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ABSTRACT 

Drug induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of 

the leading indications for liver transplantation in Western societies. Given the wide use 

of both prescribed and over the counter drugs, DILI has become a major health issue 

with a pressing need to find novel and effective therapies. Although significant progress 

has been made in understanding the molecular mechanisms underlying DILI, our 

incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to 

both discordance between human and animal DILI in preclinical drug development and 

a lack of models that faithfully recapitulate complex pathophysiological features of 

human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) 

overdose, a major cause ALF due to its extensive worldwide use as an analgesic.  

Despite intensive efforts utilizing current animal and in vitro models, the mechanisms 

involved in the hepatotoxicity of APAP are still not fully understood. In this expert 

Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury 

Network, we aim to facilitate and outline clinically impactful knowledge discovery by 

detailing the requirements for more realistic human-based systems to assess 

hepatotoxicity to guide future drug safety testing. We present novel insights and major 

players in APAP pathophysiology and describe emerging in vitro and in vivo pre-clinical 

models, as well as advanced imaging and in silico technologies, which may improve 

prediction of clinical outcomes of DILI including APAP hepatotoxicity. 
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1. Introduction 

Drug-induced liver injury (DILI) is an infrequent, multifaceted and potentially life-threatening adverse 

reaction to medications and other chemical compounds that represents one of the most challenging 

liver disorders with regards to its prediction, diagnosis and management[1-4]. Idiosyncratic DILI (iDILI) 

leads to hospitalization of 23% of affected individuals[5], accounting for 11% of acute liver failure 

(ALF) cases in advanced economies, with acetaminophen (paracetamol, APAP) overdose, the 

prototypical example of intrinsic, predictable DILI, representing 50% of all attributable ALF cases[6]. In 

addition, 8% of acute DILI cases remain unresolved[7]. As a consequence DILI jeopardizes patient 

safety and represents a major concern for regulatory measures, drug attrition during clinical 

development and a leading reason for drug withdrawal from the market. The treatment of iDILI is not 

evidence-based so far[8] and relies often on ad hoc treatment with steroids or ursodeoxycholic acid, 

particularly in more severe cases[9]. Only for very specific instances, such as APAP intoxication, N-

acetylcysteine has proven effective. Clinical aspects of DILI are covered in a recent review[1]. 

DILI pathogenesis is considered a multifactorial process involving several factors other than the 

generation of the toxic intermediate(s) from the parental drug metabolism, such as environmental, 

physiological and genetic factors as well as altered immunological responses. Thus, there is a need 

for the identification of mechanisms that contribute to DILI in order to develop protective/preventive 

therapeutic interventions[6, 10]. While some of these mechanisms are dose related, others derive 

from individual susceptibility to the toxic effects of a certain drug, leading to the classification of DILI 

as either intrinsic, which is considered predictable, reproducible and dose-dependent or idiosyncratic 

(iDILI), which is unpredictable and not necessarily dose-dependent. DILI covers a broad clinical and 

histological phenotypic spectrum, including hepatocellular damage, cholestasis, and acute steatosis, 

which are often detected late in Phase-III clinical trials or post-marketing. 

APAP hepatotoxicity is the archetypal model of DILI and probably the most relevant to human DILI, 

with billions of analgesic doses consumed annually. APAP hepatotoxicity in humans can be modeled 

in rodents after administration of an acute or cumulative overdose, often after fasting. However, 

despite intensive efforts, the mechanisms involved in the hepatotoxicity of APAP are not fully 
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understood, highlighting the imposed limitations of interspecies variability and differences in 

metabolism between humans and rodents, whilst existing in vitro hepatic cell systems based on 

human cell lines or rodent hepatocytes are sub-optimal. These factors have severely hampered pre-

clinical efforts to accurately predict DILI and to unravel hidden mechanisms that occur in vivo. 

In this review, we summarize the pathophysiology of DILI exemplified by the APAP paradigm, 

describing existing pre-clinical models for DILI. In addition, we assess emerging models, including the 

development of multi-parametric approaches and humanized models for better DILI prediction. 

Highlighting the utility of advanced technological integration and innovation to enhance phenotypic 

profiling that could lead to a better understanding of DILI. Future avenues are also explored including 

novel approaches in delineating mechanistic DILI and the utility of disruptive technologies, such as 

liver on-chip, to advance DILI prediction (Key Point 1). 

2. DILI Pathophysiology 

2.1. The APAP paradigm 

APAP-induced liver damage is characterized by hemorrhagic centrilobular necrosis and high plasma 

transaminases levels in both humans and animals[2, 10]. Although APAP is normally metabolized to 

its glucuronidated and sulphated non-toxic metabolites in the liver, APAP overdose saturates these 

pathways and excess APAP is metabolized mainly by cytochrome P450 (CYP) CYP2E1 but also by 

CYPA2, CYP2A6, CYP2D6 and CYP3A4 into the highly reactive metabolite N-acetyl-p-

benzoquinoneimine (NAPQI). This highly toxic byproduct is rapidly conjugated with glutathione (GSH) 

resulting in non-toxic mercapturic acid and cysteine conjugates that are excreted in the urine. In 

APAP overdose or in conditions of GSH limitation (e.g. fasting), free unconjugated NAPQI reacts with 

sulfhydryl groups on cysteine and lysine residues, generating adducts with proteins (APAP-protein 

adducts) in hepatocytes, and particularly in mitochondria, leading to mitochondrial dysfunction and 

cell death[11-13]. Despite being the most comprehensively studied and understood hepatotoxic drug, 

our understanding of the underlying mechanisms involved in APAP hepatotoxicity are still incomplete. 

Indeed, APAP can also elicit an idiosyncratic response in humans[2] and the use of APAP even at 

therapeutic doses can have deleterious effects[14, 15]. Although models of iDILI are lacking, it is 

postulated drug reactive metabolites may elicit an immune response in susceptible individuals[16]. 
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The complex and multifactorial nature of APAP hepatotoxicity extends to DILI itself. Clearly, there is 

an imperative need to develop more realistic human models to foster a better understanding of the 

mechanistic basis of DILI. In turn, improved models that allow more accurate prediction of pre-clinical 

DILI may help uncover effective therapeutic interventions (Key Point 2).  

2.2. Other DILI-causing drugs 

Besides APAP, other classes of drug such as nonsteroidal anti-inflammatory drugs (NSAIDs) and 

statins are important causes of DILI, although with a relatively low overall incidence rate. Some of the 

molecular and cellular mechanisms underlying NSAID-DILI have been identified: (i) Mitochondrial 

injury, (ii) Induction of cholestasis, (iii) Protein adduct formation by reactive drug metabolites, and (iv) 

Possible direct consequences of COX inhibition[17]. In isolated rat liver mitochondria Diclofenac 

decreases hepatic ATP content and impaired ATP synthesis causing mitochondrial permeability 

transition (MPT), leading to generation of reactive oxygen species (ROS), mitochondrial swelling and 

oxidation of NADP and protein thiols[18]. Besides diclofenac, indomethacin, celecoxib and ibuprofen 

NSAIDs can induce ER stress response-related proteins, particularly CHOP, leading to apoptosis 

[19]. 

Statins are generally well tolerated and adverse effects are relatively rare [20].  Mitochondrial 

dysfunction due to significant increase in ROS, causing lipid peroxidation as well as the inhibition of 

the respiratory chain (complex I and III) triggering apoptosis, may explain the mechanisms of statin-

induced hepatotoxicity[21]. 

3. Emerging Mechanisms and signaling cascades governing APAP hepatotoxicity 

APAP overdose has high clinical relevance as the primary cause of ALF in advanced economies and 

a major reason of liver transplantation and is regarded as a model hepatotoxin. In the following 

section we briefly summarize the role of major players that contribute to APAP-induced liver damage. 

A key question in the pathophysiology of DILI is how a toxin or its (reactive) intermediate metabolites 

trigger cell damage, which has been intensively investigated in the case of APAP. In this regard, cell-

specific (i.e. hepatocytes, immune cells) signaling cascades governing APAP hepatotoxicity have 
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attracted much attention since activation/inhibition of these pathways could be of pivotal importance in 

patients who do not respond to standard treatment (Key Point 3). 

3.1 MAPK family: c-Jun-N-terminal kinase (JNK) 

The c-Jun-N-terminal kinase (JNK) is a member of serine/threonine kinases that belong to the 

mitogen-activated protein kinases (MAPK) family, which has been shown to play a causal role in 

APAP hepatotoxicity by mediating an amplification loop in APAP-induced mitochondrial targeting and 

oxidative stress[22]. In the liver, two JNK genes, Jnk1 and Jnk2, are expressed[23]. Antagonizing JNK 

activation using the classical inhibitor SP600125 has protective effects against APAP-induced liver 

injury, by significantly reducing necrosis both in vivo and in vitro[24, 25]. Although SP600125 may 

have effects independent of JNK inhibition, combined Jnk1 and Jnk2 germ-line deletion or knockdown 

by antisense oligonucleotides in adult mice markedly protected against APAP hepatotoxicity[26]. In 

addition, simultaneous deletion of Jnk1 and Jnk2 in adult hepatocytes in Jnk1+2f/f mice following 

injection with an associated adenovirus expressing Cre recombinase driven by the hepatocyte-

specific promoter TBG (AAV-TBG-Cre) protected against APAP-mediated liver injury[27]. In contrast 

with these findings, a recent report in mice with hepatocyte-specific Jnk1 and Jnk2 deletion (JnkΔhepa) 

questioned the role of JNK in APAP-induced hepatotoxicity, as JnkΔhepa mice developed greater liver 

injury than wild-type animals after APAP overdose, suggesting a beneficial role for combined JNK1 

and JNK2 activation in hepatocytes [28]. Whilst the reasons underlying these opposing findings 

remains to be fully unraveled, in the latter study Jnk2 was globally deleted in all cell types 

and Jnk1 was specifically knocked down in hepatocytes but not in non-parenchymal cells, implying 

opposing roles for Jnk1 in different types of liver cells, as well as in infiltrating inflammatory cells..  

The specific contribution of JNK1 and JNK2 in DILI remains controversial. No differences in APAP 

hepatotoxicity in Jnk1 knockout mice were observed[26], despite a clear pro-apoptotic and 

profibrogenic function of Jnk1 in TNF-induced cell death[29], and in liver fibrosis[30]. Regarding Jnk2, 

increased susceptibility towards APAP, TNF and LPS-induced liver injury was reported upon Jnk2 

deficiency[31], whilst Jnk2 disruption protected against APAP-induced liver injury[26]. Recent findings 

have shown that both hepatocyte Jnk2 knockout, and knockdown ameliorated ibuprofen-mediated 
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DILI[32]. Recent investigations highlighted the critical role of immune cells in APAP-induced ALF, 

including activation of resident hepatic macrophages (Kupffer cells; KCs) following hepatocyte 

necrosis as well as massive CCR2‐dependent recruitment of monocytes[33].  

3.2 JNK activation factors  

Preclinical findings in constitutive and conditional knockout mice have shown that JNK can be 

activated by many factors, ranging from various pathogens and cytokines, including TGFβ, IL-1β an  

TNF to oxidative stress and DNA damage in both hepatocytes and infiltrating cells[22, 34]. 

Phosphorylation of JNK is mediated by MAP2Ks[35], which, in turn, are phosphorylated and activated 

by MAP3K. The best characterized MAP3Ks are the apoptosis signal-regulating kinase-1 (ASK1) and 

mixed-linage kinase 3 (MLK3). ASK1 participates in APAP-induced JNK activation[36], which is 

achieved by dissociation from thioredoxin-1 (Trx-1) (Figure 1). MLK3, a member of the Ser/Thr 

protein kinases family, mediates the initial phase of JNK activation[37]. GSK-3β is also in ol    in th  

early-phase of JNK activation. Inhibition of GSK-3β in mic  pr   nt   J K acti ation an  am liorat d 

APAP-derived toxicity[25]. The MAP2Ks (MKK4 and MKK7) are capable of phosphorylating JNKs at 

Thr/Tyr residues[38]. Furthermore, MKK4 activates both JNK and p38 kinases, while MKK7 only 

activates JNK. An additional player that contributes to sustained JNK phosphorylation in APAP 

hepatotoxicity is through impaired MAPK phosphatases (Mkp). Mkp deficiency in mice has been 

shown to exacerbate APAP-induced liver injury along with sustained JNK activation, while Mkp 

activation prevents JNK activation and subsequent APAP hepatotoxicity[39, 40]. 

3.3 JNK amplification loop 

Recent studies utilizing novel mouse liver models, a feedforward self-sustaining signaling pathway 

referred as the JNK amplification loop[41, 42] was reported to maintain sustained JNK activation, 

leading to liver damage and dysfunction in response to APAP. Activated JNK (p-JNK) translocates to 

mitochondria and binds to the Sab (SH3BP5) protein on the outer mitochondrial membrane[43, 44], 

impairing mitochondrial respiration and enhancing the release of ROS[45]. ROS release, in turn, 

activates ASK1 and MKK4, which sustains JNK activity and amplifies the toxic effect. The binding to 

the outer mitochondrial membrane of JNK via Sab further induces MPT, thus changing the 

permeabilization of the mitochondrial outer membrane and allowing the exit of molecules less than 
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1500 Da, including cytochrome c, apoptosis inducing factor (AIF) and endonuclease G[46]. Although 

release of cytochrome c and AIF is a hallmark of apoptosis by activating caspase 3/7 and leading to 

nuclear DNA cleavage, respectively, [47, 48](Figure 1), the major form of cell death in APAP toxicity 

is necrosis[49]. This may be due to the fact that the marked injury in the mitochondria and the 

pronounced reduction in ATP cannot sustain activation of the apoptosis cascade. It should be noted 

that currently, other less familiar modes of cell death including pyroptosis, necroptosis and ferroptosis 

with alternate mechanistic pathways are under active investigation as to their contribution to APAP 

hepatotoxicity[50]. Moreover, although autophagy is another form of cell death, it is considered a 

protective mechanism against APAP hepatotoxicity (see below). 

3.4 ER stress and mitochondrial cholesterol accumulation 

ER stress-mediated unfolded protein response (UPR) is an adaptive stress response resulting in 

accumulation of unfolded or misfolded proteins in the ER lumen[51]. ER stress can be detected late 

after APAP challenge (500 mg/kg) in murine models, and becomes highly significant 12 hrs following 

APAP administration[52].The ER stress response has three signaling arms: (i) Protein kinase RNA-

like ER kinase (PERK), (ii) Activating transcription factor 6 (ATF6), and (iii) Inositol-requiring enzyme 

1 α (IRE1 α). These pathways are maintained in an inactive state through binding to BIP in non-

stressed cells. Upon APAP-mediated ER stress, IRE1α, PERK and ATF6 become activated, 

triggering an inflammatory response and cell death mediated via ASK1 and JNK [52](Figure 1). 

However, in genetically deleted XBP1 mice, constitutive IRE1α hyperactivation in hepatocytes 

resulted in reduced JNK activation and protection from APAP through suppression of CYP450 

activity[53]. Recently, the steroidogenic acute regulatory protein (STARD1), a mitochondrial 

cholesterol transport protein, has been identified as a key player in ER-stress mediated DILI[27]. 

In this respect, STARD1 promotes cholesterol trafficking and accumulation in mitochondria, which in 

turn leads to mitochondrial GSH depletion and contributes to mitochondrial dysfunction, exacerbated 

ROS generation and necrotic cell death (Figure 2). An intriguing finding is the protection of mice with 

liver-specific STARD1 deletion despite preserved mitochondrial Sab/p-JNK activation, suggesting that 

the deleterious effect of p-JNK in mitochondrial dysfunction and hepatocyte cell death is dependent 

on STARD1[27]. In addition, hepatocyte-specific deletion of Sab or p-JNK1+2 was also protective 
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against APAP hepatotoxicity, preventing APAP-induced ER stress and subsequent STARD1 

upregulation. Further mechanistic studies utilizing human models and clinical samples (see below) will 

likely lead to confirmation of the molecular basis for the complimentary role of STARD1/mitochondrial 

cholesterol and the Sab/p-JNK axis in APAP hepatotoxicity - and the upstream events involved in p-

JNK1/2 induced ER stress. 

Furthermore, as mitochondrial dysfunction contributes to APAP hepatotoxicity, removal of damaged 

mitochondria through mitophagy has emerged as a critical mechanism in APAP-induced ALF[13]. 

Besides transcriptional regulation, autophagy can be also modulated by lysosomal lipid composition. 

Indeed, accumulation of lipids (e.g. cholesterol) in lysosomes has been shown to impair the fusion of 

autophagosomes (containing disrupted mitochondria) with lysosomes, contributing to perpetuation of 

damaged mitochondria, which sensitizes to APAP hepatotoxicity [54]. Thus, not only the generation of 

intermediates of APAP metabolism (e.g. NAPQI) acting directly in mitochondria can determine APAP 

hepatotoxicity, but secondary factors that delay mitochondria turnover via mitophagy can also 

contribute to APAP-induced liver failure. The latter can be of particular clinical relevance, in 

nonalcoholic steatohepatitis (NASH), which can potentiate DILI [55] (see Section 9). In fact, it has 

been previously reported that patients with NASH exhibit increased expression of STARD1 

[56], suggesting that a subset of patients with advanced nonalcoholic fatty liver disease (NAFLD) and 

enhanced free cholesterol content with STARD1 expression, may develop liver injury on APAP 

ingestion. 

In summary, it is clear that the JNK signaling pathway is a critical component in DILI, 

particularly in APAP pathogenesis. Since JNK differentially regulates important biologic targets, this 

cascade can be either beneficial or detrimental in different cells and tissues, and compensatory 

mechanisms need to be modulated or even, discarded. In addition, upstream or downstream 

pathways regulating the JNK-specific role in cell death during APAP hepatotoxicity are pivotal to 

developing new therapeutic interventions in patients with DILI. 

3.5 Other signaling pathways and mechanisms  

Apart from MAPK, other pathways have been reported to modulate APAP hepatotoxicity. Inhibition of 

protein Kinase C (PKC) prevents APAP hepatotoxicity via blocking ROS-mediated hepatic 
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necrosis[57]. The receptor interacting protein kinases (RIPKs) that modulate necroptosis is an 

intensive area of study with a controversial role in DILI. RIPK3-deficient mice were protected from 

early phase APAP toxicity, which also resulted in the prevention of ROS-JNK associated signaling[58]. 

In contrast, other studies found no evidence that RIPK3 or the pseudokinase MLKL participate in 

APAP-mediated injury[59]. Indeed, RIPK1 inhibition reversed APAP-induced JNK activation and liver 

damage, a possible mechanism associated with ASK1 and endoplasmic reticulum (ER) stress[36, 60]. 

As these studies used global RIPK1/3 deletion, conditional deletion in adult mice would be needed in 

order to unequivocally demonstrate the role of RIP1/3 in APAP hepatotoxicity. 

Liver sinusoidal endothelial cells (LSECs) form the wall of hepatic sinusoids, regulate 

hepatic vascular tone and contribute to the maintenance of a low portal pressure. LSECs help 

maintain hepatic stellate cell quiescence, and thus essentially inhibit intrahepatic vasoconstriction and 

fibrosis development. In line with their key role in hepatic homeostasis, LSECs play a key role in the 

initiation and progression of chronic liver disease and DILI [61]. Pioneering studies identified LSEC as 

a target for APAP toxicity[62], with further investigations revealing the ability of APAP to cause LSEC 

apoptosis via Trail[63], leading to hepatic congestion and hemorrhagic lesions. Quite intriguingly, 

recent findings revealed that the accumulation of free cholesterol in the endolysosomes of LSEC 

exacerbates APAP hepatotoxicity via TLR9/inflammasome pathway[64]. These findings highlight that 

hepatic steatosis, and in particular increased liver cholesterol, emerge as a risk factor for APAP 

hepatotoxicity (see section 9.1).  

3.6 Adaptive and cellular protective mechanisms: Autophagy | Keap1/Nrf2 

Macroautophagy (autophagy) is a nonselective bulk degradation process aimed at recycling cellular 

components and damaged organelles in response to a variety of stimuli, such as nutrient deprivation 

and toxic stress, including APAP hepatotoxicity. Using primary mouse hepatocytes and GFP/light 

chain 3 transgenic mice, Ni and colleagues described that APAP-induced autophagy correlated with 

recycling of damaged mitochondria [65]. APAP suppressed mTOR complex 1 and APAP-induced 

autophagy was blocked by NAC, suggesting APAP mitochondrial protein binding and the subsequent 

production of ROS elicited APAP-mediated autophagy. Importantly, pharmacological inhibition of 

autophagy further exacerbated APAP-induced hepatocytoxicity; while induction of autophagy by 
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rapamycin inhibited APAP-induced liver injury. The hepatoprotective role of autophagy in APAP 

hepatotoxicity was due to the elimination of damaged mitochondria by a more selective process called 

mitophagy [65] which impacted removal of APAP-protein adducts[66]. Interestingly, the APAP-

induced mitophagy appears to be predominant in zone 3 of the liver compared to zone 1 (coinciding 

with the site of APAP metabolism), suggesting mitophagy as an adaptive mechanism to promote cell 

survival and restrict the expansion of necrotic areas [67]. In line with these findings, adiponectin has 

emerged as an adaptive mechanism to ameliorate APAP hepatotoxicity by promoting mitophagy 

through stimulation of autophagosome formation by AMPK-dependent activation of Unc-51-like kinase 

1[68]. 

Besides mitophagy, ROS generation can be offset by an antioxidant stress response controlled by 

nuclear erythroid-2-related factor 2 (Nrf2)[69]. The Kelch-like ECH-associated protein 1(Keap1)/Nrf2 

system is recognized as an important cytoprotective pathway combating cellular oxidative injury[70]. 

Liver conditional Keap1 knockout or activators of Nrf2 provide protection against APAP-induced liver 

injury, while deletion of Nrf2 results in hypersensitivity to APAP hepatotoxicity[71]. Indeed, farrerol, a 

2,3-dihydro-flavonoid isolated from rhododendron, has been shown to confer rapid (within 1 hour) 

protection against APAP hepatotoxicity by activation of Nrf2 and autophagy [72]. Thus, whether 

targeting autophagy and Nrf2 in combination with NAC may be a relevant approach to reduce APAP-

mediated ALF remains to be investigated. 

4. Emerging mechanisms and approaches in DILI 

4.1 Extracellular Vesicles  

Like other cell types hepatocytes secrete extracellular vesicles (EVs), both under physiological and 

pathological conditions, including in chronic injury, such as liver fibrosis, and in DILI[73]. EVs are 

membrane-bound vesicles released to the extracellular milieu, protected by a lipid bilayer, which also 

include protein receptors and signal triggering molecules. The EVs carry diverse cargo that include 

proteins, active enzymes, coding and non-coding RNA, DNA, and metabolites[74-76]. Three different 

types of EV can be released from cells (exosomes, microvesicles (MVs), and apoptotic bodies) and 

are closely related to the mechanism of biogenesis. Exosomes are the smallest EVs (30-150nm)[77], 
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which are formed in multivesicular bodies (MVBs) of the endocytic and secretory pathway[78, 79]. 

Microvesicles (50-3000nm) are formed directly by outward budding of the plasma membrane  [80]. 

Whilst apoptotic bodies are EVs (>500 nm) that originate from cells undergoing apoptosis[81]. In liver, 

the first descriptions of hepatocyte-derived vesicles were obtained from primary culture of rat 

hepatocytes [82], and isolated hepatic stem cell cultures[83]. Many researchers have since 

contributed to the characterization of liver-derived EVs in different contexts of liver disease[84-86].  

Of relevance to DILI, hepatocyte-derived EVs can be influenced by drug metabolism, affecting the 

protein cargo composition, morphology and number[87, 88]. As characterized in in vitro systems 

APAP and diclofenac among others, the released EVs have been shown to contain liver-specific 

mRNA (e.g. ALB gene)[89], liver-specific miRNA (such as miR-122)  [84], and liver specific proteins 

such CPS1, MAT1 and COMT [87, 89-93]. Several studies have unraveled the diverse cargo of EVs 

in DILI (Figure 3), including the presence of CYPs, such as CYP2A1, 2B3, UDP-

glucuronosultransferases (UGT), and 2B2 isoforms, and sulfotransferase 1A1 in rats[82]. Notably, 

CYPs 1A2, 2B6, 2E1, 3A4 and UGT 1A1, and other isoforms have been detected in circulating EVs 

isolated from plasma of DILI patients[93, 94].  

Apart from CYPs, EVs may also harbor other active enzymes, such as Arginase 1 (Arg1) [95] or the 

carboxylesterase 3 (CES3)[90]. Due to this capability of transporting active liver enzymes, it is likely 

that circulating EVs are also involved in the pathogenesis of DILI, since they can reach different 

tissues, such as lung or brain[96], and modify acceptor cell response, such as the contractile 

capability of blood endothelium[95] - potentially playing a role in the pathogenesis of lung 

hypertension related to liver damage. Moreover, the presence of active CYP2E1 in EVs suggest they 

may exacerbate APAP-induced toxicity in hepatocytes and monocytes[97]. The presence of drug-

induced protein modification within the EV cargo can potentially have negative effects through 

covalent binding to certain drugs, such as amoxicillin or flucloxacillin. These protein-adducts can also 

induce the activation of dendritic cells when exposed to EVs released by hepatocytes, indicating that 

EVs could play a role in drug-induced autoimmune hepatitis[98].  
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4.2 AOP Framework  

As DILI is a highly heterogeneous process, the mechanistic characterization underlying this wide 

spectrum of hepatotoxic manifestations is a requisite to improve prediction. Effective experimental 

approaches for DILI evaluation require novel preclinical test systems that faithfully mimic these 

heterogeneous pathways. Context-specific in vitro models for assessing hepatotoxicity have been 

characterized recently[99] - and several new technological approaches are being developed in the 

search for more predictive systems (see Sections 5 and 6) (Key Point 4). 

Although a substantial amount of mechanistic data on DILI is currently known (e.g. obtained through 

GWAS [100] or transcriptomics approaches [101]), significant gaps remain on hepatotoxic outcome 

following chemical exposure. The lack of detailed understanding of the mechanistic pathways 

underlying the multifactorial nature of DILI has impeded the development of improved treatment and 

cell systems to test advent therapies. The development of the AOP concept [102] has gained 

momentum together with parallel improvements in test systems to bridge this gap in knowledge. 

AOP is a mechanistic representation of critical toxicological effects that propagate over different 

layers of biological organization, from the initial interaction of a chemical compound with a molecular 

target, to an adverse outcome at the individual or population level (Figure 4). An AOP describes a 

sequence of events starting with a molecular initiation event (MIE; the molecular target), with 

progression through a series of key events (KE), linked by key event relations (KERs), which may 

occur at the sub-cellular/ cellular-/or tissue-level, up to the whole organism. It describes only 

toxicodynamic interactions and pathways, and as such, is compound agnostic, i.e. independent of any 

specific chemical or its dose level. AOP is a valuable approach to incorporate mechanistic knowledge 

as demonstrated for APAP, chlorpromazine and other DILI-causing drugs [102, 103] - a multi-scale 

data integration tool in which newly obtained mechanistic data can be used to feed the linear AOP 

structure (see below, and Figure 4). Moreover, AOP can enhance our mechanistic knowledge [102], 

as it can identify deficits in existing tests and models intended to predict DILI. The AOP framework 

could in particular be helpful in delineating underlying causes and mechanisms in iDILI. As such, 

piecing together currently fragmented data sets of studies on iDILI in an AOP scheme will fill 

knowledge gaps, allowing the design of effective experimental approaches to unveil pathway(s) and 
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help reduce the unpredictability of iDILI. Additionally, AOP is geared towards the indication of 

potential DILI biomarkers as early indicators of DILI, as practical read-outs in experimental 

approaches, as well in pharmacovigilance. Initial AOPs for several forms of DILI have been recently 

established[104] and contain substantial mechanistic information on liver fibrosis, steatosis, and 

cholestasis.  

The linear schematization of current mechanistic information in AOP generates relevant data on 

metabolic alterations, such as bile acid homeostasis [105], mitochondrial dysfunction [106], or the role 

of innate immune responses [107]. In addition, this workflow points to AOP as a practical tool for the 

design, development, and validation of improved experimental models for DILI prediction. Indeed, a 

recent AOP approach that integrates mechanistic knowledge of multiple data sources enabled 

selection of a number of in vitro assays as effective predictors of DILI risk[108].  

Toxicogenomic approaches can further reveal fundamental molecular mechanisms and 

improve prediction of toxicity through integration of cross-omics technology including epigenomics, 

transcriptomics, proteomics and metabolomics measurements, along with PBPK-based experiments 

This has been used in 3D human liver and heart microtissues with advanced in silico bioinformatics to 

predict DILI[109].  

4.3 Toxicogenomics approaches 

Next generation genomic technologies are now being used as powerful tools in the armament to 

investigate DILI. Toxicogenomics allows detailed analysis of altered gene and protein expression 

profiles and across biological scales (which are also relevant to AOP: molecular-single cell – 

population levels) in response to xenobiotic exposure[110]. Its potential for application is enhanced by 

the availability of accessible databases that can facilitate and harness generated Omics and imaging 

data [e.g. Open TG-GATEs[111]]. Genome Wide Association Studies (GWAS) have resulted in highly 

revealing findings, such as HLA polymorphisms related to DILI[112]; whilst transcriptomics-based Big 

Data-driven analysis has identified adverse outcomes at cellular and organism levels[101]. Recently, 

a GWAS-based polygenic risk score prediction strategy has allowed potential of DILI susceptibility 

and genetic variation at the level of the hepatocyte using a combined genomic, cellular and organoid 
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‘poly  nicity-in-a- ish’ approach to delineate a spectrum of DILI causing agents including Fasiglifam 

(TAK-875)[113].  

Recent application of single-cell transcriptomics in DILI has for the first time, enabled the identification 

of unique subsets of MYC-dependent, activated liver-resident cellular types or ‘stat s’ (Kupff r  

stellate, and liver sinusoidal endothelial cells) in APAP-induced ALF in mice, which correlated with 

human ALF[114]. This approach may allow pathway-specific ALF therapeutic intervention strategies. 

Metabolomics can also be highly informative for DILI prediction; whereby detection of endogenous 

metabolites/ reactive metabolites can be complemented with the development of AOP for design of 

more effective approaches for DILI prediction [115].   

Thus, whilst current methods to study DILI pathology has involved mostly well-defined, end-point 

assays such as immunostaining, multi-parametric image analysis (cell viability), ultrastructural 

imaging, qRT-PCR, Western blot or flow cytometry techniques; there are now increasingly available 

powerful complementary assays that, when coupled with emerging human-based multi-cellular 

models, can shed light on human-specific toxicity mechanisms. 

5. Towards capturing hepatocellular complexity 

5.1 Choice of cells - not all cells are equal 

Conventional hepatic culture models for drug discovery assays mostly use rodent primary 

hepatocytes or human immortalized cell lines. However, these rapidly lose polarity and differentiated 

phenotype[116, 117] and are not representative of normal liver tissue. Such models often lack the 

functional repertoire of primary human hepatocytes (PHHs), including the ability to metabolize drugs 

(CYP activity). However, PHHs have a short culture life-span, exhibit phenotypic variability and 

instability in culture with intermittent supply and high unit costs[118].The multi-billion dollar drug 

development process is often hampered by the fact that candidate drugs, which show promise in 

preclinical animal models, subsequently do not show efficacy in humans, due to interspecies 

metabolic differences[116]. DILI is a leading cause of drug withdrawal from the market, highlighting 

the fact that current preclinical models of toxicity are not universally predictive of drug effects in 

humans[119]. DILI accounts for a 30% attrition rate of pharmaceutical compounds overall[120], 
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therefore a robust and scalable human hepatic in vitro cell culture platform would enable 

physiologically-relevant preclinical data for drug screening for DILI. 

5.2 HepaRG Cell line 

The human liver derived HepaRG cell line is now considered the closest surrogate to PHHs for DILI 

applications. The HepaRG cell line is a unique and sustainable intrinsic human co-culture model 

system for reproducible measurements of drug uptake, metabolism and toxicity. The hepatic HepaRG 

bipotential progenitor cell line is able to differentiate to mature hepatocyte-like cells (HLCs) and biliary 

epithelial cells (BECs). Various liver-specific phenotypic functions[15, 121] are stably expressed in 

HepaRGs, including the major CYPs - at levels comparable to those found in PHHs, with high 

functional stability for several weeks. This cell line has been used as a scaffold-free spheroid to test a 

number of compounds to screen toxicity profiles and thresholds of a number of compounds [122]. 

Altogether, HepaRGs provide a high-fidelity, sustainable organotypic model system for exploring 

mechanisms of APAP toxicity and other forms of DILI such as chlorpromazine[122-124]. Coupling 

organotypic human HepaRG cells with various combinations of non-parenchymal cell (NPCs) types: 

hepatic stellate cells (HSCs), KCs, and LSECs provides a rational approach to providing context-

specific models to investigate DILI, viz: i) Immunomodulation (HepaRG:KCs); ii) Vascular signals 

(HepaRG:LSECs), and Fibrogenic (HepaRG:HSCs) models. Stepwise integration of these cell types 

within a microphysiological system as well as novel 2D-3D platforms (see below, and Section 6), 

could be an important step in enhancing our understanding of DILI pathophysiology to solve the 

prediction dilemma in drug development. In principle, this approach may begin to discern what factors 

are lacking from current models to improve model relevance for DILI and thus unravel novel toxicity 

mechanisms leading to DILI. 

5.3 Alternative In vitro Hepatic Models: iPSC-derived hepatic tissue 

Alternative strategies to provide liver cell surrogates are found in two forms of human pluripotent stem 

cells (hPSCs): human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Both 

have the potential to serve as a source of hepatocytes-like-cells (HLCs) and other key cellular players 

for drug discovery and DILI research.  However, ethical considerations, with moratoria or outright ban 

of hESC use in many countries, have prevented their widespread adoption. Therefore, hiPSCs, which 
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are derived through the reprogramming of somatic cells, such as fibroblasts, are the mainstay of HLC-

based, and multicellular human liver models (Figure 5) [125-127].  

iPSCs have the potential to expand indefinitely and differentiate to any cell type (Figure 5). These 

characteristics make iPSCs an ideal source to obtain patient-specific cell types or to generate cells 

with specific genomic features resembling those of a particular human population using genome 

editing technologies[128]. Moreover, the pluripotent state of iPSC means they can act as a single 

source for the generation of the different hepatic cell types facilitating multicellular in vitro systems 

with the same genetic background or pre-existing disease[129, 130]. This technology allows 

production of highly novel cellular models for studying unique and unexplored aspects of DILI such as 

specific cell responses and multiorgan interaction. 

[131-134]. Early protocols for HLC generation were based on addition of stage-specific morphogenic 

cues mimicking hepatic embryonic development. More recently, growth factor-free approaches have 

been reported using small molecules that activate or mimic the effect of growth factors with a 

significant reduction in costs[135-138]. The iPSC-derived HLCs exhibit many hepatic functions, 

including serum protein production, urea synthesis and xenobiotic metabolism. Human iPSC-derived 

HLCs have similar attributes to the hepatoma cell lines, HepG2)[139] and HepaRG cells (at least in 

3D culture)[140], with lower metabolic activity compared with PHHs, and exhibit a mixed adult/foetal 

phenotype[141]. To improve HLCs functionality, strategies include generation of HLCs in 3D using 

collagen matrices to achieve cellular polarity, induction of mature hepatocyte genes by small 

molecules, or mimicking liver maturation (postpartum) by exposing HLCs to bile acid synthesis 

components, drug metabolism, amino acid transport or microbiome composition[142-146]. 

Remarkably, supplementation of the growth medium with high concentrations of defined amino acids 

drove metabolic maturity (PHHs levels of CYP activity) of both HLCs and HepG2 cells [140].  

As all liver cell types are involved in disease process and DILI, different approaches have evolved to 

generate HSCs, LSECs, and KCs. iPSC-derived human cholangiocytes with functional characteristics 

of primary cholangiocytes[147] have been developed and used to model disease (Alagille syndrome, 

chronic cholestasis due to reduced intrahepatic bile ducts) and for drug validation - highlighting 

hiPSCs utility[148, 149].  
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NPCs are essential for liver homeostasis and immunological function, and play a key role in DILI. 

Therefore, generation of NPCs has been an intense area of research for development of complex in 

vitro systems.  Tissue-resident human macrophages with KC characteristics have recently been 

generated, which exhibit low mismatch-background inflammatory response when co-cultured with 

hepatocytes [150]. HSCs also play a crucial role in response to injury/ wound healing in the liver and 

are the main cell type responsible for not only extracellular matrix (ECM) production and degradation, 

but also ECM deposition and remodelling in fibrosis. In this regard, Coll and collaborators [151] 

generated HSC-like cells displaying features of quiescent HSCs that could be activated by 

inflammatory and pro-fibrogenic stimuli, such as LPS or TGF-ß[145].  

A feature of pluripotent stem cells is their ability to recapitulate aspects of liver organogenesis/ 

development in the dish. In a landmark study, Takebe et al., combined vascular endothelial (HUVEC) 

cells and mesenchymal stem cells with specified iPSC-derived hepatic endoderm. This approach 

resulted in the formation of a 3D structure resembling a liver bud, which upon transplantation in mice 

protected against DILI[152]. The use of iPSCs for in vitro organogenic recapitulation of the liver has 

been used to generate liver organoids containing HLCs and other non-parenchymal cells, which could 

be useful for liver disease modelling, toxicity testing and drug screening[153-155].  

As an alternative to primary hepatocytes, iPSC-derived cultures of HLCs have several applications for 

early preclinical hepatotoxicity assessment and drug screening in 2D and 3D culture systems[156]. 

iPSC-derived 3D organoids demonstrated a toxic response to clinically-relevant concentrations of 

drugs withdrawn from the market due to hepatotoxicity [157].  

DILI is frequently characterized by common pathogenic mechanisms observed in chronic 

liver disease, such as inflammation, fibrosis and cholestasis. In order to link these responses to 

toxicity, more complex in vitro systems that capture aspects of vivo architecture, and containing 

different liver cell populations such as HSC, cholangiocytes and inflammatory cells are required.  

5.4 3D Liver Cell Models  

New in vitro cell and tissue engineering technologies are being developed to improve hepatocyte 

performance and are expected to generate more robust data on the potential risks of environmental 

agents and pharmaceuticals to humans. To achieve more efficient DILI prediction models, it will be 
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necessary to develop new test systems that expand capabilities of target molecules more efficiently, 

reduce animal testing, increase drug development efficiency and are able to predict adverse 

effects[158-166].  

The major shortcomings of the currently available 2D in vitro liver systems are insufficient hepatocyte-

like function and metabolic competence. A valid alternative for in vitro toxicology testing comprises 

more predictive cell models closer to the in vivo environment. These are summarized in Table 1, 

whilst bioengineering aspects of 3D liver systems, including the use of dynamic or static bioreactor 

devices are discussed further in Supplementary Information (Sections 1.1 and 1.2). 

6. ADVANCED TECHNOLOGIES 

6.1 Current hepatic-based microphysiological systems 

Development of reliable medium-high throughput screening (HTS)-compatible human hepatic 

organotypic culture systems would have a significant impact on streamlining the drug development 

pipeline. Commercially available bioengineered liver models, including Emulate Inc.,  μ  L® Biochip, 

RegeneMed, Hepregen and LiverChip systems (Table 1), are based on hepatocyte-stromal cell 

interactions providing biomimetic cues to enhance hepatic phenotype/ functionality. These systems, 

however, utilize either heterologous hepatic co-cultures (rodent, primate or PHHs), combined with 

complex multi-step microfabrication manufacturing processes (e.g. soft-lithography, microfluidics), 

significantly increasing unit costs. Furthermore, the Hepregen system contains 3T3-J2 mouse 

fibroblasts, seeded on rat collagen-I, which can stabilize the function of the co-cultured PHHs. Such 

systems, however, are bio-incompatible, as they may introduce confounding variables in drug 

metabolism assays, given the presence of xeno-derived proteins and the fact that fibroblasts are not 

abundant in the functional liver acinus. Distinct challenges therefore remain with regard to realization 

of a standardized, cost-effective, fully customized and widely available, organotypic in vitro human 

model (Key Point 5). 

6.2 ‘Liver-on-a-chip’ Models  

Organ-on-a-chip models (OoCs) are being developed as potentially improved experimental devices to 

overcome the limitations of current in vitro models of DILI. OoCs are multicellular models connected 

by microfluidic flow that mimic features and functions of the organ represented. OoCs are rapidly 
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emerging as an alternative to animal models to study human disease, while academic research and 

industrial drug discovery have implemented this approach for drug target identification, validation, as 

well as efficacy and safety testing. Compared with 2D micro-engineered or bioprinted co-culture 

models, OoCs are generally less amenable to HTS due to their inherent complexity, and the need to 

incorporate biosensors for longitudinal real-time monitoring of biological events. Instead, they aim 

presently to address more complex physiological outcomes, including the pre-clinical phase of drug 

development.  

Complex events of liver drug metabolism, as described for APAP, are a predominant feature of 

adverse drug reaction events leading to DILI. Therefore, to emulate organ physio-/pathophysiology in 

OoCs, through integration of increasingly sophisticated and more realistic hepatic models, in 

combination with microfluidics and miniaturization, are central. This goal requires the convergence of 

tissue engineering processes and technologies to attain physiologically-relevant systems. 3D 

bioprinting technology is a relatively new and rapidly evolving technology that is strategically placed to 

significantly enhance development and utility of biomimetic OoCs for preclinical applications. In 

addition, 3D bioprinting can be implemented as a stand-alone system to fabricate multicellular human 

hepatic models for HTS-amenable screening formats. Recent work has addressed major issues 

including limited structural complexity and resolution of many 3D-bioprinter systems, enabling 

assembly of complex vascular networks within 3D-printed hydrogels[167]. Many novel OoC 

integrative bioengineering approaches have been adopted, with new designs and innovations 

continuing to evolve at a rapid pace. For example, Bhise et al. [168] developed an integrated Liver-on-

a-chip platform for drug toxicity assessment, based on a bioreactor interfaced with a 3D-bioprinter. 

Hepatocyte (HepG2/C3A cells) spheroid-laden hydrogel constructs were bioprinted directly into a 

‘bior actor’ chip. This system exhibited a functional hepatic phenotype with an in vivo-like response to 

APAP toxicity. Ever more sophisticated, multi-cellular OoCs are now emerging. Digital light 

processing-based 3D-bioprinting systems can rapidly print tri-cultures of hiPSC-derived HLCs, 

endothelial and mesenchymal cells on hexagonal 3D-hydrogel scaffolds. The biomimetic liver lobule 

patterns demonstrated a robust functional metabolic profile (CYP expression) and suitability for 

hepatotoxicity screening and DILI prediction, as well as downstream personalized drug-screening 
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applications [169].  n b r’s  roup r c ntly     lop   a species-specific Liver-Chip that recapitulates 

complex liver cyto-architecture, phenotypic profile and species-specific drug toxicities using rat, dog, 

and human cells[170]. Crucially, this system could identify both species-specific toxicity of drugs, such 

as APAP, and identify toxic events in hepatocyte and vascular channels.  

Various levels of in vivo-like complexity have been achieved with improved PHHs stability and 

functionality based on urea, albumin production, and CYP450 activity[171]. This has also been 

demonstrated using hepatocytes co-cultured with stromal cells present in vivo (e.g. liver KCs; 

sinusoidal epithelial cells, SECs)[172-174].  

Whilst an organotypic human liver C3A cell line/HUVEC co-culture system demonstrated profound 

susceptibility to APAP-induced toxicity in endothelial cells (reflecting the situation found in vivo) as 

compared with the monocultures; it is speculated that the vascular signals were likely 

hepatoprotective in the (APAP-resistant) co-cultures[175]. Proteomic analysis of LSECs may provide 

mechanistic insights allowing the identification of sensitive and specific biomarkers through 

comparison and validation of omics data from preclinical animal, in vitro human models and clinical 

biospecimens (see also sections 4.2 and 4.3). 

OoCs may also find a particularly relevant niche in the investigation of multi-organ systems, allowing 

the examination of how bidirectional signals (eg metabolic, pro-inflammatory) in drug metabolism can 

affect other organs, and to study drug pharmacokinetics and ADME. In particular, OoCs have 

attracted the interest of the pharmaceutical industry by demonstrating the ability to predict metabolic 

drug clearance rates in accordance with clinical data [176]. The circulation of drugs and metabolites 

between liver and intestine has been explored using “li  r-gut" models that replicate the intestinal 

barrier function. The parent compound Phenacetin passed through the gut barrier and was 

metabolized to APAP by hepatic cells[177], while a model including KCs mimicked inflammatory gut‐

liver interactions[178]. 

Examples of dual-organ OoCs include liver/kidney interaction recapitulated the nephrotoxicity of 

ifosfamide when metabolized by liver cells[179], whilst skin and tumor compartments proved 

efficacious for substance testing[180]. More complex multi-organ models are under development, 

including: i) Liver/cardiac/muscle/neuronal system to investigate drug toxicity (doxorubicin, 
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atorvastatin, valproic acid, APAP and N-acetyl-m-aminophenol) [181], and ii) A gut/skin/liver/kidney 

system in which organ-level functions were maintained for 28 days[182]. Recently, improved drug and 

toxicological readout was demonstrated with liver/lung/cardiac organoids derived from primary and 

IPS cells linked with microfluidics[183].  

Increasing OoC complexity has recently been explored with up to 10 interconnected organs to explore 

drug and metabolite bio-distribution together with a pharmacokinetic model[184]. At present, OoC 

technology is still in its infancy, and while it is demonstrating important tissue engineering principles 

and proof of concept, complexity and interactions resulting from multi-organ models is presently very 

challenging to decipher whilst incompatibility with HTS is inherent. This makes OoC models (and 

eventually multi-organ OoCs) more suited to mechanistic studies and to predict safety and efficiency 

of compounds as well as their pharmacokinetics, later in the drug discovery pipeline.   

7. Non-invasive technologies to screen DILI models 

High-content live cell confocal microscopy is particularly suited to screen DILI models. Real-time 

stress response pathways such as oxidative stress, UPR and DNA damage can be evaluated 

quantitatively at the single cell level[185], and in individual 3D spheroids to screen for DILI[186]. In 

addition, novel fluorescence dyes (e.g. Thioflavin T) that react with aggregated proteins can be 

utilized for the determination of unfolded proteins aggregations and thus monitor ER stress induced 

by hepatotoxic drugs in live cell imaging settings[187, 188]. 

Mitochondrial stress and lysosomal dysfunction are also important mechanistic targets of DILI (see 

Section 3)   n osom s  c llular   sicl s’ motion an  mitochon rial fission-fusion are highly dynamic 

events (>3 μm/s) that r quir  both sup r-resolution and fast acquisition (<<30 ms for 100-nm-

resolution). While PALM, STORM or STED super-resolution microscopy cannot currently provide 

such fast live imaging, a novel implementation of SIM using spinning disk confocal microscope optics 

has been developed [189, 190] to achieve a spatial and temporal resolution of respectively, 120 

nm[189, 190], an  6 μm/s [191] (Key Point 6).  

7.1 Optical Screening of 3D Organotypic Models for DILI 

3D tissue-like DILI models can be very challenging for optical microscopy. Novel high-resolution and 

super-resolution optical imaging methods have very recently been developed achieving 3D optical 

Jo
urn

al 
Pre-

pro
of



JHEPAT-D-21-00859R2 

27 
 

sectioning in real-time [192-197], allowing insight into 3D DILI in vitro model systems[185, 186, 192-

197]. Finally, optical coherence tomography is particularly suited to imaging dense tissue-like 

structures at mm depth. Indeed, we have recently demonstrated label-free and non-destructive 

measurement of APAP hepatotoxic response in 3D human liver spheroids which correlated well with 

cellular metabolic activity assays[198]. 

7.2 Super-resolution fluorescence nanoscopy 

A new technology revolution of microscopy imaging called super-resolution fluorescence nanoscopy 

has been developed allowing molecular scale resolution, localization (<2 nm) and tracking of 

molecules, using a light microscope[199]. This affordable and flexible system (MINFLUX nanoscopy) 

will open up enormous possibilities in DILI, including 3D phenotypic profiling, imaging of protein 

complexes (drug-protein adducts) in pharmacological, as well as ADME and toxicology studies, with 

simultaneous two-colour (fluorophore) staining and recording. The Adaptive Optics system permits 

sharp deep tissue images down to 250m; while live-cell imaging of 3D-or anoi s to a   pth of 37μm 

into the sample can be attained using the easy3D STED imaging system. Fluorescence nanoscopy 

has already shown its applicability as a discovery tool in key areas transferable to mechanistic DILI 

studies. Indeed, nanoscopy studies of mitochondrial apoptotic mechanisms - demonstrating assembly 

of Bax/Bak proteins in the mitochondrial outer membrane – have revealed the structural mechanism 

of membrane rupture, intracellular tracking of cancer-derived exosomes, and in in vivo mouse 

models[196, 200]. 

7.3 Impedance biosensing 

As a non-invasive alternative to optical imaging, impedance-based cellular assays (IBCA)[201] have 

the advantages of label-free and real-time monitoring in vitro liver models, and provide unique 

dynamics and quantitative insights into the impact of hepatotoxic drugs on cell-cell junctions[15, 202]. 

Recent advances in IBCA also allow the measurement of 3D models[203]. Advances in non-invasive 

imaging technologies in parallel with improved cell systems are powerful tools for improving DILI 

prediction and to reveal critical DILI events such as cellular reactive metabolite/ oxidative stress at the 

molecular level and in real-time. 

8. Emerging In vivo Models of DILI 
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8.1 Mouse models with humanized livers  

The biology and metabolism between mice and humans differ and hence the pharmacokinetics and 

toxicity profile of drugs can be substantially different between humans and mice. Although some 

limitations have been partially addressed using alternative approaches such as human hepatic cell 

lines, liver microsomes, PHHs or engineered human micro-livers[204], these models are of limited 

predictive value regarding the pharmacokinetics and toxicity of drug metabolism in vivo and hence of 

relative relevance for human safety[205]. The development of chimeric models with bioartificial livers 

repopulated with human adult hepatocytes could be an important advance for predicting human 

pharmacokinetics, drug interactions and in vivo safety (Figure 6). This will be briefly described in the 

following sections (Key Point 7).  

8.2 Generation of chimeric mice with humanized livers 

Several models of chimeric mice suitable for repopulation with human adult hepatocytes have been 

developed over the years. The first chimeric mice with a partially humanized liver was described 

almost 20 years ago using urokinase-type plasminogen activator-transgenic SCID (uPA+/+/SCID) 

mouse[124, 206]. The degree of repopulation of human hepatocytes in these initial studies was 

modest (about 15%), which was sufficient in the context of hepatitis viral infection, but inadequate to 

investigate human phamacokinetics (ADME) in mice in vivo. Tateno et al generated chimeric 

uPA+/+/SCID mice, replacing 70% of the liver with PHHs following anti-human complement factor 

treatment (estimated by serum levels of human albumin and cytokeratin 8/18 immunostaining[207]. 

Another model used TK-NOG mice expressing a herpes simplex virus type 1 thymidine kinase 

transgene in the liver of highly immunodeficient NOG mice[208]. Mouse hepatocytes deletion was 

performed by exposure to ganciclovir followed by xenotransplantation of human hepatocytes. Both 

models exhibited substantial repopulation of human hepatocytes in the liver of chimeric mice were 

useful in investigating the expression and activities of enzymes involved in drug metabolism. 

Azuma et al[209] also generated robust expansion of human hepatocytes in 

Fah−/−/Rag2−/−/Il2rg−/− (FRG) mice (humanized liver FRG mice). Fumaryl acetoacetate hydrolase (Fah) 

is involved in the tyrosine catabolic pathway, and genetic deletion of Fah acts as a molecular switch to 

control the demise of Fah-/- murine hepatocytes as its ablation causes massive damage to the 
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endogenous mouse hepatocytes, driven by the accumulation of fumaroyl acetoacetate. The injection 

of human Fah+/+ hepatocytes through the spleen, lead to the gradually repopulation of the liver of FRG 

mice over time.  

Initial studies reported the use of these chimeric mice models to investigate the expression, levels and 

activities of human drug metabolizing enzymes and transporters. For instance, the expression and 

enzyme activities of several CYPs in the liver of humanized uPA/SCID mice were similar to those in 

the donor liver or even greater than those found in cryopreserved human hepatocytes[205, 207, 210]. 

Furthermore, protein and enzyme activity levels of human UGT, sulfotransferase, N-acetyltransferase 

and glutathione-s-transferase in the liver of humanized liver uPA/SCID mice were reported to be 

similar to those in the donor liver[211]. Similar findings in terms of expression and enzymatic activities 

of CYPs with respect to the donor livers were reported in the liver of TK-NOG mice repopulated with 

human hepatocytes[212]. Therefore, these data validate the functional retention of human drug 

metabolizing enzymes and transporters in the humanized liver of chimeric mice, further highlighting 

the utility in predicting relevant drug-drug interactions in humans[213, 214]. 

8.3 Drug metabolism and DILI in chimeric mice with humanized CYP and human liver chimeric 

mouse models 

In addition to mouse models with humanized livers, several human CYP-transgenic mouse models 

have been generated. Most human CYP family members that are involved in xenobiotic metabolism, 

including members of the CYP1-CYP4 gene families, have been introduced into the mouse genome 

as a transgene and have been summarized recently[215]. Although these models are potentially 

useful, metabolism of drugs in these transgenic humanized models reflects the action of a single 

human CYP transgene. Hence the relevance to human drug metabolism and safety may be of limited 

significance for human drug metabolism as this process may involve the function of multiple CYPs. 

Moreover, the advantage of chimeric mouse models with humanized liver over that of CYP transgenic 

humanized models is that the former has been shown to generate human-specific metabolites and 

hence are of potential relevance for clinical drug development [215]. For instance, chimeric mice with 

humanized livers were recently used to study the metabolism of fenclozic acid, a drug that was 
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developed as an alternative to high-dose therapy with aspirin in the mid 70s, and while it showed a 

good safety profile in experimental animals, it had to be withdrawn from late-clinical development 

because of hepatotoxicity. Interestingly, although fenclozic is off the market, these studies are useful 

to illustrate the ability of the chimeric mice to generate human-specific metabolites, such as the 

presence of fenclozic acid with side-chain extension in the plasma, which is not detected in 

conventional mice[216]. However, a drawback of the chimeric mice with humanized liver is that the 

remaining murine hepatocytes contain an expanded set of CYPs that form the major class of drug-

metabolizing enzymes. To exploit the potential of the human hepatocytes repopulating the livers of 

chimeric mice, and to provide xenobiotic metabolism, Barzi et al generated a chimeric model in which 

the NADPH-cytochrome P450 oxidoreductase gene (POR) was knock out in a liver restricted manner 

in Il2rg−/− /Rag2−/− /Fah−/− (PIRF) mice. This provided a model with the advantage that drug 

metabolism in this engineered liver reflected the predominant activities of human CYPs[217]. Indeed, 

in response to anticancer drug gefitinib or the retroviral drug atazanavir, the POR-deleted humanized 

PIRF mice developed higher levels of the major human metabolites and were consequently able to 

better predict human drug metabolism237. 

Despite the relevance of APAP in human DILI, few studies have investigated APAP hepatotoxicity in 

chimeric mice with humanized livers. In this regard, Sato et al, examined the susceptibility of 

uPA++/SCID mice whose liver was repopulated with human adult hepatocytes to APAP hepatotoxicity 

compared with control mice[218]. APAP administration resulted in vacuolation of hepatocytes and 

hepatocellular degeneration, leading to the detection of some areas of TUNEL-positive cells in the 

human hepatocyte zones. The hepatotoxic effects of APAP in the chimeric livers were milder 

compared to the severe liver injury observed in the control mice[218]. Further analysis indicated that 

APAP-related changes correlated with human CYP2E1 expression. In addition to these findings, a 

recent study reported the APAP hepatotoxicity of chimeric FRG mice in a NOD background (FRGN) 

These mice underwent xenotransplantation with human adult hepatocytes that had been pre-

sensitized with valproic acid (VPA) pretreatment[27]. Comparable with wild-type mice, VPA 

pretreatment sensitized humanized, fed FRGN mice to APAP hepatotoxicity, although the degree of 

Jo
urn

al 
Pre-

pro
of



JHEPAT-D-21-00859R2 

31 
 

injury was somewhat lower than that seen in wild type mice, in line with findings in uPA++/SCID 

chimeric mice. A caveat from these studies is that the degree of APAP-induced hepatotoxicity was 

milder with respect to wild-type mice. Given immature hepatocytes such as oval cells are reported to 

be resistant to APAP toxicity[219], it is conceivable that the reduced toxicity of APAP in the chimeric 

mice (uPA+/+-SCID or FRGN) may be due to functional immaturity of the repopulating human 

hepatocytes. In addition, whether reduced presence of inflammatory cells in the liver of chimeric mice 

(e.g. macrophages or neutrophils) contribute to the milder hepatotoxicity remains to be investigated. 

In this regard, FRGN but not FRG mice is an amenable model for double humanization following 

reconstitution with hepatocytes and hematopoietic cells. This is achieved by treatment with human 

CD34+ stem cells[220] and may be a useful approach to faithfully reproduce the observed 

hepatotoxicity of APAP in humans and to pinpoint the interactions between human hepatocytes and 

inflammatory cells. The outcome of FRGN mice humanized simultaneously with both human 

hepatocytes and hematopoietic cells in DILI still remains to be established. 

 

8.4 Zebrafish, as a DILI model 

Zebrafish is a vertebrate model organism widely used in development and genetics, and potentially 

provides a powerful tool for modelling DILI[221-223] (Figure 7). Advantages of the zebrafish model 

include a significant level of genomic, histological and functional similarity with humans, transparency 

of embryos and larvae allowing thorough imaging of the liver in vivo, and the availability of large 

numbers of offspring increasing the feasibility and statistical power of drug screening experiments. 

Multiple types of assays have been described to characterize DILI in the zebrafish, including the 

detection of accumulated lipids in zebrafish larvae/liver as well as quantification of changes in liver 

size and numbers of liver cells by using transgenic zebrafish lines expressing hepatic-specific 

fluorescent proteins[224-226]. Further applications of zebrafish for DILI modelling are discussed 

below and in Supplementary Information (section 1.3). 

9. Implications of DILI in clinical contexts 

9.1 NAFLD and ageing as a susceptibility state for DILI 
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NAFLD, also now referred to as metabolic associated fatty liver disease (MAFLD), is currently the 

most prevalent chronic liver disease worldwide due to its association with the obesity epidemic. 

NAFLD is a spectrum of liver disorders beginning with steatosis, which can progress to nonalcoholic 

steatohepatitis (NASH), cirrhosis and ultimately hepatocellular carcinoma. Although many drugs can 

induce steatosis as an early sign of potential hepatotoxicity, in this section we focus on growing 

evidence indicating that NAFLD can sensitize to DILI. 

There are increasing clinical reports suggesting that patients suffering from obesity and NAFLD may 

be more susceptible to DILI [55, 227-231]. This paradigm implies two possible scenarios. First, drugs 

such as APAP (in the context of overdose), halothane and isoflurane may cause more severe and/or 

more frequent ALF in individuals with NAFLD[228, 232]. Second, pharmaceuticals such as irinotecan, 

methotrexate and tamoxifen seem to be more hepatotoxic in obese patients than in lean individuals 

by triggering the transition from steatosis to NASH, and/or worsening pre-existing steatosis, 

necroinflammation and fibrosis[55, 233, 234]. In spite of these emerging and distinct clinical 

situations, well-designed prospective clinical studies are urgently needed in order to identify the full 

repertoire of drugs, which pose a particular risk in NAFLD patients[55, 233]. However, detection of 

DILI using the standard clinico-biological parameters could be difficult in patients with NASH[235]; 

while not all drugs necessarily pose a specific risk in NAFLD. For instance, hepatotoxicity induced by 

amiodarone and statins do not seem to be more frequent in NAFLD patients[233]. Interestingly, the 

cytotoxicity induced by amiodarone, atorvastatin and lovastatin was not greater in a cellular model of 

NAFLD using the HepaRG cell line [236]. In contrast, the antiretroviral ritonavir was found to be less 

cytotoxic in this model, although clinical investigations are warranted to determine whether this 

observation can be confirmed in patients. 

The mechanisms whereby some drugs are more hepatotoxic in NAFLD are complex and not well 

understood, except for a few drugs[55, 233]. Some drugs could induce more severe ALF in individuals 

with NAFLD because this disease is associated with altered activity of CYPs and other xenobiotic-

metabolizing enzymes (XMEs), which can increase the generation of toxic metabolites or conversely 

impair detoxification pathways[55, 228, 233]. For instance, human NAFLD is often associated with 

increased CYP2E1 activity and reduced CYP3A4 activity and also with higher glucuronide formation 
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for some drugs such as APAP and lorazepam[237-239]. For drugs and other xenobiotics triggering 

the transition from simple fatty liver to NASH, or aggravating pre-existing liver lesions, experimental 

data strongly suggest a significant role for mitochondrial dysfunction, ER stress and ROS 

overproduction[55, 233, 240]. 

In this context, preclinical models of NAFLD can be useful for distinct purposes. First, they can be 

used to confirm the specific toxicity of some pharmaceuticals in NAFLD, which might have been 

revealed during clinical investigations. Second, these experimental models can help to decipher the 

mechanisms whereby some drugs or other xenobiotics are more hepatotoxic in this liver disease. 

Lastly, these models might also be useful in preclinical safety studies, in particular for drug candidates 

that would be essentially prescribed in obese patients.  

Numerous rodent models of NAFLD have been useful to study drug-induced hepatotoxicity[233, 241, 

242]. However, it should be stressed that some of these models do not fully tally with the clinical 

situation, particularly in the context of NAFLD. For instance, leptin deficiency in genetically obese and 

diabetic ob/ob mice curbs the development of liver fibrosis[243], and thus these mice are not 

appropriate to determine whether drugs are able to aggravate liver fibrosis[233]; whilst ob/ob mice do 

not present augmented hepatic CYP2E1 activity, which limits liver injury induced by APAP[228, 244]. 

Moreover, mice fed a methionine choline-deficient (MCD) diet consistently lose weight and can 

develop hypoglycemia[233, 245]. Finally, it should be mentioned that numerous types of energy-

dense diets can be used to induce obesity associated with simple fatty liver or NASH, but the degree 

of the different histopathological lesions can greatly vary between diets[241, 242, 246]. However, the 

extent of obesity and related metabolic disorders (e.g. insulin resistance and diabetes) as well as the 

severity of some liver lesions (e.g. steatosis and necroinflammation) are likely to influence the activity 

of different XMEs such as CYPs and UGTs[55, 239]. Finally, zebrafish larvae fed lipid-enriched diets 

can also be used to evaluate hepatotoxicity in obesity and NAFLD. Although to the best of our 

knowledge this model has not been used for pharmaceuticals, recent investigations showed that 

obese zebrafish larvae were more sensitive to the hepatic toxicity of a mixture of benzo[a]pyrene and 

ethanol[247]. Interestingly, results collected in this zebrafish model, were reproduced in a cellular 

model of NAFLD progression, as mentioned below [247]. 

Jo
urn

al 
Pre-

pro
of



JHEPAT-D-21-00859R2 

34 
 

As with in vivo models, numerous in vitro NAFLD models have been established for various research 

purposes, particularly in the field of pharmacology and toxicology[233, 248-251]. These cellular 

models of NAFLD are based on different types of cells (i.e. primary hepatocytes or cell lines such as 

HuH7, HepG2, and HepaRG), fatty acids (used individually or in mixture), and duration of lipid 

overload (from a few hours to 15 days)[233, 248-251]. Interestingly, human iPSC-derived hepatocytes 

have recently been used in both 2D and 3D format to model NAFLD[252]. Another promising 

approach is the use of human iPSC-derived hepatocytes from patients with NAFLD including NASH, 

which might reproduce the inter-individual differences classically observed in DILI [253, 254]. 

However, some experimental conditions might not be optimal in order to determine whether a drug is 

more toxic in the setting of NAFLD. For instance, the human hepatoma cell lines HuH7 and HepG2 do 

not have the full repertoire of XMEs[255, 256], whereas rodent hepatocytes do not have the same 

profile of drug metabolism as human hepatocytes, as discussed in Section 5. In addition, numerous 

studies have been performed in cells incubated with fatty acids for only a short duration of time (from 

a few hours to 2 or 3 days). Thus effects of prolonged or repeat-dose xenobiotic exposure are 

excluded, while  this period may not be long enough to induce NAFLD-related alterations of XME 

expression and activity[233]. 

Recently, a cellular model of NAFLD was established using differentiated and metabolically 

competent HepaRG cells incubated with 100 µM stearic acid for 7 days[257] (or with a mixture of 

stearic and oleic acids (150 µM each) for 14 days[236, 240, 247]. Notably, these in vitro models of 

NAFLD were characterized by enhanced CYP2E1 activity and reduced CY3A4 activity, thus 

reproducing what has been consistently observed in clinical studies, as previously mentioned. Of 

note, incubation of HepaRG cells with 100µM stearic acid for 48 hours did not change CYP2E1 and 

CYP3A4 activities[257], thus underscoring the importance of the duration of fatty acid exposure. 

Interestingly, a comparison by gene set enrichment analysis (GSEA) between the transcriptome 

GSE102536 dataset obtained in lipid-laden HepaRG cells[247] and the GSE61260 dataset obtained 

from biopsies of obese patients with fatty liver[258] revealed a highly significant correlation (p<0.001) 

concerning the up-regulated genes (B. Fromenty and S. Bucher, unpublished data). These models 

disclosed higher cytotoxicity of APAP[257], troglitazone[236] and a mixture of benzo[a]pyrene and 
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ethanol[240, 247] in NAFLD cells compared with the non-steatotic cells. Regarding APAP 

toxicity[257], these in vitro investigations confirmed previous studies carried out in obese mice and 

humans with NAFLD[228, 232, 244]. Furthermore, mechanistic investigations showed that higher 

CYP2E1 activity in lipid-loaded HepaRG cells was, at least in part, responsible for higher APAP 

cytotoxicity[257]. Finally, it would be interesting to add cholesterol to fat-laden HepaRG cells in order 

to determine whether this lipid derivative could further enhance APAP cytotoxicity. Indeed, feeding 

wild-type mice a cholesterol enriched diet (0.5%), which induces microvesicular steatosis and 

cholesterol accumulation in mitochondria, sensitizes to APAP hepatotoxicity without fasting (JCFC 

and CGR, unpublished observations). As for NAFLD, there is evidence that older people might be at 

risk for DILI, at least with specific pharmaceuticals such as antimicrobials and cardiovascular agents 

[259, 260]. In addition to the role of some specific medications, polypharmacy is deemed to be a risk 

factor for DILI in old age, although this does not seem to be related to impaired intrinsic drug 

metabolism [259-261]. Although old mice can be used as a preclinical model [262], cellular models of 

hepatocyte ageing might also be useful. For instance, by using the senescence β-galactosidase 

assay, the occurrence of an ageing process has been observed in long-term confluent HepaRG cells 

[263], and cellular senescence favors lipid deposition in the liver [264, 265]. By using appropriate 

pre-clinical models, it would thus be interesting to determine whether NAFLD and ageing further 

increase the risk for DILI with some drugs. 

9.2 Application of emerging mechanisms and approaches to human DILI 

In the Supplementary Material, we select and briefly highlight a few examples of how some of the 

emerging mechanisms and approaches described above could be of value to human DILI. 

10. Conclusions and future perspectives 

Early pre-clinical identification of the toxic events leading to DILI is the primary goal and driver of 

major efforts in the pharmaceutical industry and academia to develop more realistic human-based 

models for DILI prediction. DILI represents an unexpected liver injury caused by either prescribed or 

over-the counter drugs, which entails damage to hepatocytes as well as non-parenchymal cells. 

Severe DILI is a serious clinical outcome and a major cause of ALF requiring liver transplantation. 
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Besides its clinical relevance, DILI can be a primary reason for drug withdrawal from the 

market. Unlike intrinsic DILI, which is predictable, reproducible, and dose-dependent, iDILI is 

unpredictable, not strictly dose-dependent, and although rare it accounts for 10% to 15% of ALF 

cases in the United States. Due to its central role in biotransformation (metabolism) of xenobiotics 

entering the gastrointestinal tract, the liver is the main target of DILI and hepatocyte cell death stands 

as the major manifestation of DILI. The mechanisms inflicting hepatocellular demise in response to 

drugs are still not fully understood - representing a multifactorial process in which, often activation of 

an immune response contributes to overall death of hepatocytes and the spread of the damage to 

other non-parenchymal cells. The limitation of our understanding of the underlying mechanisms and 

interplay between different players involved in DILI have hampered the delineation of effective 

therapies and the ability to predict accurately pre-clinical DILI development. This reflects the use of 

inadequate models used for DILI research. Indeed, unfortunately most experimental models currently 

used for DILI mechanistic studies do not adequately reflect the complexity of human biology and 

barely reproduce the features of DILI described in humans, highlighting the need to establish 

improved models for preclinical evaluation of DILI. Ideally these improved approaches should include 

experimental models that exhibit a higher concordance with human outcome through introduction of 

biological variation and complexity leading to delineation of mechanistic and prediction relevant DILI 

signals. In parallel, this paradigm shift in approaches to DILI must embrace a technological 

‘biocon  r  nc ’  ncompassin  multi isciplinary approach s across biolo y   n in  rin  an  

medicine, such as coupling non-invasive imaging, multi-omics approaches, and conceptual 

frameworks (AOP) to organize modes and mechanisms of action, combined with microphysiological 

and other emerging 2D-3D multicellular platforms. Stepwise integration of appropriate human hepatic 

(acinar unit) cell types within microphysiological devices as well as in novel 2D-3D platforms, and 

experimental decoupling of the acinar unit could be an important step in enhancing our understanding 

of DILI pathophysiology from single-cell to organ level - to solve the prediction dilemma in drug 

development. In principle, this approach may begin to discern what factors are lacking from current 

models to improve model relevance for DILI and thus unravel better, toxicity mechanisms leading to 

DILI. 
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Bioconvergence offers a rich landscape for innovation, and includes the development of highly 

differentiated iPSC-derived hepatic tissues, which are accepted by regulatory agencies and pharma 

due to the potential of this cell resource to populate organ-on-a-chip models and to develop multi-

cellular organotypic 3D liver models with personalized medicine capability. Importantly, the use of 

chimeric mice with humanized liver and CYP450 biotransformation potential could offer 

transformational insights into specific aspects of DILI such as immune signals – and as a comparator 

system with next generation human-based in vitro models. This range of integrative approaches 

complemented with the development of the state-of-the art of non-invasive imaging methods for 

screening 2D-3D models within a flexible regulatory acceptance framework could increase the 

feasibility to better predict DILI and even iDILI with the possibility to identify new targets for 

intervention and treatment of DILI. 
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KEY POINTS 1-7: 
 
KEY POINT 1 
 
Gaps in our understanding of DILI and the complexity of underlying mechanisms 
coupled with interspecies differences have hampered the efforts to develop 
reproducible animal models. 
 
KEY POINT 2 
 
Currently, none of the existing models are approved by regulatory agencies in Europe 
and the US, given the limited predictive value of current preclinical systems. 
 
KEY POINT 3 
 
APAP hepatotoxicity is multifaceted and molecular pathways incompletely unknown, 
although disruption of mitochondrial function is a well-recognized player in APAP 
mediated liver injury. Novel and emerging mechanisms have been identified in this 
critical step, although their validation in human DILI remains to be established. 
 
 
KEY POINT 4 
 
Novel approaches and emerging mechanisms in APAP hepatotoxicity and DILI may be 
of significance for the discovery of new potential treatments. 
 
KEY POINT 5 
 
To elucidate critical pathogenic features of DILI, including genetic and immune factors, 
more faithful human in vitro models should include organotypic cultures and more 
focused investigational studies. 
 
KEY POINT 6 
 
Non-invasive technologies to screen DILI models may improve cell systems’ r a out 
and stand as a powerful tool for improving DILI prediction.  
 
KEY POINT 7 
 
More realistic human-based in vitro models and humanized rodent models are urgently 
required to improve mechanistic understanding in order to de-risk DILI. 
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FIGURE LEGENDS 

Figure 1. Pathophysiology of APAP-induced liver injury. Acetaminophen (APAP) toxicity is caused 

mainly by the excess formation of N-acetyl-p-benzoquinone imine (NAPQI). Enhanced NAPQI depletes 

hepatic glutathione (GSH), covalently binds to proteins and forms protein adducts. Reactive oxygen 

species (ROS) accumulation oxidizes and removes Trx-1 from Trx-ASK1 complexes, leading to 

activation of ASK1 and subsequent apoptosis signaling cascade. The activated c-Jun N-terminal 

kinases (JNK) translocates into the mitochondria and alters the mitochondrial membrane potential, 

which triggers DNA fragmentation and cell death. Opening of the mitochondrial permeability transition 

(MPT) contributes to the predominant APAP-induced necrotic cell death, compared to the minor role of 

the release of cyt c, and apoptosis factors AIF, Smac/endo G. The increase of misfolded or unfolded 

proteins in the endoplasmic reticulum (ER) lumen triggers ER stress-mediated unfolded protein 

response (UPR), which has three different effectors: the protein kinase R-like ER kinase (PERK), the 

activating transcription factor 6 (ATF6) and the inositol-requiring enzyme 1 (IRE1). If UPR are not 

efficient to restore ER homeostasis, it will ultimately induce the elevated expression of CCAAT-

enhancer-binding protein homologous protein (CHOP) and lead to cell death. 

Figure 2. Schematic role of Sab and StARD1 in APAP hepatotoxicity. Both Sab and StARD1 are 

induced upon APAP metabolism and act in mitochondria. Whereas Sab functions as a docking site for 

activation of JNK to mediate mitochondrial dysfunction and ROS generation, StARD1 activation by an 

APAP-mediated ER stress causes the accumulation of cholesterol in mitochondrial membranes 

(orange structures), which contributes to the limitation of mitochondrial antioxidant defense and 

potentiation of ROS generation. Intriguingly, depletion of Sab and StARD1 independently protect 

against APAP hepatotoxicity, suggesting that both proteins exert complimentary roles in APAP-induced 

liver injury. 

Figure 3. Role of Extracellular Vesicles in DILI. Hepatotoxic drugs induce the release of extracellular 

vesicles (EVs) from hepatocytes carrying a differential cargo which can be isolated from plasma or 

urine, providing a unique source of low-invasive biomarkers. EVs carry cargo including active enzymes 

that can modify the microenvironment, participating in drug clearance, but also forming active drug-

protein adducts that increase toxic effects, or deplete metabolites from blood. Drug-modified proteins 
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can trigger an immune response when EVs are presented to dendritic cells. Studies thus far suggest 

that EVs play an important role in the pathogenesis of DILI, but also offer an opportunity for drug 

diagnosis (as biomarkers) and therapy. 

Figure 4. AOPs in DILI. General representation of the structure of the Adverse Outcome concept, 

applicable in DILI research. The structure is fed with information obtained from different levels of 

biological experimentation. It can be considered as a multi-scale data integration tool, helpful in 

identifying knowledge gaps and prone toward indicating potential biomarkers. (MIE: molecular initiation 

event; KE: key event; KER: key event relation; AO adverse outcome; adapted from: Vinken et al., 

2017[104]. 

Figure 5. Representation of methodological pathway for the use iPSCs as liver in vitro models. 

Reprogrammed iPSCs can be differentiated following two strategies, directed differentiation to liver cell 

surrogates or by organogenic induction. Cells resulting from both strategies can be used in 2D or 3D for 

biotechnological and biomedical applications. 

Figure 6. Chimeric mice with humanized liver to model human DILI: Given the scarcity in the 

availability of PHH for drug toxicity screening, an alternative approach to potentially study human drug 

metabolism and impact in DILI is the xenotransplantation of primary human adult hepatocytes (PHH) in 

immunosuppressed mice engineered to selectively kill mouse hepatocytes while PHH gradually 

repopulation the mouse liver. The FRGN model is amenable for the double humanization with PHH and 

human hematopoietic cells to model human DILI. On the other hand, the generation of the PIRF mice in 

which the Por gene has been deleted in a hepatocyte specific manner as well as the deletion of Il2rf, 

Rag2 and Fah genes to allow the xenotransplantion of PHH to study human drug metabolism to predicit 

human DILI.  

Figure 7. Zebrafish to model DILI. Large-scale phenotypic assays in embryos and larvae using 

zebrafish model for screening of drug- or genetically-induced liver damage using wildtype (wt), mutant 

or transgenic zebrafish injected with different drugs of interest or morpholinos/CRISPR constructs to 

knockdown/knockout specific genes in a high throughput screening format. The effects of treatments 

are scored by microscopy manually or robotically starting from day 3 post-fertilization (3dpf) to observe 
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differences between the control and treatment groups in terms of differences in liver size and/or lipid 

accumulation.  
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Table 1. Advantages and limitations of complex in vitro hepatotoxicity cell 

culture systems 

Cell models Advantages Disadvantages  

ECM 

sandwich 

cultures[266-

268][266-

268][266-268] 

Low complexity 

Hepatocytes regain polarity, 

maintain proper basolateral and 

canalicular transporters 

localization and functional bile 

canaliculi 

Enables estimation of transport 

clearance, enzyme-transporter 

interplay, and bile acid mediated 

hepatotoxicity 

Leakage, bile canaliculi 

damage and development 

of cholestasis in a time-

dependent manner 

[266-

268] 

Stirred 

Bioreactors 

 

Low complexity 

Scalable 

Long-term culture 

Co-culture of different cell types 

Enables perfusion 

Enables online monitoring 

Requires specialized 

equipment  

Shear stress 

Variation in size/cell 

number/shape 

[169, 

269-

273] 

Hollow-fiber 

bioreactors 

Moderate throughput 

Counter-directional flow 

Scalable 

Long-term culture 

Possibility of PBPK studies 

Real-time monitoring 

Complex system 

Microscopic evaluation is only 

possible in the end of the 

experiment 

Requires high number of cells 

Cell sampling not possible 

[269, 

271, 

273-

276] 

Multi-well 

perfused 

bioreactors 

High throughput 

Cells form 3D tissue constructs 

Sustained liver-like cell 

functionality 

Physiological shear stress 

Good correlation with in vivo 

clearance rates 

Ability for microscopic examination 

Uses greater cell numbers 

and 

larger media volumes 

[172, 

277] 

Single-organ 

OoCs 
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HμREL® 

Biochip 

Moderate throughput 

Allows for multiple cell types and 

interaction between cell types 

Preservation of cell viability and 

metabolic competency 

Microscopic imaging and oxygen 

sensing  

Physiologically relevant ratios of 

liquid:cells and shear stress 

Requires less media and cells than 

traditional culture 

Good correlation with in vivo 

clearance rates 

A complex system to establish 

and maintain 

Sample removal difficult  

No 3D tissue constructs 

 

[278] 

Multi-organ 

OoCs 

Long term culture  

Improved cell functionality 

More physiologic model 

Enables tissue communication 

Complex system 

Requires specialized 

equipment 

 

Microfluidic 

devices (eg. 

LiverChip 

system) 

Long term culture 

Laminar flow of cell culture media 

mimics the blood flow 

hemodynamics 

Stable low shear pressure 

Possibility to study multiple organs 

interaction 

Possibility of PBPK studies 

Real-time monitoring of metabolic 

function 

A complex system to develop 

and establish 

Very low-sample and cell 

amounts 

[278-

282] 

Liver 

Bioprinting 

Allows to build/design specific 

structures including endothelial 

and other cell types 

A complex system to establish  

The printing process induces 

stress on cells 

[279] 

Adapted from[272, 279-281, 283] 
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• Drug screenings
• Liver Modeling
• Toxicity Studies
• Regenerative medicine
• Personalized medicine

Reprogramming

Yamanaka	
Factors

iPSC

Cholangiocytes

Hepatocytes

Hepatic	
Stellate	Cells

Kupffer	Cells

Organoids

Liver	Bud

Liver	Cell	Types

Somatic	Cells

Single	
cultures

Complex	
cultures

Personalized	cells
Patient	derived	 															Gene	 editing
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PHH

Repopulation of 
Human hepatocytes

Repopulation of 
Human  hematopoietic cells

Humanized
PIRF mice

PHH

Por KO
Il2rf, Rag2 and Fah KO

Il2rf, Rag2 and Fah KO
NOD background

Double Humanized
FRGN mice

Human
CD34 stem cells

Human drug metabolism
Human DILI
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drugs
morpholino/crispr

wt,	mutant	or	transgenic
embryos/larvae

high-throughput	screening

microscopy:	 liver	phenotypes
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