
Model-based rate-distortion optimized video-based point 

cloud compression with differential evolution 

Abstract. The Moving Picture Experts Group (MPEG) video-based point cloud 

compression (V-PCC) standard encodes a dynamic point cloud by first convert-

ing it into one geometry video and one color video and then using a video coder 

to compress the two video sequences. We first propose analytical models for the 

distortion and bitrate of V-PCC, where the models’ variables are the quantization 

steps used in the encoding of the geometry and color videos. Unlike previous 

work, our analytical models are functions of the quantization steps of all frames 

in a group of frames. Then, we use our models and an implementation of the 

differential evolution algorithm to efficiently minimize the distortion subject to a 

constraint on the bitrate. Experimental results on six dynamic point clouds show 

that, compared to the state-of-the-art, our method achieves an encoding with a 

smaller error to the target bitrate (4.65% vs. 11.94% on average) and a slightly 

lower rate-distortion performance (on average, the increase in Bjøntegaard delta 

(BD) distortion is 0.27, and the increase in BD rate is 8.40%). 

Keywords: point cloud compression, rate-distortion optimization, rate control, 

bit allocation, differential evolution. 

1 Introduction 

A static point cloud is a representation of a three-dimensional object, where in addi-

tion to the spatial coordinates of a sample of points on the surface of the object, attrib-

utes such as color, reflectance, transparency, and normal direction may be used. A dy-

namic point cloud consists of several successive static point clouds. Each point cloud 

in the sequence is called a frame. Point clouds are receiving increased attention due to 

their potential for immersive video experience applications such as virtual reality, aug-

mented reality, and immersive telepresence. 

To get a high-quality representation of a three-dimensional object as a point cloud, 

a huge amount of data is required. To compress point clouds efficiently, the Moving 

Picture Experts Group (MPEG) launched in January 2017 a call for proposals for point 

cloud compression technology. As a result, two point cloud compression standards are 

being developed: video-based point cloud compression (V-PCC) [1] for point sets with 

a relatively uniform distribution of points and geometry-based point cloud compression 

(G-PCC) [2] for more sparse distributions. In this paper, we focus on V-PCC for dy-

namic point clouds. In V-PCC, the input point cloud is first decomposed into a set of 

patches, which are independently mapped to a two-dimensional grid of uniform blocks. 

This mapping is then used to store the geometry and color information as one geometry 

video and one color video. Next, the generated geometry video and color video are 

compressed separately with a video coder, e.g., H.265/HEVC [3]. Finally, the geometry 

and color videos, together with metadata (occupancy map for the two-dimensional grid, 
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auxiliary patch, and block information) are multiplexed to generate the bit stream (Fig. 

1). In the video coding step, compression is achieved with quantization, which is deter-

mined by a quantization step or, equivalently, a quantization parameter (QP). 

 

 

Fig. 1. V-PCC encoder reference model [1]. 

Given a dynamic point cloud consisting of 𝑁 frames, an optimal encoding can be 

obtained by determining for each frame 𝑖 (𝑖 = 1, … 𝑁) the geometry quantization step 

𝑄𝑔,𝑖 ∈ {𝑞0, … , 𝑞𝑀−1} and colour quantization step 𝑄𝑐,𝑖 ∈ {𝑞0, … , 𝑞𝑀−1} that minimize 

the distortion subject to a constraint 𝑅𝑇 on the total number of bits. This can be formu-

lated as the multi-objective optimization problem  

min
𝑸𝑔,𝑸𝑐

 [𝐷𝑔(𝑸𝑔, 𝑸𝑐), 𝐷𝑐(𝑸𝑔, 𝑸𝑐)]                                        (1) 

𝑠. 𝑡.     𝑅(𝑸𝑔, 𝑸𝑐) ≤ 𝑅𝑇 , 

where 𝑸𝑔 = (𝑄𝑔,1,𝑄𝑔,2,…,𝑄𝑔,𝑁 ),  𝑸𝑐 = (𝑄𝑐,1,𝑄𝑐,2,…,𝑄𝑐,𝑁 ), 𝐷𝑔(𝑸𝑔, 𝑸𝑐) is the geometry 

distortion, 𝐷𝑐(𝑸𝑔, 𝑸𝑐) is the color distortion, and 𝑅(𝑸𝑔, 𝑸𝑐) is the total number of bits. 

Here 𝐷𝑔(𝑸𝑔, 𝑸𝑐) =
1

𝑁
∑ 𝐷𝑔,𝑖

𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐)  and 𝐷𝑐(𝑸𝑔, 𝑸𝑐) =

1

𝑁
∑ 𝐷𝑐,𝑖

𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐),where 𝐷𝑔,𝑖(𝑸𝑔, 𝑸𝑐)  and 𝐷𝑐,𝑖(𝑸𝑔, 𝑸𝑐) are the geometry and color 

distortions of the 𝑖th frame, respectively. Similarly, 𝑅(𝑸𝑔, 𝑸𝑐)=∑ 𝑅𝑔,𝑖
𝑁
𝑖=1 (𝑸𝑔, 𝑸𝑐) +

𝑅𝑐,𝑖(𝑸𝑔, 𝑸𝑐), where 𝑅𝑔,𝑖(𝑸𝑔, 𝑸𝑐)  and 𝑅𝑐,𝑖(𝑸𝑔, 𝑸𝑐) are the number of bits for the ge-

ometry and color of the 𝑖th frame, respectively. In practice, problem (1) is scalarized as 

follows.   

  

min
𝑸𝑔,𝑸𝑐

 [𝐷(𝑸𝑔, 𝑸𝑐) = 𝜔𝐷𝑐(𝑸𝑔, 𝑸𝑐) + (1 − 𝜔)𝐷𝑔(𝑸𝑔, 𝑸𝑐)]               (2) 

𝑠. 𝑡.     𝑅(𝑸𝑔, 𝑸𝑐) ≤ 𝑅𝑇 , 

where 𝜔 ∈ [0,1] is a weighting factor that sets the relative importance of the geometry 

and color distortions. As the number of possible solutions is 𝑀2𝑁, solving the problem 

with exhaustive search is not feasible when 𝑀 or 𝑁 is large as the computation of the 

distortion and the number of bits requires encoding and decoding the point cloud, which 

is very time consuming. In this paper, we solve the rate-distortion optimization problem 

(2) by first developing analytical models for the distortion and bitrate and then applying 

a metaheuristic based on differential evolution (DE) [4] to the analytical models. There 
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is a need for new models as the existing ones [5,6,7] are not suitable for the rate-distor-

tion optimization problem (2). Note also that the V-PCC standard does not give any 

solution to problem (2). In the latest MPEG V-PCC test model [8], for example, the 

QPs for geometry and color are selected manually: one chooses the QPs of the first 

frame, and the QPs of the following frames are set according to some fixed rules (e.g., 

by increasing the QPs of the first frame by 3 for the low delay configuration).  

2 Related Work 

 Only a small number of works [5,6,7] have proposed rate and distortion models for 

point cloud compression. In [5], the focus is on the point cloud library (PCL) platform 

[9] for the compression of static point clouds. This platform uses an octree decomposi-

tion for geometry compression and JPEG for color compression. Analytical models that 

describe the relationship between the encoding parameters (the maximum octree level 

and the JPEG quality factor) and the color distortion 𝐷𝑐 and bitrate 𝑅 are derived with 

statistical analysis. Let 𝐿 be the maximum octree level and let 𝐽 be the JPEG quality 

factor. The color distortion is modeled as 𝐷𝑐 = 𝑠𝐽𝑝𝐿𝑞 , where 𝑠, 𝑝, 𝑞 are model parame-

ters. On the other hand, the bitrate is modeled as ln 𝑅 = 𝑎𝐿𝐽 + 𝑏𝐿 + 𝑐, where 𝑎, 𝑏, 𝑐 are 

model parameters. Then, the models are used to formulate the rate-distortion optimiza-

tion problem as a constrained optimization problem, and an interior point method is 

applied to solve it. In [6], a similar approach is applied to V-PCC for dynamic point 

clouds. First, distortion and rate models for the geometry information and color infor-

mation are derived as follows: 𝐷𝑔 = 𝛼𝑔𝑄𝑔,1 + 𝛿𝑔 , 𝐷𝑐 = 𝛼𝑐𝑄𝑐,1 + 𝛽𝑐𝑄𝑔,1 + 𝛿𝑐 , 𝑅𝑔 =

𝛾𝑔𝑄𝑔,1

𝜃𝑔
, 𝑅𝑐 = 𝛾𝑐𝑄𝑐,1

𝜃𝑐 , where 𝛼𝑔, 𝛿𝑔, 𝛼𝑐 , 𝛽𝑐 , 𝛿𝑐 , 𝛾𝑔, 𝜃𝑔, 𝛾𝑐 , 𝜃𝑐 are model parameters. Then, 

an interior point method is used to minimize the weighted sum of the distortions subject 

to a constraint on the total number of bits. One limitation of this work is that the distor-

tion and rate models are functions of the quantization steps of the geometry and color 

information of the first frame only. Thus, these models are only suitable when the quan-

tization steps of the following frames are set according to the default settings of the V-

PCC test model and are not appropriate for the general rate-distortion optimization 

problem (2). In [7], a point cloud is partitioned into seven regions such that the first six 

regions correspond to the six patches with the largest area in the six projection planes, 

and the seventh region consists of all other patches. Then, the geometry and color quan-

tization steps corresponding to each region are optimized separately using the analytical 

models in [6].  

3 Rate and Distortion Models 

In this section, we propose new analytical distortion and rate models for V-PCC. For 

both the geometry distortion and color distortion, we used the symmetric point-to-point 

distortions based on the mean squared error (MSE) [10]. Moreover, for the color infor-

mation, we considered only the Y (luminance) component. To compute the actual val-

ues of the distortion and bitrate, we used V-PCC test model (TMC2V12) [8], where the 
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encoder settings were modified such that the QPs of the frames can be chosen arbitrar-

ily. Note that TMC2V12 relies on the HEVC Test Model Version 16.20 (HM16.20) 

[11] to compress the geometry and color videos. In HEVC, the set of QPs is {0, … ,51}, 
which corresponds to quantization steps {0.625, … ,224}. We encoded four frames of 

the point cloud using the low delay configuration with group of pictures (GOP) struc-

ture IPPP. 

Table 1. Dependency between the first frame and the second frame for the basketballplayer 

point cloud. Encoding is with the low delay configuration of [4]. 

𝑄𝑔,1 𝑄𝑔,2 𝐷𝑔,1 𝐷𝑔,2 𝑅𝑔,1 𝑅𝑔,2 𝑄𝑐,1 𝑄𝑐,2 𝐷𝑐,1 𝐷𝑐,2 𝑅𝑐,1 𝑅𝑐,2 

11 11 0.306637 0.320112 126160 97880 11 11 0.000147568 0.000146696 657056 520040 

14 11 0.348734 0.316439 103632 101040 14 11 0.00015884 0.0001459 490024 544440 

18 11 0.418704 0.323274 92360 108104 18 11 0.000174033 0.00014684 368144 562112 

22 11 0.504359 0.334045 74720 113936 22 11 0.000189179 0.000147952 280640 575800 

28 11 0.620279 0.309088 64576 119544 28 11 0.000209897 0.000145801 214840 604040 

18 18 0.418704 0.434988 92360 70112 18 18 0.000174033 0.000172132 368144 263520 

22 18 0.504359 0.446426 74720 72096 22 18 0.000189179 0.000170755 280640 274608 

28 18 0.620279 0.447552 64576 76344 28 18 0.000209897 0.000170923 214840 298392 

36 18 0.824124 0.442594 53760 81296 36 18 0.00023497 0.00017086 164272 314856 

44 18 1.05653 0.441371 46240 87352 44 18 0.000268242 0.000170745 127312 330416 

28 28 0.620279 0.63062 64576 48088 28 28 0.000209897 0.000207024 214840 135616 

36 28 0.824124 0.671394 53760 49208 36 28 0.00023497 0.000209702 164272 145872 

44 28 1.05653 0.673557 46240 54880 44 28 0.000268242 0.000210265 127312 163088 

56 28 1.388 0.67004 39520 59568 56 28 0.000312829 0.000210444 100992 176344 

72 28 1.79778 0.647573 34480 64152 72 28 0.000366755 0.000208479 80304 188928 

44 44 1.05653 1.03645 46240 31152 44 44 0.000268242 0.000269072 127312 69952 

56 44 1.388 1.11769 39520 34504 56 44 0.000312829 0.000278791 100992 78960 

72 44 1.79778 1.14647 34480 38784 72 44 0.000366755 0.000274503 80304 91600 

88 44 2.33344 1.13333 29840 42840 88 44 0.000436296 0.000269361 64464 103600 

112 44 3.21416 1.12562 26240 46504 112 44 0.000526625 0.000267529 51088 112536 

 

3.1 Distortion Models 

In [6], the geometry distortion 𝐷𝑔 and color distortion 𝐷𝑐 are modeled as functions 

of the geometry and color quantization steps of the first frame (𝑄𝑔,1,and 𝑄𝑐,1 , respec-

tively) according to  

{
𝐷𝑔 = 𝛼𝑔𝑄𝑔,1 + 𝛿𝑔

𝐷𝑐 = 𝛼𝑐𝑄𝑐,1 + 𝛽𝑐𝑄𝑔,1 + 𝛿𝑐 ,
                                        (3) 

where  𝛼𝑔, 𝛿𝑔, 𝛼𝑐, 𝛽𝑐, and 𝛿𝑐 are model parameters. In this paper, we extend this model 

by including the quantization steps of all frames. For simplicity, we assume that the 

number of frames 𝑁 is equal to 4. To study the effect of the quantization in the first 

frame on the distortion in the second frame, we fixed the quantization steps of the sec-

ond frame and varied those of the first frame. Table 1 shows that the effect of the quan-

tization step of the first frame on the distortion of the second frame is very small for 
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both geometry and color. We observed the same phenomenon for the other frames. 

Consequently, we propose the following distortion models for the 𝑖th frame 

{
𝐷𝑔,𝑖 = 𝛼𝑔,𝑖𝑄𝑔,𝑖 + 𝛿𝑔,𝑖         

𝐷𝑐,𝑖 = 𝛼𝑐,𝑖𝑄𝑐,𝑖 + 𝛽𝑐,𝑖𝑄𝑔,𝑖 + 𝛿𝑐,𝑖 ,
                                     (4)  

where  𝛼𝑔,𝑖, 𝛿𝑔,𝑖, 𝛼𝑐,𝑖, 𝛽𝑐,𝑖, and 𝛿𝑐,𝑖 are model parameters. The overall distortion is then 

modeled as 

𝐷=
1

4
(∑ 𝜔𝐷𝑔,𝑖 + (1 − 𝜔)𝐷𝑐,𝑖)

4
𝑖=1                                       (5) 

                         
3.2 Rate Models 

As the number of bits of the first frame is only determined by its own quantization 

steps (𝑄𝑔,1, 𝑄𝑐,1), it can be modeled as in [6]  

{
𝑅𝑔,1 = 𝛾𝑔,1𝑄𝑔,1

𝜃𝑔,1

𝑅𝑐,1 = 𝛾𝑐,1𝑄𝑐,1

𝜃𝑐,1
                                                 (6) 

where 𝛾𝑔,1, 𝛾𝑐,1, 𝜃𝑔,1, and 𝜃𝑐,1 are model parameters. To obtain the rate model for the 

second frame, we first ignore the impact of the first frame on the second frame and use 

the basic model  

{
𝑅𝑔,2 = 𝛾𝑔,2𝑄𝑔,2

𝜃𝑔,2

𝑅𝑐,2 = 𝛾𝑐,2𝑄𝑐,2

𝜃𝑐,2
                                                 (7) 

where 𝛾𝑔,2, 𝛾𝑐,2, 𝜃𝑔,2, and 𝜃𝑐,2 are model parameters. However, Table 1 shows that the 

number of bits of the second frame increases when the quantization steps of the first 

frame increase. To take this dependency into account, we update the model as  

{
𝑅𝑔,2 = (𝜑𝑔,(1,2) ∙ 𝑄𝑔,1 + 1)𝛾𝑔,2𝑄𝑔,2

𝜃𝑔,2

𝑅𝑐,2 = (𝜑𝑐,(1,2) ∙ 𝑄𝑐,1 + 1)𝛾𝑐,2𝑄𝑐,2

𝜃𝑐,2
                                  (8) 

where 𝜑𝑔,(1,2) and 𝜑𝑐,(1,2) are the impact factors of the first frame on the second frame. 

Similarly, we first assume that the number of bits of the third and fourth frames are 

independent of the quantization steps of the other frames and model them as   

{
𝑅𝑔,3 = 𝛾𝑔,3𝑄𝑔,3

𝜃𝑔,3

𝑅𝑐,3 = 𝛾𝑐,3𝑄𝑐,3

𝜃𝑐,3
                                                   (9) 

       {
𝑅𝑔,4 = 𝛾𝑔,4𝑄𝑔,4

𝜃𝑔,4

𝑅𝑐,4 = 𝛾𝑐,4𝑄𝑐,4

𝜃𝑐,4
                                                 (10) 

where 𝛾𝑔,3, 𝛾𝑐,3, 𝜃𝑔,3, 𝜃𝑐,3, 𝛾𝑔,4, 𝛾𝑐,4, 𝜃𝑔,4, and 𝜃𝑐,4 are model parameters. Then we up-

date the models as  

                      {
𝑅𝑔,3 = ∏ (𝜑𝑔,(𝑖,𝑖+1) ∙ 𝑄𝑔,𝑖 + 1)2

𝑖=1 𝛾𝑔,3𝑄𝑔,3

𝜃𝑔,3

𝑅𝑐,3 = ∏ (𝜑𝑐,(𝑖,𝑖+1) ∙ 𝑄𝑐,𝑖 + 1)2
𝑖=1 𝛾𝑐,3𝑄𝑐,3

𝜃𝑐,3
                            (11) 
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{
𝑅𝑔,4 = ∏ (𝜑𝑔,(𝑖,𝑖+1) ∙ 𝑄𝑔,𝑖 + 1)3

𝑖=1 𝛾𝑔,4𝑄𝑔,4

𝜃𝑔,4

𝑅𝑐,4 = ∏ (𝜑𝑐,(𝑖,𝑖+1) ∙ 𝑄𝑐,𝑖 + 1)3
𝑖=1 𝛾𝑐,4𝑄𝑐,4

𝜃𝑐,4
                    (12)       

where 𝜑𝑔,(𝑖,𝑖+1) and 𝜑𝑐,(𝑖,𝑖+1) (𝑖 = 2,3) are the impact factors of the 𝑖-th frame on the 

(𝑖 + 1)-th one. Finally, we use (6), (8), (11) and (12) to build the rate model as 

𝑅=∑ 𝑅𝑔,𝑖
4
𝑖=1 + 𝑅𝑐,𝑖. 

 
3.3 Model Parameters 

To determine the parameters of the distortion models, we first encode the point cloud 

for three different sets of quantization steps (𝑸𝑔, 𝑸𝑐) and compute the corresponding 

actual distortions and number of bits for each frame. Next, we solve the resulting system 

of equations to find 𝛼𝑔,𝑖, 𝛿𝑔,𝑖, 𝛼𝑐,𝑖, 𝛽𝑐,𝑖, 𝛿𝑐,𝑖 (𝑖 = 1, … ,4). To determine the parameters 

of the rate models, we encode the point cloud for eight more sets of quantization steps 

and use linear regression in (7), (9), and (10) to estimate the parameters 𝛾𝑔,𝑖 , 𝜃𝑔,𝑖 , 

𝛾𝑐,𝑖 ,  𝜃𝑐,𝑖  ( 𝑖 = 1, … ,4) . Finally, the impact factors 𝜑𝑔,(1,2) , 𝜑𝑔,(2,3) , 𝜑𝑔,(3,4) , 𝜑𝑐,(1,2) 

𝜑𝑐,(2,3), and 𝜑𝑐,(3,4), are empirically set to   

{

𝜑𝑔,(1,2) = 𝜑𝑐,(1,2) = 0.004

𝜑𝑔,(2,3) = 𝜑𝑐,(2,3) = 0.0015

𝜑𝑔,(3,4) = 𝜑𝑐,(3,4) = 0.0010.
                                   (13) 

 

Table 2 shows the QP settings used to compute the parameters of the distortion and

 rate models.   

Table 2. QP settings to determine the model parameters 

Model parameters 𝑄𝑃𝑔,1 𝑄𝑃𝑔,2 𝑄𝑃𝑔,3 𝑄𝑃𝑔,4 𝑄𝑃𝑐,1 𝑄𝑃𝑐,2 𝑄𝑃𝑐,3 𝑄𝑃𝑐,4 

𝛼𝑔,1, 𝛿𝑔,1; 𝛼𝑔,2, 𝛿𝑔,2; 𝛼𝑔,3, 𝛿𝑔,3; 𝛼𝑔,4, 𝛿𝑔,4; 

𝛼𝑐,1, 𝛽𝑐,1, 𝛿𝑐,1; 𝛼𝑐,2, 𝛽𝑐,2, 𝛿𝑐,2; 𝛼𝑐,3, 𝛽𝑐,3, 

𝛿𝑐,3; 𝛼𝑐,4, 𝛽𝑐,4, 𝛿𝑐,4 

30 30 30 30 40 40 40 40 

36 36 36 36 30 30 30 30 

38 38 38 38 28 28 28 28 

𝛾𝑔,1, 𝜃𝑔,1; 𝛾𝑐,1, 𝜃𝑐,1; 

𝛾𝑔,2, 𝜃𝑔,2; 𝛾𝑐,2, 𝜃𝑐,2; 

𝛾𝑔,3, 𝜃𝑔,3; 𝛾𝑐,3, 𝜃𝑐,3; 

𝛾𝑔,4, 𝜃𝑔,4; 𝛾𝑐,4, 𝜃𝑐,4 

30 30 30 30 40 40 40 40 

36 36 36 36 30 30 30 30 

38 38 38 38 28 28 28 28 

17 25 33 41 17 25 33 41 

33 25 33 41 33 25 33 41 

17 41 33 41 17 41 33 41 

17 25 49 41 17 25 49 41 

19 24 29 34 19 24 29 34 

34 24 40 37 34 24 40 37 

27 41 37 45 27 41 37 45 

27 17 37 45 27 17 37 45 
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4 Optimization 

To solve the rate-distortion optimization problem (2), we apply a DE variant to the 

analytical models derived in Section 3. Unlike the standard DE algorithm, this variant 

decreases the crossover rate with time and uses a random scaling factor. The decrease 

in crossover rate at runtime increases the exploitation pressure at the end of the run 

[12]. The randomization of the scaling factor is motivated by the experimental obser-

vation that a certain degree of randomization is beneficial [12].  

 The details of the implemented algorithm are as follows. A candidate solution 

(agent) for problem (2) is denoted by 𝒙 = (𝑸𝑔, 𝑸𝑐) = (𝑥1, 𝑥2, … , 𝑥2𝑁).  

• Choose a population size 𝑁𝑃, an interval 𝐼 for the scaling factor, and a number 

of iterations 𝑛.  

• Build a population of 𝑁𝑃 agents 𝒙(1) ,…,  𝒙(𝑁𝑃) such that each component 

𝑥𝑖
(𝑗) , 𝑖 = 1, … ,2𝑁; 𝑗 = 1, … , 𝑁𝑃, is randomly chosen in the set of quantiza-

tion steps {𝑞0, … , 𝑞𝑀−1} and 𝑅(𝒙(𝑗)) ≤ 𝑅𝑇 for 𝑗 = 1, … , 𝑁𝑃.  

• FOR  𝑘 = 1 to 𝑛 

o If 𝑘 <
2

3
𝑛   set the crossover rate to 𝐶𝑅 = 0.9   otherwise, set 

𝐶𝑅 = 0.1  
▪ FOR 𝑗 = 1 to 𝑁𝑃 

Step 1: Select randomly from the population three different 

agents 𝒂, 𝒃, 𝒄 that are also different from 𝒙(𝑗) 

Step 2:  Select randomly an index  𝑟 such that 1 ≤ 𝑟 ≤ 2𝑁 

Step 3:  Compute a candidate new agent 𝒚(𝑗) as follows:    

▪ For each   𝑖 ∈  {1, … ,2𝑁} , choose a random num-

ber 𝑟𝑖 according to a uniform distribution in (0,1). 

Choose a scaling factor 𝑤 randomly in 𝐼.  

▪ If 𝑟𝑖 ≤ 𝐶𝑅  or 𝑖 = 𝑟,  then set 𝑦𝑖
(𝑗) = 𝑎𝑖 + 𝑤 ×

(𝑏𝑖 − 𝑐𝑖); otherwise, set 𝑦𝑖
(𝑗) = 𝑥𝑖

(𝑗)  

▪ If 𝑦𝑖
(𝑗) < 𝑞0, set 𝑦𝑖

(𝑗) =  𝑞0.  If 𝑦𝑖
(𝑗) >  𝑞𝑀−1, set 

𝑦𝑖
(𝑗) =  𝑞𝑀−1.  

Step 4: If 𝐷(𝒚(𝑗)) < 𝐷(𝒙(𝑗)) and 𝑅(𝒚(𝒋)) ≤ 𝑅𝑇 , note 𝑗.  

END FOR 

                          FOR 𝑗 = 1 to 𝑁𝑃, replace 𝒙(𝑗) by 𝒚(𝑗)  if 𝑗 was noted in Step 4.  

                           END FOR 

          END FOR  

• Select the agent from the population that gives the lowest distortion 𝐷 and 

round the components of this agent to the nearest values in the set 

{𝑞0, … , 𝑞𝑀−1}. 
 

Another way of solving problem (2) is to use conventional non-evolutionary con-

strained nonlinear optimization algorithms. However, when the problem is not con-

vex, such algorithms are only guaranteed to find local minima and are very sensitive 

to the starting point of the algorithm (see Section 5). 
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5 Experimental Results 

We first study the accuracy of the proposed distortion and rate models. The bitrates 

and distortions were computed for the quantization steps obtained as solutions of the 

optimization problem (2) for a given target bitrate. In the DE algorithm, the number of 

iterations and the size of the population were set to 200 and 50, respectively. The inter-

val 𝐼 was [0.1, 0.9]. As in Section 3, we used the symmetric point-to-point distortions 

and considered only the luminance component. The weighting factor 𝜔 in (2) was set 

to 
1

2
. To compute the actual distortion and bit rates, we used TMC2V12 [4] and encoded 

the first four frames of the point cloud for the IPPP GOP structure. Table 3 shows the 

results for six dynamic point clouds (longdress, redandblack, loot, soldier, queen, bas-

ketball-player) [13,14]. The bitrates are expressed in kilobits per million points 

(kbpmp). We observe that the bitrates and distortions computed by our models have a 

high squared correlation coefficient (SCC) and a low root mean squared error (RMSE) 

with the actual values computed by encoding and decoding point clouds. This shows 

that our models are accurate.  

Table 3. Accuracy of the proposed rate and distortion models. 

Point 

cloud 

Target 

bitrate 

Model 

bitrate 

Model 

distortion 

Actual 

bitrate  

Actual 

distortion 

SCC RMSE 

Rate 

model 

Distortion 

model 

Rate 

model 

Distortion 

model 

soldier 

65 65.21 30.52 63.21 30.59 

0.9976 0.9984 21.16 0.33 

125 125.04 18.76 123.71 18.78 

165 171.80 15.17 172.37 15.90 

210 205.38 13.57 224.01 13.45 

265 263.64 11.69 293.58 11.78 

365 355.23 9.94 393.14 10.22 

queen 

65 65.04 23.17 68.32 23.68 

0.9984 0.9977 5.64 0.45 

125 124.85 16.82 129.83 17.40 

165 171.66 14.89 170.03 15.52 

210 207.36 14.00 204.68 14.41 

265 265.68 13.00 272.96 13.15 

365 356.95 12.07 366.55 12.09 

loot 

65 66.87 12.72 65.85 13.18 

0.9967 0.9989 24.72 0.24 

125 128.59 7.67 128.69 7.78 

165 168.82 6.37 177.53 6.55 

210 200.39 5.70 223.29 5.72 

265 265.51 4.81 282.94 5.01 

365 366.18 4.05 418.73 4.28 

basket-

ball-

player 

30 30.20 12.34 27.72 12.07 

0.9980 0.9988 6.27 0.13 

65 66.81 7.64 57.45 7.74 

125 128.62 5.79 120.93 5.81 

165 168.45 5.31 161.44 5.30 

210 209.84 5.00 206.07 4.94 
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265 265.31 4.72 269.77 4.63 

redand

black 

90 88.74 19.47 84.38 19.81 

0.9844 0.9974 52.28 0.55 

180 181.99 11.06 160.63 11.30 

270 272.13 8.70 260.27 8.41 

360 364.78 7.55 341.36 7.19 

480 484.93 6.70 516.77 5.96 

640 647.51 6.08 766.76 5.14 

long-

dress 

180 176.09 49.78 162.63 47.25 

0.9980 0.9990 24.52 1.40 

270 268.93 38.66 251.10 37.42 

360 364.74 33.00 350.09 31.96 

480 489.00 28.85 487.61 28.03 

640 639.86 25.83 681.42 24.62 

840 850.50 23.33 884.63 22.60 

Average 0.9955 0.9984 22.43 0.51 

Table 4. Bit allocation accuracy and BD [15] performance. 

Point  

cloud 

Target 

bitrate 

[6] 
BE 

Proposed 
BE 

BD 

distortion 
BD bitrate 

Bitrate Distortion Bitrate  Distortion 

soldier 

65 68.60 27.34 5.54% 63.21  30.59  2.75% 

0.79 21.68% 

125 124.95 18.08 0.04% 126.51  19.12  1.21% 

165 163.37 15.14 0.99% 174.36  15.56  5.67% 

210 222.28 12.67 5.85% 213.68  13.69  1.75% 

265 296.15 10.91 11.75% 275.48  11.87  3.95% 

365 414.56 9.51 13.58% 375.18  10.20  2.79% 

queen 

65 59.87 24.36 7.90% 70.16  23.66  7.93% 

0.85 7.9% 

125 121.09 17.02 3.13% 125.39  17.59  0.32% 

165 162.14 15.29 1.73% 172.79  15.45  4.72% 

210 204.88 14.18 2.44% 204.68  14.41  2.54% 

265 254.58 13.34 3.93% 267.73  13.22  1.03% 

365 404.43 12.14 10.80% 366.50  12.09  0.41% 

loot 

65 62.26 12.60 4.22% 65.26  12.95  0.41% 

0.22 9.11% 

125 136.61 7.15 9.29% 129.43  7.81  3.54% 

165 190.11 5.88 15.22% 177.57  6.53  7.62% 

210 195.26 5.78 7.02% 209.90  5.80  0.05% 

265 265.31 4.99 0.12% 283.20  5.02  6.87% 

365 458.86 4.14 25.72% 409.71  4.32  12.25% 

basket-

ball-

player 

30 28.97 11.70 3.42% 27.72  12.07  7.61% 

-0.10 1.34% 

65 63.53 7.34 2.26% 60.72  7.50  6.58% 

125 149.71 5.41 19.77% 122.02  5.78  2.38% 

165 198.11 5.03 20.07% 161.42  5.32  2.17% 

210 276.95 4.62 31.88% 206.94  4.96  1.46% 

265 376.71 4.39 42.15% 265.79  4.64  0.30% 

redand

black 

90 84.86 18.99 5.71% 83.85  19.83  6.83% 

0.02 11.49% 

180 157.75 11.17 12.36% 162.06  11.24  9.97% 

270 269.82 8.08 0.07% 253.76  8.47  6.01% 

360 348.28 6.94 3.25% 361.63  7.02  0.45% 

480 598.96 5.61 24.78% 520.08  5.93  8.35% 
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640 805.54 5.06 25.87% 737.76  5.19  15.28% 

long-

dress 

180 167.65 47.05 6.86% 157.70  48.20  12.39% 

-0.19 -1.11% 

270 307.27 33.70 13.81% 250.05  37.46  7.39% 

360 424.25 29.52 17.85% 348.55  31.90  3.18% 

480 597.98 26.07 24.58% 486.96  28.07  1.45% 

640 784.40 24.15 22.56% 665.42  24.99  3.97% 

840 1034.7 22.79 23.18% 890.33  22.66  5.99% 

Average 11.94%  4.65% 0.27 8.40% 

 

Table 4 compares the bit allocation accuracy of the proposed method to that of the 

method in [6]. The bit allocation accuracy is evaluated with the bitrate error (BE), which 

is defined as 

BE =
|𝑅𝑎𝑐𝑡𝑢𝑎𝑙−𝑅𝑡𝑎𝑟𝑔𝑒𝑡|

𝑅𝑡𝑎𝑟𝑔𝑒𝑡
× 100%,                                (12) 

where 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 and 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 are the actual bitrate computed by the method and the target 

bitrate, respectively. The largest BE for the method in [6] was 42.15% (basketball-

player, 265 kbpmp), while the largest BE for the proposed method was only 15.28% 

(redandblack, 640 kbpmp). Moreover, the average BE for the method in [6] was 

11.94%, while that of the proposed method was only 4.65%. Table 4 and Fig. 2 show 

that the rate-distortion performance of the proposed method is slightly lower than that 

of the method in [6].  

 
(a)                                                  (b)                                              (c) 

 
(d)                                                  (e)                                              (f) 

Fig. 2. Rate-distortion curves for the proposed DE-based method and the method in [6]. (a) sol-

dier, (b) queen, (c) loot, (d) basketballplayer, (e) redandblack, (f) longdress. 

Table 5 compares the time complexity of the proposed method to that of the method 

in [6]. The increase in the CPU time is mainly due to the pre-optimization step needed 

to determine the parameters of the models (11 encodings for the proposed method vs. 

three encodings for the method in [6]).  
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Table 5. CPU time of the method in [6] and DE. The time was measured on a laptop with a 

2.7 GHz i7-7500U processor and 8 GB RAM.  

      
Method Pre-optimization (s) Optimization (s) 

[6] 3 × 3600 1.42 

DE  11 × 3600 120 

Full Search 0 528 × 3600 

 

 

Fig. 3. Rate-distortion curves for the method in [6], the proposed DE-based method, and a solu-

tion based on the interior point optimization algorithm in [16]. The point cloud is queen. 

Finally, Fig. 3 illustrates how solving the optimization problem (2) with conven-

tional non-evolutionary constrained nonlinear optimization algorithms can lead to poor 

solutions. Here the MATLAB implementation of the state-of-the-art interior point 

method in [16] was used with the starting point (2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5). 

6 Conclusion 

We proposed analytical distortion and rate models for V-PCC that include the ge-

ometry and color quantization steps of all frames in a group of frames. Then, we used 

the models and a DE variant to efficiently select the quantization steps for a given target 

bitrate. Experimental results show that the proposed optimization technique allows a 

better rate control than the state-of-the-art. Rate control is critical in applications where 

the bandwidth is constrained. Our optimization technique can be easily extended to the 

case where the point cloud consists of more than one group of frames: we first deter-

mine the model parameters of the distortion and rate models for each group separately 

and then use DE to minimize the overall distortion subject to the constraint on the total 

number of bits. As further future work, we plan to apply our technique to GOPs of more 

than four frames and to the V-PCC random access configuration. 
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