2)
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where β (−1 ≤ β ≤ +1) denotes a random variable following a uniform distri-

bution probability distribution, α the degree of irregularity , and l and h are the

lengths of the unit cell in the x1 and x2 directions, respectively (see Figures 2 (a)

and (b)). Romijn and Fleck [28] studied five lattice types, namely Square, Dia-

mond, Hexagonal, Triangular and Kagome, with randomly perturbed nodes in the

range of irregularity 0% (perfect lattice) to 50% (extremely imperfect lattice). They

showed that the relative density remains the same with perturbed nodes, however,

the elastic modulus and fracture toughness are highly sensitive to strut distortion,

this also being dependent on the lattice type. In the current paper, degrees of ir-

regularity of α = 15% and 30% were chosen, in order to prevent impingement of

adjacent nodes of FCC truss lattice and to demonstrate strain localization and the

effects of a stress state beyond the elastic limit.

2. Missing struts are modelled to study the effects of absent struts caused by incom-

plete fusion in the material. It is generally accepted that randomly missed struts

widely exist in lattice structures. The missing struts were modelled in this work

through randomly removing struts from a perfect lattice, as illustrated in Figure

2 (c). Let k denote the number of struts that were removed from a lattice of n

struts. The level of the manufacturing defect with missing struts can be quantified

through η = k/n. Su et al. [29] and Chen et al. [30] studied missing strut effects

ranging from η = 0% to 10% and showed that the mechanical properties of lattice

structures are very sensitive to the quantity of missing struts. In the current paper,

η = 5% and 10% were selected for the numerical study.

3. Dimensional inaccuracy can be caused by over-melting or over heating during

LPBF, which results into deviations from circular cross-sections to ellipsoidal [31].

Arabnejad et al. [32] studied such variations in strut diameter and noted a variation

from 45% reduction to 100% increase in strut diameter. In this paper, the effect of

dimensional inaccuracy on the failure modes of lattices is investigated by the use of

three different diameters; 0.5d, 1.0d and 1.5d where d is the initial diameter of the

struts.

Numerical studies have been carried out to investigate macroscopic elastic behaviour

of truss lattices with the defects described above. The studies suggest that the (1) macro-

scopic elastic and shear moduli are affected by degree of irregularity of distorted lattice

albeit only macroscopic shear modulus is affected by missing struts imperfection, and (2)

the macroscopic elastic behaviour remains in-plane orthotropic i.e. shear deformation is

decoupled from the response in the normal directions; see APPENDIX A.
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2.2. Failure mechanisms

In this paper, we have discovered five failure mechanisms of FCC truss lattice metama-

terials with and without defects as shown in Figure 3, that are analogous to well-known

failure mechanisms seen in isotropic solids. These are discussed below:

1. Mechanism 1 occurs for lattices buckling predominantly under compressive load-

ing.

2. Mechanism 2 is analogous to non-porous solid failure due to plastic localization in

shear band by various possible mechanisms such as dislocation slipping. Following

the formation of the plastic localization inside of band, voids coalesce, leading to

final separation. This mechanism occurs due to high stress concentration near a

crack tip in solid structures. In lattice structures, lattices with distorted nodes may

fail in an analogous fashion due to the abrupt change in load path that this causes.

3. Mechanism 3 corresponds to the occurrence of localization prior to void nucle-

ation induced by accumulated porosity. Lattices with localized insufficient powder

melting and fusion can may have ineffective joining between some struts, which can

be considered as having the same effect on mechanical response as a missing strut.

The missing struts act as voids in lattice structures and failure occurs owing to

shear band formation or strain localization.

4. Mechanism 4 involves nucleation and localization occurring simultaneously with-

out prior localization owing to the growth mechanism. In this case, the onset of

coalescence dictates the onset of macroscopic localization and is caused by missing

struts. One of the primary objectives of the present paper is to demonstrate, the

different degrees of a particular defect may lead to different failure mechanisms.

5. Mechanism 5 could be considered as a subcategory of Mechanism 4, i.e. lattices

with missing strut defects may have clustering of missing struts which propagates

through repeated coalescence. Cluster coalescence will often take place in a region

involving a few more closely spaced missing struts and/or experiencing large plastic

strain.

3. Numerical framework

Existing numerical studies [20, 33] on the effects of triaxiality for two dimensional or

three dimensional solids have been conducted using an implicit finite element (FE) solver

such as ABAQUS Standard (Dassault Systemes [34]). The constant triaxiality T was

imposed by utilizing a multi-point constraint with the help of user defined subroutines

(MPC subroutine in ABAQUS Standard). In the MPC subroutine, user defines con-

straints to be imposed between different degrees of freedom of ever-changing boundary
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Figure 3: Three failure modes subdivided into five generic scenarios of localization and void coalescence
mechanisms observed in lattice structures with and without defects. In Mechanism 1, a perfect lat-
tice is subjected to compressive loading in x1-direction; In Mechanism 2, an imperfect lattice with 15%
distortion is under tension in x2-direction; In Mechanism 3, a lattice with 5% missing strut is under
compression-tension loading with same magnitude in x1 and x2 directions, respectively; and In Mech-
anisms 4 and 5, lattices with 5% missing strut defect are subjected to biaxial tension with different
magnitude. The objective of this paper is to distinguish between failure mechanisms associated to dif-
ferent types of defects in FCC truss lattice metamaterials under multiaxial loadings (default ABAQUS
color theme has been used to demonstrate logarithmic strain in struts)

conditions, by calculating displacements, iteratively. However, in simulations of complex

lattice structures and their post buckling behaviour, the ABAQUS Standard solver may

present a convergence issue. To overcome such numerical difficulties, the ABAQUS Ex-

plicit solver was employed in the current study. Since the MPC subroutine can not be

employed in conjunction ABAQUS Explicit, the following methodology based on constant

triaxiality was developed to simulate lattice structures.

Numerical simulations were conducted to investigate FCC truss lattice metamaterials

under plane stress as the out-of–plane thickness of a truss lattice is much smaller than

the in-plane dimensions and the loads are applied in-plane. Consider the representative

volume element (RVE) of a FCC truss lattice under the global coordinate system x1 −
x2 − x3 subjected to in-plane principle stretches λ1 and λ2, as shown in Figure 4 (a), as

well as principle out-of-plane stretch λ3. The RVE consists of k1 unit cells and has a bulk

volume of Ω (Ω = W1×W2×d) at the deformed configuration. A shear band localization

containing failed struts may form within the lattice under the stretches. Let ξi (i = 1, 2, 3)

denote the local coordinate systems that are attached to the band with ξ1 perpendicular

to the shear band, ξ2 aligned with the longitudinal direction, and ξ3 aligned with x3. We
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(a)
(b)

(c)

Figure 4: (a) 2-dimensional structure with predefined band subjected to multi-directional stretch, (b)
the top, bottom, left and right surfaces of RVE subjected to constraints imposed by a dummy node
M , so that the concentrated forces applied to node M by the springs are fully transmitted to the RVE,
and (c) the free body diagram of the dummy node M , showing the forces acting on node from RVE
(RRV E

j , j = 1, 2), spring (RS
j ) and dynamic inertia (maj)

introduce vectors êi aligned with global coordinates xi; n̂ and t̂ aligned with band local

coordinates ξ1 and ξ2, respectively. The applied strain components in the remote area

parallel to principal axes lead to stress state with principal stress components (Σ11,Σ22),

i.e.

Σ0 = Σ11ê1 ⊗ ê1 + Σ22ê2 ⊗ ê2 (3)

The stress triaxiality T and effective stress Σeff , describing the stress state, can be

defined as

T =
Σ11 + Σ22

3Σeff

(4)

or

T =
sign (Σ22) (1 + ρ)

3
√

(ρ2 + 1− ρ)
(5)

where Σeff =
√

1
2

[
(Σ11 − Σ22)2 + (Σ11)2 + (Σ22)2] and ρ = Σ11/Σ22.

The numerical simulations were performed under constant T or constant ρ using the

method described below. A dummy node, M , which is not part of the structure, was

created to impose boundary conditions, see Figure 4 (b). Let uM1 and uM2 denote the dis-

placements of M ; (uleft 1, uleft 2), (uright 1, uright 2), (utop 1, utop 2), and (ubottom 1, ubottom 2)

the displacement nodes on the left, right, top and bottom edges of the RVE, respectively.

The displacements of the nodes on the top, bottom, left, and right edges were coupled to

the corresponding displacements of node M by means of periodic boundary conditions
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(PBCs) [35] defined by the following equations

uright 1 − uleft 1 = uM1 and utop 2 − ubottom 2 = uM2 (6)

In this way, the point force applied to node M is fully transmitted to the lattice

structure. The macroscopic stresses acting on the lattice structure can be expressed as:

Σ11 =
RRV E

1

A1

, A1 =
(
W 2 + uM2

)
d and Σ22 =

RRV E
2

A2

, A2 =
(
W 1 + uM1

)
d (7)

where RRV E
j (j = 1, 2) denotes the concentrated force corresponding to the xj direction

of node M ; A1 and A2 are the areas of the left/right and top/bottom edges of the

RVE, respectively; d the strut diameter; W 1 and W 2 widths of the RVE in the initial

configuration in xj direction. Two additional dummy nodes Nj are created and connected

to dummy node M using a spring element of spring stiffness coefficient kj (SpringA

element of the ABAQUS element library [34]) as shown in Figure 4 (b). Hence, the force

RS
j transmitted from nodes Nj to node M can be calculated as:

RS
j = kj

(
uMj − u

Nj

j

)
(8)

where u
Nj

j is the displacement of node Nj. Hence, the point forces acting on the RVE,

RRV E
j , can be calculated by applying force equilibrium (Figure 4 (c)).

RRV E
j = kj

(
u
Nj

j − uMj
)
−maj (9)

where m and aj are the mass and acceleration in xj direction at node M , respectively.

Hence, to keep the stress triaxiality constant, the following parameters need to be satisfied

at each incremental strain,

ρ =
Σ11

Σ22

= const ⇒
{
k1

(
uN1

1 − uM1
)
−ma1

} (
W 1 + uM1

)
d{

k2

(
uN2

2 − uM2
)
−ma2

} (
W 2 + uM2

)
d

= ρ (10)

If the mass m and accelerations aj at node M are nullified by using very small mass

(10−8), Equation (10) becomes

ρ =
Σ11

Σ22

= const ⇒ ρ = ku

with

k =

{
k1

k2

}
, u =

{(
uN1

1 − uM1
) (
W 1 + uM1

)(
uN2

2 − uM2
) (
W 2 + uM2

)}
(11)

In the above equation, the displacement components uN1
1 and uN2

2 are prescribed

values for node Nj. The displacement components of node M at each increment can be
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calculated through Equation (6). Note that, in Equation (11), we can tune the values of

k and u to maintain ρ constant using the method described below.

Numerical calculations suggested uM1 and uM2 were very small quantities, i.e. uMj �
W j. Hence, we controlled u ≈ −1 or 1 (depending upon the state of stresses) via pre-

scribing very large values to uN1
1 and uN2

1 (uN1
1 =uN2

2 ). Therefore, a constant triaxiality

could be maintained by maintaining a constant k. In the numerical simulations, the

kinetic energy of the system was maintained at less than 5% of its internal energy to

ensure that the process was quasi-static. The ABAQUS Standard solver is not subject to

convergence issue for all cases. Hence, the current methodology using ABAQUS Explicit

solver was compared with ABAQUS Standard solver results for possible cases without

any convergence issues. The results are presented in APPENDIX B, which shows that

the two methodologies are comparable.

Under the principle stretches, the macroscopic logarithmic strain tensor E0 and rate

of deformation Ė0 read

E0 = E11ê1 ⊗ êl + E22ê2 ⊗ ê2 + E33ê3 ⊗ ê3 (12)

Ė0 = Ė11ê1 ⊗ ê1 + Ė22ê2 ⊗ ê2 + Ė33ê3 ⊗ ê3 (13)

where the components of the two tensors can be calculated as:

Eii =
1

Ω

∫
Ω

εiidΩ = lnλi, Ėii =
1

Ω

∫
Ω

ε̇iidΩ =
1

λi
λ̇i (14)

where εii (i = 1, 2, 3) denotes the microscopic logarithmic strain within the RVE.

Next, we consider strain inside the shear band. At the current configuration, the aver-

aged logarithmic strain inside the band of thickness H at an angle θ , with respect to

coordinate x1 (Figure 4 (a)), is equal to the sum of uniform strain in remote area plus

the additional strain associated with additional band displacements ∆1 and ∆2 under the

local coordinates ξi (∆̂ = ∆1t̂+∆2n̂). The averaged logarithmic strain rate tensor within

the band Ėb can be written as:

Ėb = Ė0 +

(
1− Ωb

Ω

)(
∆̇1

H
t̂ +

∆̇2

H
n̂

)
⊗ n̂ = f

(
λ̇1, λ̇2, ∆̇1, ∆̇2, θ

)
(15)

The following method was employed to calculate Ėb in the simulations. Let Ωb denote

the volume of a shear band at the deformed configuration, see Figure 4 (a). The averaged

logarithmic strain rate tensor in the band can be described as:

Ėb = Ėb
ij êi ⊗ êj (16)
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with the components of the tensor calculated as:

Ėb
ij =

1

Ωb

∫
Ωb

ε̇bijdΩ (17)

where ε̇bij denotes the microscopic logarithmic strain rate within the band. The for-

mation of localization in lattice structures is difficult to visualize due to the presence of

randomly distributed defects in a large domain. To calculate εbij and visualize band strain,

the nodal displacements at joints of FCC truss lattices were extracted from the detailed

FE solutions and used as the input to create a continuum plot of the displacement field

using 2D triangular solid elements. The microscopic strain tensor inside the band can be

calculated using the finite element formulation described in APPENDIX C.

The accumulated equivalent logarithmic strain within the band and far field can be

defined by Hill’s equivalent strain [36] (APPENDIX A), given as

Eeq =

√
1

FH + FG+GH

[
(F +H) (E11)2 + 2H (E11E22) + (G+H) (E22)2]+

2 (E12)2

I
(18)

where F,G,H, and I are material constants which characterize the degree of anisotropy.

The ratio between the equivalent strain within the band Eb
eq and macroscopic equivalent

strain Eeq plays an important role in the identification of failure mechanisms, i.e.

Eb
eq/Eeq = φ

(
λ̇1, λ̇2, ∆̇1, ∆̇2, θ

)
(19)

The additional band displacements ∆1,∆2 and shear band angle θ would vanish if no

localization takes place in lattice structure.

3.1. Failure mechanisms criterion

Macroscopic localization occurs when parts of a lattice in a band plastically deform

while remote regions remain elastic. This criterion is used to identify localization of the

structure, i.e. (1) when Eb
eq/Eeq increases exponentially, the onset of localization occurs;

and (2) when Eb
eq/Eeq exceeds the threshold value of 10 the onset of coalescence occurs

[18]. Figure 5 is a schematic plot of the evolution of strain inside a localization band with

respect to the remote strain. Mechanisms 1, 2, and 3 are crushing/shear band formation

and failure is by crushing/shear band formation, where Eb
eq/Eeq increases exponentially.

In case of failure dictated by onset of coalescence the value of Eb
eq/Eeq starts at a higher

than the threshold value and failure occurs owing to Mechanism 4. In Mechanism 5 the

value of Eb
eq/Eeq increase monotonically above the threshold as Eeq increases.
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Figure 5: Schematic diagram of evolution of normalized equivalent band strain against equivalent remote
strain

3.2. Finite element model

The struts of the FCC truss lattice metamaterials (Figure 2) have been modelled as

2 -node Timoshenko-beam element (B21 in ABAQUS notation) with rigid connections

between struts. In the numerical simulations, each strut is modelled as a uniform circular

cross sectioned solid bar of diameter d, with equal length and height (l = h) for perfect

lattice. The relative density ρ of the FCC unit cell truss lattice material (ratio of the

density of the lattice material to the density of the solid material from which it is made)

is given by

ρ = (1 +
√

2)
(π

2

)(d
l

)
(20)

The strength of a stretch dominated lattice structure with 10% relative density is three

times stronger than to an equivalent bending dominated foams [37, 38]. Thus, the value of

the relative density was taken as 0.10 (d = 0.528 mm, l = 20 mm) for our investigation,

taking manufacturability of the minimum strut diameter into consideration [39]. Numer-

ical tests have suggested that converged results can be achieved with each strut meshed

with 5 beam elements of equal length. Failure events, such as first localization and void

coalescence, have been observed to occur at small strains (< 0.01), and the struts have

not been found to be in contact during deformation. Hence, contact among struts owing

to large deformation has not been modelled. Further numerical studies have suggested

that distorted struts have negligible effect on the relative density and for lattices with

missing struts, a constant relative density has been achieved by a slight increase in the

diameter of the struts.
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3.3. Material model

The Ramberg-Osgood model, Equation (21), was used to represent the true stress-

strain relationship of the material in the numerical study, as illustrated in Figure 6 [40].

ε =
σ

E
+ α

(
σ

σy

)n
(21)

where E = 71300 MPa and σy = 168 MPa are parent material’s Young’s modulus

and yield stress respectively; α = 0.002 is the yield offset and n = 9.9 is the harden-

ing exponent. This material model is suitable to capture the mechanical behaviour of

aerospace-grade lightweight aluminum alloys such as AlSi10Mg alloy.

Figure 6: Stress strain curve of the parent material with failure strain (εf = 0.08) used for the FE
analysis

To study failure mechanisms, the local tensile strain (LTS) criterion was employed

in the numerical study. Materials such as high strength aluminum alloys fail due to

shear localization when the maximum tensile strain is reached, hence the LTS criterion

is appropriate for this study. Rosenthal et al. [40] showed elongation at failure varied

between 8-9% for AlSi10Mg specimens manufactured using LPBF. Hence, it is assumed

that when the maximum tensile strain in a lattice reaches a failure strain of εf = 0.08,

failure occurs, and the simulation is terminated. It is noted that material damage has

not been considered in the above-mentioned constitutive model.

3.4. Representative volume element (RVE)

An RVE should contain sufficient unit cells to be representative of the bulk mechanical

behaviour and lattice failure mechanisms but be minimized to prevent excessive compu-

tational cost. Cohen et al. [41] stated that equilibrium solutions in the non-linear regime

are not unique, and therefore the response of a truss lattice can depend significantly on

the RVE size. To predict the non-linear behaviour of a truss lattice structure, several
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(a) (b)

Figure 7: (a) Strain energy density convergence plot verses number of unit cells in RVE with 30%
distorted and 10% missing lattices at Eeq = 0.01 and simulation time verses unit cells under uniaxial
tension, and (b) strain energy density as a function of equivalent strain for RVE containing 60× 60 unit
cells, with 30% distorted struts and 10% missing struts, under uniaxial tension and pure shear.

RVEs comprising increasing number of unit cells must be numerically tested until con-

vergence is obtained. Therefore, numerical simulations were conducted to evaluate the

effect of the size of RVE. The increase in computational time with respect to increase in

number of unit cells is shown in 7 (a). The strain energy densities under uniaxial tension

with equivalent strain Eeq = 0.01 were calculated for the RVEs containing 15×15, 30×30

and 60× 60 unit cells with two types of defect; 30% distorted and 10% missing struts, as

shown in Figure 7 (a). During the simulations, all the lattices and their respective imper-

fections were generated using the algorithm described in Section 2 with 20 repetitions.

The results suggest that (i) the strain energy density for the RVE containing 60 × 60

unit cells can converge to within 5% deviation; (ii) the variation of strain energy density

for distorted imperfection is much less than that of missing struts imperfection for RVEs

containing 15×15 and 30×30 unit cells. Figure 7 (b) shows the strain energy density as a

function of equivalent strain for the RVE containing 60×60 unit cells with 30% distorted

struts and 10% missing struts, under uniaxial tension and pure shear. Again, the results

confirm the convergence of strain energy density for the RVE containing 60 × 60 unit

cells. Henceforth, all the numerical simulations have been carried out using the RVE

containing 60× 60 unit cells.

4. Results and discussion

4.1. Effect of imperfections on failure locus

Figure 8 (a) shows the failure loci of FCC truss lattice metamaterials under multiaxial

loadings obtained by FE simulations. Four quadrants of the failure loci have been plotted

for the perfect, 15% distorted and 5% missing struts lattices, respectively. The lattices

were subjected to (1) biaxial tension in the first quadrant, (2) biaxial compression in the
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third quadrant and (3) combination of tension and compression loadings in the second and

fourth quadrants. The failure loci are approximately symmetrical about the line where

triaxiality T = −0.67 and T = 0.67. It is evident that lattice imperfection significantly

reduces the failure stress within the first quadrant; whereas the effect of imperfection

is less pronounced in the other quadrants. In the first quadrant Σ11 ≥ 0,Σ22 ≥ 0, the

failure stress of the perfect lattice is significantly higher than the imperfect lattices as

there is not any arbitrary change in load path and, hence, no localization occurs. In the

second quadrant, Σ11 ≤ 0,Σ22 ≥ 0, the failure mechanisms of crushing band and shear

band (Mechanisms 1, 2, 3, and 4) dictate failure for all types of lattices, resulting in an

insignificant impact on the failure strength between the different lattices. In the third

quadrant, Σ11 ≤ 0,Σ22 ≤ 0 and triaxiality T < −0.2, the perfect and imperfect lattices

all fail owing to the formation of a crushing band (Mechanism 1) under compression; this

shows that, both the stress triaxiality and initial imperfections have significant effects on

the failure mechanisms in other quadrants. Figure 8 (b) shows two distinct functional

relations between triaxiality T and stress ratio ρ, i.e., Σ22 > 0 and Σ22 < 0. In the

following sections, our discussion will focus on the failure mechanisms in the first and

second quadrants owing to the symmetric nature of the failure loci: this corresponds to

the scenarios with T ∈ [−0.2, 0.67] and Σ22 > 0.

(a) (b)

Figure 8: (a) Failure locus of perfect and imperfect lattice structures and (b) stress triaxiality verses
stress ratio taken for numerical simulations.

4.2. An illustrative example - pure shear loading (T = 0)

In this section the mechanical response and failure mechanisms are discussed for var-

ious different lattice cases; a perfect lattice and imperfect lattices with distorted strut

defects (15% and 30%) and missing struts (5% and 10%), subjected to a constant triaxi-

ality (Σ11 = −Σ22, T = 0, pure shear loading). Results will be presented for the effect of

stress triaxiality in later sections.
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(a) (b)

(c) (d) (e)

Figure 9: Failure mechanisms comparison of lattices under pure shear (a) variation of normalized macro-
scopic stress against equivalent remote strain of perfect and imperfect lattices; (b) evolution of normalized
equivalent band strain against equivalent remote strain of perfect and imperfect lattices; (c), (d) and
(e) equivalent strain continuum plots of RVE, when the maximum strain reached (εf = 0.08) for prefect,
30% distorted and 10% missing strut lattices, respectively.
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Figure 9 (a) shows the normalized effective stress as a function of remote equivalent

strain, Eeq, for perfect and imperfect lattices. The perfect lattice has the highest load

carrying capacity and ductility. The missing strut defects cause the lattice to fail at much

lower effective strains and lower stresses than the corresponding lattices with distorted

strut defects. Figure 9 (b) shows the normalized equivalent band strain, Eb
eq/Eeq, as a

function of the remote equivalent strain, Eeq, for the perfect lattice and imperfect lattices

with selected imperfections. The failure points of the lattices are marked as ‘filled circle’

on the curves. The failure mechanisms of the perfect lattice, imperfect lattices with the

30% distorted strut defects and the 10% missing strut defects are shown in Figures 9

(c) to (e), respectively. Equivalent strain continuum plots are shown, as well as detailed

views of the failed areas. To calculate equivalent strain, the nodal displacements at the

joints of the FCC truss lattices were extracted from the FE solutions and used as inputs to

calculate strain at each integration point, using 2D triangular solid elements (APPENDIX

C). There is no shear localization in the perfect lattice and failure occurs due to crushing

band formation (Mechanism 1) under compressive stress (Σ11 = −Σ22) with the maximum

normalized equivalent band strain less than 5. Strain localization occurred in the lattices

with the 15% and 30% distorted strut and missing strut imperfections, respectively. For

the 10% missing struts lattices, the normalized equivalent band strain is around 10 at

the onset of shear band formation (Figure 9 (b)), which suggests that void coalescence

dictates the start of macroscopic localization (Mechanism 4). For the imperfect lattices

with 15%, 30% distorted struts and 5% missing struts, the normalized equivalent band

strains are less than 5 before the onset of shear band formation (Figure 9 (b)), which

suggests that the strain localization is not dictated by the onset of coalescence.

4.3. The effect of stress triaxiality on failure localization

The effect of triaxiality on failure mechanisms is investigated in this section through

comparison of the behaviour of (1) a perfect lattice and imperfect lattices with 15%

distortion (Figure 10 (a)) and 5% missing struts (Figure 10 (b)); (2) imperfect lattices

with 15% and 30% distortion (Figure 10 (c)); and (3) imperfect lattices with 5% and

10% missing struts (Figure 10 (d)). In these figures, the normalized equivalent band

strain, Eb
eq/Eeq, is plotted as a function of the remote effective strain, Eeq. To facilitate

interpretation of the results, Figures 11 and 12 show the continuum plots and details

of the failed areas for the imperfect lattices with 15% distortion and 5% missing strut

imperfections, respectively, at selected triaxialities.

Perfect lattice - For triaxialities T ≤ 0, the perfect lattice has a high normalized equiv-

alent band strain which shows failure due to crushing band formation under compression.

For triaxialities T > 0, the perfect lattice tends to fail at very high macroscopic strain

and does not show any strain localization dominated failures.

15% distorted lattice - For the 15% distorted strut lattice, the maximum normalized
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equivalent band strain is higher or close to 10 at triaxialities T < 0, which signifies the

occurrence of strain localization. As shown in Figure 11 (a) at triaxiality T = −0.2,

the lattice fails owing to crushing band formation (Mechanism 1). A band of localized

high strain can be seen in both the continuum plot and detailed beam element figure.

It can also be observed that from Figures 11 (b) and (c) (triaxialities T = −0.1 and

0), the structure fails due to shear band localization (Mechanism 2). From triaxialities

T > 0, strain localization does not occur, and multiple high equivalent strain areas can

be observed (Figures 11 (d), (e) and (f)).

5% missing struts - For all triaxialities, the 5% missing strut lattices (Figure 10 (b))

show failure occur due to strain localization. The normalized equivalent band strain

is less than 5 before onset of the shear band formation, which suggests that the strain

localization is not dictated by the onset of coalescence (i.e. Mechanism 3). At triaxiality

T = −0.2 (Figure 12 (a)), compressive loading pre-dominates, and lattice struts fail owing

to crushing band formation (Mechanism 1). At triaxialities T = −0.1, 0 and 0.1 (Figures

12 (b) to (d)), shear strain localization (Mechanism 3) becomes noticeable. At triaxiality

T = 0.4, the normalized equivalent band strain does not increase exponentially and strain

localization is dictated by the cluster localization (Figure 12 (e), Mechanism 5) and at

triaxiality T = 0.67, the normalized equivalent band strain is below the threshold value

hence no localization occurs (Figure 12 (f)).

30% distorted lattice - For triaxiality T < 0, the failure mechanisms for the 30%

distorted lattice are similar to those of the 15% distorted lattices (Figure 10 (c)) i.e.

Mechanisms 1 and 2. For triaxiality 0 ≤ T ≤ 0.4, the maximum normalized equivalent

band strain for the 30% distorted lattice is much higher than that for the 15% distorted

lattice, which indicates strain localization dominated failure. At triaxiality T = 0.67,

strain localization does not occur, and multiple high equivalent strain areas form, as with

the 15% distorted lattice.

10% missing struts - The 10% missing struts lattice fails on the formation of a crushing

band at triaxiality T = −0.2. For triaxialities T = −0.1, 0 and 0.2, the normalized

equivalent band strains are higher than 10 before onset of the strain localization (Figure

10 (d)), which suggest that void coalescence dictates the onset of strain localization

(Mechanism 4). For triaxialities T = 0.4 and 0.67, the normalized equivalent band

strains do not increase exponentially, and the maximum normalized equivalent band

strains are more than 10, which suggests that the strain localization is dictated by the

cluster localization (Mechanism 5).

It can be seen from the above that lattice imperfections affect the onset of localization

effects, leading to lattice failure. Failure, therefore, involves a number with transition

points between mechanisms, which are discussed further in APPENDIX D.
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(a) (b)

(c) (d)

Figure 10: Evolution of equivalent band strain with varying triaxiality from −0.2 to 0.67. Comparison
for (a) perfect vs 15% distorted struts, (b) perfect vs 5% missing struts, (c) distorted struts 15% vs 30%
and (d) missing struts 5% vs 10%
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(a) (b)

(c) (d)

(e) (f)

Figure 11: 15% distorted lattices at the point of failure illustrating failure mechanisms on continuum
and lattice level at triaxiality (a) T = −0.2, (b) T = −0.1, (c) T = 0.0, (d) T = 0.2, (e) T = 0.4 and (f)
T = 0.67

4.4. Effects of size parameter on mechanical response and onset of localization

To explore the significance of dimensional inaccuracy of FCC truss imperfect lattices

on mechanical response and localization, we have studied two variants of diameter of

struts 0.5d and 1.5d. For brevity, the responses of the imperfect lattices with the 15%

distorted struts and 5% missing struts subjected to different triaxiality at constant relative

density are shown in Figure 13. In Figures 13 (a) and (c), the normalized effective stress

response, Σeq/σy, is plotted against effective remote strain, Eeq, for the 15% distorted

and 5% missing lattices, respectively. The response graph shows that, irrespective of the

size of struts, the maximum load bearing capacity of the imperfect lattices does not show

significant difference at equal relative densities. Figure 13 (b) shows the strain localization

with varying triaxiality for the 15% distorted lattice. The normalized equivalent band

strain curves for both strut diameters follow the same path and fail at nearly the same

points. At triaxiality T = −0.2, 0.5d lattice fails owing to Mechanism 1 and 1.5d fails

owing to Mechanism 2. For rest of the triaxialities (T > −0.2), the failure mechanisms

are again not sensitive to the size of the struts. Again, the failure mechanisms of 5%

missing lattice are not much affected by the strut diameter (Figure 13 (d)).
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(a) (b)

(c) (d)

(e) (f)

Figure 12: 5% missing lattices at the point of failure illustrating failure mechanisms on continuum and
lattice level at triaxiality (a) T = −0.2, (b) T = −0.1, (c) T = 0.0, (d) T = 0.2, (e) T = 0.4 and (f)
T = 0.67

4.5. Effect of triaxiality on band orientation

Figure 14 shows the variations of band orientation with triaxiality for the imperfect

lattices. Figure 14 (a) is a typical example for the 5% missing struts lattice, showing band

orientation under pure shear loading (T = 0), and Figure 14 (b) is a band orientation

verses triaxiality plot for all types of defect. Band orientation can be divided into three

subgroups where the imperfect lattices show a correlation between band orientation and a

particular failure mechanism. The band orientation angles are greater than 60° for failure

associated with crushing band or void coalescence induced failure. An orientation range

30° to 60° is associated with failure Mechanisms 2, 3 and 4. A band orientation of 0° is

associated with those cases where there is no localized shear banding or cluster coales-

cence. The lattices with 15% distorted struts showed high variability and dependency on

triaxiality of band orientation. The band orientation trend for the 30% distorted lattice

is close to that of the 5% missing struts lattice and shows a linearly decreasing trend.

5. Conclusion

A novel numerical framework has been developed to investigate the various different

failure mechanisms seen in perfect and imperfect planar FCC truss lattice metamaterials

under different conditions of stress triaxiality, for the first time. It is seen that the
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(a) (b)

(c) (d)

Figure 13: Macroscopic mechanical responses of the lattice with 15% distortion (a) and the lattice with
5% missing struts (c); and evolution of equivalent band strain for the lattice with 15% distortion (b) and
the lattice with 5% missing struts (d) at 0.5d and 1.5d.

mechanical response and mechanisms leading to failure are highly dependent on the state

of stress triaxiality, the type and quantity of defects. In order to help understand these

dependencies a classification of failure mechanisms were introduced, as shown in Figure 3.

The relationships between defect type, triaxiality and failure mechanisms are summarized

below.

• For triaxiality T ≤ −0.2, crushing band dominated failure (Mechanism 1) occurs

for all lattices, while for triaxiality −0.2 < T ≤ 0, only the perfect lattice fails due

to Mechanism 1. At triaxiality −0.2 < T ≤ 0, the 15% distorted lattices show

shear band localization (Mechanism 2), while at triaxiality T > 0 they do not show

any localization. However, the 30% distorted lattice is more inclined towards shear

band localization dominated failure mechanisms (Mechanism 2).

• The 5% and 10% missing strut lattices exhibit a variety of different failure mech-

anisms dependent on loading scenario. The 10% missing struts lattice tends to

fail early owing to void coalescence (Mechanism 4) and the 5% missing struts lat-

tice fails owing to shear band localization (Mechanism 3). For triaxiality T > 0.2,
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(a) (b)

Figure 14: (a) Shear band orientation of 5% missing struts defects at T=0 and (b) triaxiality affecting
shear band orientation as per type of defects.

Mechanism 5 and/or no localization are observed, independent of the number of

missing struts in this range.

• The severity of onset of localization and coalescence shows dependence on lattice

defect type: missing type defects are more prone to localization compared to dis-

torted defects. It is shown that a higher percentage distribution of irregularity gives

higher normalized band strain.

• The response of the lattices is not sensitive to strut diameter variations within the

range of the strut diameters.

• Failure associated with void coalescence has a wider range of band orientation than

seen with the other failure mechanisms, with a band orientation in the range of 30°
to 60°.

Note that in this study we have assumed that the failure of RVE occurs when the maxi-

mum failure strain is reached for any strut within the RVE. Further research is needed to

consider the effect of the parent material damage and any defect interaction effects when

multiple types and sizes of effect are present.
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Appendix A.

Plastic collapse surface and effective stress-strain for rigid perfect FCC truss lattices

The theoretical framework to construct continuum constitutive model for octet-truss

lattice materials were provided by [42]. The same methodology is being used to obtain

elastic properties of FCC truss lattice. The FCC unit cell along with its unit vectors is

sketched in Figure A.1. Let N define the linear transformation that relates macroscopic

strains to microscopic strains under small strain deformation. The components of N can

be determined by the components of tensor for the strut member, i.e.

Figure A.1: FCC unit cell and its unit vectors

{N}ij =


{
n

(i)
0 ⊗ n

(i)
0

}
jj
, for j = 1, 2{

n
(i)
0 ⊗ n

(i)
0

}
12
, for j = 3

(A.1)

where unit vector n
(i)
0 is aligned with the initial direction of the longitudinal axis of

the strut. The macroscopic strain vector, E = [E11, E22, 2E12], and microscopic strain

vector, ε = [ε(1), ε(2), ε(3), ε(4), ε(5), ε(6), ε(7), ε(8)] can be summarized as:

ε = NE (A.2)

The macroscopic stress vector, Σ = [Σ11,Σ22,Σ12], can be written using transpose of

localized strain matrix in the form of microscopic stress vector,

σ =
[
σ(1), σ(2), σ(3), σ(4), σ(5), σ(6), σ(7), σ(8)

]
:

Σ = c0N
Tσ (A.3)
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At macroscale, the elastic stress-strain relationship can be given as:

Σ = KE, or E = K−1Σ (A.4)

where K is the symmetric macroscopic stiffness tensor of the lattice material and is

given as:

K = Ec0N
TN (A.5)

where c0 is the diagonal matrix consisting volume fractions of each struts and E is

elastic modulus of the parent material.

Table A.1: Components n(i)1 and n(i)2 of ith unit vectors n(i) of individual beam members within unit
cell

n
(1)
0 n

(2)
0 n

(3)
0 n

(4)
0 n

(5)
0 n

(6)
0 n

(7)
0 n

(8)
0

n
(i)
1 1/

√
2 1/

√
2 1/

√
2 1/

√
2 1 0 1 0

n
(i)
2 1/

√
2 1/

√
2 −1/

√
2 −1/

√
2 0 1 0 1

Components of unit vector of unit cell are given in Table A.1 and from this stiffness

tensor of FCC truss lattice can be given as

K =

 K11 K12 K13

K21 K22 K23

K31 K32 K33

 = E

 0.0354 0.0146 0

0.0146 0.0354 0

0 0 0.0146

 (A.6)

From Equations (A.2) to (A.5) at microscale under elastic limit stress tensor can be

rewritten as:

σ = NK−1Σ (A.7)

Figure A.2 shows the effects of imperfection on macroscopic stiffness for 20 different RVE

resolutions using the method described in Section 2. Kij and K∗
ij denote the components

of the microscopic stiffness tensor defined in Equation (A.7), for the perfect and imperfect

lattices, respectively. The percentage differences have been calculated against the perfect

lattice. As the irregularity increases in lattice structures, there are up to 7% decrease in

elastic modulus, and up to 14% increase in shear modulus for distorted defects, whereas

no significant changes have been observed in elastic modulus for missing strut defects.

A perfect FCC truss lattice exhibits in-plane orthotropic material behaviour, i.e. K13 =

K31 = 0, K23 = K32 = 0. Figures A.2 (c) and (d) show the variations of K∗
13 and K∗

23

normalized by K11, which suggests that defects can only incur small variations of K∗
13

and K∗
23. As K∗

13 = K∗
31 and K∗

23 = K∗
32, the results confirm that the material remains

in-plane orthotropic after incorporating the defects.

This microscopic stress equation has been used to establish plastic yielding of struts.
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(a) (b)

(c) (d)

Figure A.2: Macroscopic elastic and shear modulus variation due to defects in FCC truss lattices (a) for
distorted struts, (b) for missing struts, and orthotropic material properties variation due to defects in
FCC truss lattices, (c) for distorted struts, and (d) for missing struts with respect to perfect lattice.
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We will calculate plastic collapse surface of the FCC truss lattice under combination

of multiaxial loadings and proceed to establish a Hill’s model-based calculation of the

equivalent plastic strain.

Plastic collapse surface

In the analytical solution we have assumed that the struts are pin-jointed and made from

rigid, ideally plastic material. The accuracy of analytical solution has been validated

using FE calculations. In the FE analysis each uniform cylindrical strut has been mod-

elled by 50 Timoshenko beam elements (B21 element in ABAQUS) and has equal length

in horizontal and vertical direction. The strength of stretch dominated lattice structure

with 10% relative density shows three times stronger than the foam compared to bend-

ing dominated foams [37, 38]. Hence the value of relative density has been taken as

0.10 for our investigation [39]. The material was assumed to be elastic-plastic following

RambergOsgood Equation (21) with hardening exponent n = 100 during FE calcula-

tions. The FE simulations has been terminated when local strut stress reaches yield

stress σy = 168MPa of parent material. The macroscopic collapse stress is calculated

from Equation (A.7) equating microscopic stress to yield stress.

To calculate the yield surface under the combination of Σ11 and Σ22, Equation (A.7) was

employed with Σ12 = 0, i.e.

σ(1) = σ(2) = σ(3) = σ(4) = 10Σ11 + 10Σ22 = |σy|
σ(5) = σ(7) = 34Σ11 − 14Σ22 = |σy|
σ(6) = σ(8) = −14Σ11 + 34Σ22 = |σy|

(A.8)

Similarly, to calculate yield surface under pure shear (Σ11 = Σ22 = 0,Σ12 6= 0), i.e.

σ(1) = σ(2) = 34Σ12 = |σy|
σ(3) = σ(4) = −34Σ12 = |σy|
σ(5) = σ(6) = σ(7) = σ(8) = 0

(A.9)

where σ(i) is local axial stress of ith strut shown in Figure A.1. The macroscopic yield

stresses were calculated for a variety of proportional stress paths and plotted in the

relevant stress space to give the plastic collapse surface. The plastic collapse surface

under combinations of applied stress (Σ11,Σ22) obtained from Equations (A.8) and (A.9)

has been plotted in Figure A.3.

The FE calculations has been included in Figure A.3 shows good agreement with analyt-

ical solution. Note that plastic collapse of FCC truss lattices is driven by horizontal and

vertical struts in this space, which has also been observed in FE calculations.

Anisotropic plastic strain

In this section we will use Hill’s generalization of von Mises yield criterion for materials

with anisotropic property. With respect to the principal axes of anisotropy, Hill’s yield
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Figure A.3: Comparison between the analytical, FE and Hill’s yield criterion predictions of plastic
collapse surface

criteria have the form:

Φ ≡ Σ2
eq − 1 = 0 (A.10)

where the applied macroscopic stress is characterized by the equivalent stress measure

given by for 2-dimensional space [43]:

Σeq =
√

(G+H)Σ2
11 + (F +H)Σ2

22 − 2HΣ11Σ22 + 2IΣ2
12 (A.11)

In above equation F,G,H, and I are material constants which characterize the degree of

anisotropy and can be expressed as [36]:

F = (σy)2

2

[
1

(Σy
22)

2 + 1

(Σy
33)

2 − 1

(Σy
11)

2

]
G = (σy)2

2

[
1

(Σy
33)

2 + 1

(Σy
11)

2 − 1

(Σy
22)

2

]
H = (σy)2

2

[
1

(Σy
11)

2 + 1

(Σy
22)

2 − 1

(Σy
33)

2

]
I = 3(σy)2

2(Σy
12)

2

(A.12)

From Equations (A.8) and (A.9) one can calculate uniaxial and shear yield strengths

(Σy
11,Σ

y
22,Σ

y
12) with respect to material principal axes. The out of plane yield strength

has been taken as Σy
33 = 0.1σy (0.1 is the relative density of FCC truss lattice) to cal-

culate material constants. Equation (A.11) has been plotted in Figure A.3 and shows a

reasonably good agreement with analytical and FE solutions under combination of ten-

sion and compression. However, it dramatically overestimates the yield surface under

biaxial tension and compression. The Hill’s criterion has been explored in this paper to

show FCC truss lattice anisotropic behaviour and to establish equivalent plastic strain
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equation for anisotropic material. From these parameters we can calculate equivalent

plastic strain of an anisotropic material, using work conjugation given as [36]:

Eeq =

√
1

FH + FG+GH

[
(F +H) (E11)2 + 2H (E11E22) + (G+H) (E22)2]+

2 (E12)2

I
(A.13)

The above equation has been extensively used to quantify localization and coalescence in

this paper.

Appendix B.

Results comparison - ABAQUS Standard vs. Explicit solver

For constant triaxiality, stress ratio equation for ABAQUS Standard solver can be written

from Equation (11) as:

ρ =
Σ11

Σ22

= const ⇒
(
uN1

1 − uM1
) (
W 1 + uM1

)
d(

uN2
2 − uM2

) (
W 2 + uM2

)
d

= ρ

OR

uN1
1 = uM1 + ρ

(
W 2 + uM2

)(
W 1 + uM1

) (uN2
2 − uM2

) (B.1)

Note that above equation is independent of spring constants and uN2
2 is a prescribed value.

For the simulation, we have taken spring constant ki equals to 10−7×E×W1 (E is parent

material’s Young’s modulus). ABAQUS Standard calculates three unknows quantities

uM1 , u
M
2 and uM2 using MPC (multi-point constraints) user sub-routine, iteratively. Figure

B.1 shows that results obtained through explicit solver are comparable with standard

solver for triaxiality T = 0.4 and 0.66.

Appendix C.

Continuum level FEA modelling of beam elements

The nodal displacement vectors were extracted from ABAQUS and these displacement

vectors have been used as input for 2D triangular solid elements. Then strains have been

mapped using the second order Gauss-Quadrature method which can be expressed as:

Ee = Beae (C.1)

where ae is nodal vector of the element subjected to displacement components u1 and u2,
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Figure B.1: Stress ratio comparison obtained via ABAQUS Standard and Explicit solvers

and Be is derivatives of shape function given by:

Be =


∂Ne
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· · · 0 ∂Ne

en

∂x2
∂Ne

1

∂x2

∂Ne
1

∂x1

∂Ne
2

∂x2

∂Ne
2

∂x1
· · · ∂Ne

en

∂x2

∂Ne
en

∂x1

 (C.2)

where nen is the number of nodes of one element and N e is the elemental shape function

of the respective nodes. The strain components at Gauss points inside the band is used to

calculate the average equivalent strain using Equation (A.13). To evaluate out of plane

strain field, we have used standard mechanics approach within RVE. The relationship

between the average strain of a triangular element and beam elements connected to the

vertices of the triangular element can be expressed as:

Ee
33 =

3∑
i=1

ciε
i
33 (C.3)

Similarly, for RVE the out of plane strain can be written as:

ERV E
33 =

N∑
j=1

cjE
e
33 (C.4)

where ci and cj are volume fractions of the ith beam element and the jth triangular

element respectively; N the total number of the triangular elements and εi33 the out of

plane strain for the ith beam element which can be calculated using volume conservation.

30



Appendix D.

Effect of imperfection on onset of localization and lattice failure

Figures D.1 (a) and (b) show the normalized equivalent band strain Eb
eq/Eeq as a function

of triaxiality T , at the instants of onset of localization and final failure, respectively, under

the triaxiality range −0.2 ≤ T ≤ 0.67 (Σ22 > 0), for perfect and imperfect lattices.

There are three zones that can distinguish the failure mechanisms: Zone I (T ≤ −0.2)

represents compressive loading dominated behaviour, Zone II (−0.2 < T < 0.2) the shear

loading dominated behaviour, and Zone III the tensile loading dominated behaviour.

In Zone I (T ≤ −0.2), crushing band dominated failure mode occurs for all lattices. The

normalized equivalent band strains are lowest compared to other failure mechanisms at

onset of localization (Figure D.1 (a)); however, all types of lattice structures fail at much

higher normalized equivalent band strain because of crushing band compared to other

types of failure mechanisms (Figure D.1 (b)).

The perfect lattice – The normalized equivalent band strain for perfect lattices is around

∼ 1 at onset of localization (Figure D.1 (a)); and at all triaxialities, the perfect lattice

shows independency for onset of localization. In Figure D.1 (b), the perfect lattice shows

continuous decrease in band strain. The crushing band formulation shows higher band

strain at time of failure and after triaxiality T ≥ 0, localization does not occur resulting

in a flattened curve.

(a) (b)

Figure D.1: Value of normalized equivalent band strain at onset of localization and (b) at the point of
failure as a function of triaxiality

Distorted lattices– For the 15% distorted lattice, the normalized equivalent band strains

are not changing substantially through all triaxialities (Figure D.1 (a)). This indicates

that the onset of localization is nearly independent of triaxiality for the 15% distorted

lattices. The 30% distorted lattice shows Mechanism 2 dominated failure for triaxiality

0 ≤ T ≤ 0.4, and they are more inclined to shear band formulation compared to 15%

distorted lattices. At triaxiality T = 0.67, multiple high equivalent strain areas form,
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as the same as the 15% distorted lattice but at a higher equivalent band strain due to

higher degree of irregularity. Hence, from Zone II to Zone III the normalized band strain

is increasing continuously (Figure D.1 (a)). Figure D.1 (b) shows the decreasing trend

in normalized equivalent band strain at the time of failure, which indicates that crushing

band shows maximum band strain followed by shear band localization at the time of

failure. Like perfect lattices, for triaxiality T > 0, localization does not occur, resulting

in a flattened curve for the 15% distorted lattice. The trend of 30% distorted lattice is

the same as the 15% distorted lattice albeit at higher maximum normalized equivalent

band strain, which implies dependency of degree of irregularity on the final failure.

Missing lattices – From Figure D.1 (a), the 5% missing lattice shows that, in Zone I and

Zone II, the normalized equivalent band strains are not changing substantially at onset of

localization, indicating that the onset of localization is independent of triaxiality. In Zone

III the normalized equivalent band strain increases due to void coalescence dominated

failure (Mechanisms 5). For the 10% missing lattice, from Zone I to Zone II, the band

strains at onset of localization increase owing to the change from failure Mechanism 1 to

Mechanism 4. The slight decrease in normalized equivalent band strain at triaxiality T =

0.67 (biaxial tension) represent the absence of shear band and failure dictated by cluster

coalescence only (Mechanism 5). For all triaxialities, for the 10% missing lattices, the

strain localization occurs at higher normalized equivalent band strain compared to the 5%

missing lattices. Thus, the number of missing struts is crucial for the strain localization.

In Figure D.1 (b), the 10% missing lattice shows that the maximum normalized equivalent

band strain is higher than 5% missing lattice at the time of final failure. It shows that

the 10% missing lattices are more prone to crushing band (Mechanism 1) and shear band

(Mechanism 4) formulation compared to 5% missing lattices before final failure occurs.

In Zone III, the changes in number of missing struts show no significant difference, which

signifies that failure Mechanism 4 and Mechanism 5 are nearly independent of number of

missing struts in this range.
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