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Abstract: Turbulence modelling plays an important role in the numerical prediction of 

nonequilibrium condensations in transonic flows. The present study evaluates the effect 

of four different turbulence models, namely, k - ε standard, RNG, realizable, 

and k - ω SST, on the condensation behaviour in transonic flows considering shock 

waves. The numerical simulation is compared to experimental data, which 

demonstrates that the k - ω SST model shows better performance than k - ω turbulence 

models in predicting the nonequilibrium condensation and shock waves in transonic 

flows. 
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1 Introduction 

    Steam condensation in transonic flows is a common issue in various industries, 

such as Laval nozzles, ejectors, turbines, thermo-compressors and supersonic 

separators [1, 2, 3, 4, 5]. Various turbulence models have been used in wet steam 

flow simulations, from k − ε models to SST k − ω model. Simpson and White [6] 

numerically calculated the steam nucleation and condensation in a converging–

diverging nozzle using the standard k − ε model. Ariafar et al. [7] employed the 

realizable k − ε model to perform the numerical simulation on steam condensations in 

a primary nozzle used for an ejector. Wang et al. [8] adopted the RNG k − ε model to 

predict the homogeneous condensation in a primary nozzle for the steam ejector. 

Mazzelli et al. [9] numerically studied the non-equilibrium condensation in a steam 

ejector by employing the k − ω shear stress transport (SST) model. In the present 

study, an assessment of the turnulence model on the steam condensation in transonic 

flows is performed using computational fluid dynamics (CFD) modelling. 

2 Numerical Model 

    The fundamental equations governing the non-equilibrium condensation under 

supersonic conditions are the compressible Navier–Stokes equations. Two transport 

equations are utilized to describe the phase change process during the steam 

condensation, including the liquid fraction (Y) and droplet number per volume (N): 
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where J is the nucleation rate [10], N is the number of droplets per volume. Г is the 

condensation mass due to phase changes: 
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    The growth rate of droplets due to evaporation and condensation, dr/dt, is 

calculated by Young’s model [11]. 
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    For the numerical implementation, the mass, momentum and energy conservation 

equations are directly solved by the ANSYS FLUENT 18 [12], while the User-

Defined-Scalar (UDS) and User-Defined-Function (UDF) interfaces are used to solve 

two scalar equations and source terms. The pressure inlet and pressure outlet 

conditions are assigned for the entrance and exit of the supersonic nozzle. The 

computational simulation employs a structured mesh of 22,800 cells based on a mesh 

convergence test using 7920, 22,800 and 40,000 cells [13]. 

3 Results 

    Four turbulence models (k − ε Standard, k − ε RNG, k − ε Realizable 

and k − ω SST) are evaluated against experimental data presented by Binnie and 

Green in a Laval nozzle [14] to evaluate the influence of the turbulence modelling 

both considering the steam condensation and shock waves in supersonic flows. 

Figure 1 displays the static pressure profile along the flow direction of the Laval 

nozzle clearly showing the occurrence of shock waves in supersonic flows. By 

comparing the numerical result and experimental data, it is shown that all of four 

turbulence models capture almost the same onset of the steam condensation and agree 

well with the experiments. However, the shock wave position differs significantly 
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among four turbulence models. The shock wave appears in the downstream end of the 

Laval nozzle, around x = 0.19 m for the k − ω SST model. The k − ε turbulence 

models predict the position of the shock waves further downstream, 

around x = 0.21 m for the standard k − ε model and x = 0.20 m for the RNG and 

realizable k − ε models. For this case, both the standard k − ε model and 

the k − ω SST model capture the experimental static pressures. 

 

Fig. 1 Pressure profiles at the central line of the Laval nozzle [14] 

    To further investigate the k − ε standard and k − ω SST turbulence models 

capabilities to predict the shock structure in supersonic flows, we consider 

experimental data in [15] which focused on the flow separation in a convergent-

divergent nozzle without considering the nucleation behaviour. Figure 2 describes the 

comparisons between the computed and experimental pressure profiles along the 

nozzle. The results show that the k − ω SST turbulence model accurately captures the 

shock position inside the convergent-divergent nozzle, while the standard k − ε model 

predicts a later shock position. Hence, the standard k − ε model is slow to respond to 

the flow separation in supersonic flows. 
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Fig. 2 Static pressure between computation and experiment 

    In general, by comparing the numerical results with experimental data from Binnie 

and Green Laval nozzle [14] and Hunter convergent-divergent nozzle [15], 

the k − ω SST turbulence model shows better performance on the prediction of the 

supersonic flow with non-equilibrium condensation and shock waves. 

4 Conclusions 

    A computational fluid dynamics model is developed to evaluate the effect of 

turbulence models on steam condensation behaviour in transonic flows considering 

shock waves. The k − ω SST turbulence model shows good agreement with 

experimental measurements, which is recommended for the numerical simulation of 

the wet steam flows concerning both steam condensations and shock waves. 
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