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Abstract – Permanent Magnet Synchronous Motors (PMSMs) 

are now extensively used in many critical applications. There is 

an increasing need for the motor and control system to have 

fault tolerant capabilities. This paper presents a fault tolerant 

control strategy to operate the PMSM during inter-turn fault 

conditions. The proposed technique combines the Model 

Predictive Control (MPC) for the speed and current control 

loops, and an almost error-free Unscented Kalman Filter (UKF) 

to estimate the PMSM inter-turn fault ratio. The PMSM state-

space model for healthy and faulty conditions will be presented. 

Also, the equations and the remedial action of the MPC and 

UKF are provided in detail. The proposed algorithm is applied 

to PMSM model as a case study with a range of simulation 

analysis and discussion of results.  

 

Keywords – fault tolerant, fault diagnosis, Model predictive 

control, unscented Kalman filter, PMSM. 

I. INTRODUCTION 

Permanent Magnet Synchronous Motors (PMSMs) have 

been widely utilized in many crucial and critical applications 

such as propulsion for the railway, electrical trains, electrical 

vehicles, and recently electrical aircraft [1]–[4] as well as 

other safety critical application in chemical or petrochemical 

industries [5]. PMSMs have the privilege of being one of the 

highest efficiency motors, and currently have a very wide 

selection of speed-torque profiles as well as competing with 

very high torque and power density designs [6]–[9].   

The PMSM may be exposed to fault’s existence during the 

operation, these faults could be mechanical, electrical, or 

magnetic [9], [10]. In this context, an extensive range of 

studies was conducted for fault diagnosis of PMSM, 

especially for the safety critical applications. The utilized 

fault diagnosis techniques for PMSM faults can be divided 

into three main types: signal-based, knowledge-based, and 

model-based. The signal based techniques such as Wavelet 

transform, Hilbert-Huang transform, and motor control 

signature analysis were used for PMSM fault diagnosis in 

[11],[12], and [13] respectively. However, these techniques 

take a long time in analysing the measured data which may 

not be suitable for all types of faults. Also, Artificial 

Intelligence (AI) techniques are being used such as 

knowledge-based fault diagnosis techniques for PMSM 

faults, for example, Neural Networks  [14], fuzzy logic [15], 

and particle swarm optimization [16]. However, the AI 

techniques require a set of data logging measurements for the 

machine in case of fault which sometimes not available in all 

machine cases. On the other hand, model-based techniques 

such as the recursive least square method [17] or Kalman 

filter techniques, i.e. extended Kalman filter and Unscented 

Kalman Filters (UKF) [18]–[20] for PMSM fault diagnosis. 

However, not all the PMSM faults can be addressed utilizing 

the model-based techniques due to the unavailability of the 

fault mathematical model. 

Fault tolerant can be considered from the early stages of 

the design of the PMSM. Therefore, it should have the ability 

to operate even with some possible faults mainly to the 

winding, at derated values, or the same values [21]. Fault 

tolerant motors will tend to have lower efficiency and bigger 

volume to incorporate with these requirements [22]. On the 

other hand, the fault tolerant strategy could be achieved 

through a modified or enhanced inverter design, or advanced 

control and parameter estimation control loops [23]. The 

proper fault tolerant control system should identify the fault 

type correctly, then perform the remedial action through the 

controller. 

Model Predictive Control (MPC) has been successfully 

applied for many applications including electrical machines 

[24], [25]. It provides a faster response than the conventional 

PID controller especially in the presence of the cascaded 

PMSM control loops at field oriented control strategy [26]. 

Recently, it has been used as a fault tolerant technique to 

provide a remedial control action under fault conditions [27]. 

In [28] and [29], MPC based on finite control set strategy has 

been used as a pre and post fault controller for open circuit 

fault of multi-phase PMSMs. * This work was supported by the Natural Science Foundation of China, 

through the project with code 51850410515. 
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So, a fault tolerant control strategy based on the MPC 

controller employing UKF for inter-turn fault detection is 

proposed. The rest of the paper is organized as follows: In 

section II, the PMSM model in both the healthy and faulty 

state is given in full detail, while the UKF technique is 

introduced in section III. MPC implementation and the fault 

tolerant action are illustrated in Section IV. The results and 

analysis of the proposed algorithm applied to PMSM are 

presented in Section V, followed by the conclusion in Section 

VI.  

II. PMSM MODEL 

The mathematical state space model of the PMSM is 

essential for both the UKF estimator and the MPC controller. 

The mathematical model of the PMSM can be divided into 

two parts: the healthy state model and the faulty state model  

[17], [26]. It will be detailed in the following sub-section II. 

a, and II. b.  

 

a) Healthy state model  

The PMSM model is represented in the dq-frame as: 

𝐯sd = 𝑅𝑠𝐢𝑠𝑑 + 𝐿𝑞  𝑝 (𝐢𝑠𝑑) − 𝜔𝑒𝐿𝑞𝐢𝑠𝑞  (1) 

𝐯sq = 𝑅𝑠𝐢𝑠𝑞 + 𝐿𝑞  𝑝 (𝐢𝑠𝑞) + 𝜔𝑒𝜆 − 𝜔𝑒𝐿𝑑𝐢𝑠𝑑 (2) 

𝑝𝜔𝑒 =
𝑝𝑝

𝑗
 (𝑇𝑒 −

𝐵𝑓

𝑝𝑝
𝜔𝑒 − 𝑇𝑙) (3) 

𝑇𝑒 = 
3

2
𝑝𝑝 ( 𝜆𝐢𝑠𝑞 − (𝐿𝑞 − 𝐿𝑞)𝐢𝑠𝑞𝐢𝑠𝑑) (4) 

where  vsd , 𝐯sq, 𝐢𝑠𝑑, 𝐢𝑠𝑞 ,  𝐿𝑑 and 𝐿𝑞are the stator’s voltage, 

current, and inductance respectively for dq-frame. 𝑅𝑠 is the 

stator resistance, 𝜆 is the flux linkage of the machine, 𝜔𝑒, 𝑝  

and 𝑝𝑝 are electrical angular velocity, the machine poles and 

pole pairs respectively. 𝑗, 𝐵𝑓 and 𝑇𝑙  represent the machine 

inertia, friction constant, and load torque respectively, and the 

𝑇𝑒 is the electrical torque. As the PMSM model is nonlinear, 

the Taylor expansion is used to develop the linearized 

equations for the model around a definite operating point 

given by (5) and (6): 

 

𝐢𝑠𝑑  𝜔𝑒 = 𝜔𝑒0𝐢𝑠𝑑0  + 𝐢𝑠𝑑0(𝜔𝑒 − 𝜔𝑒0) + 𝜔𝑒0(𝐢𝑠𝑑  − 𝐢𝑠𝑑0) (5) 

𝐢𝑠𝑞𝜔𝑒 = 𝜔𝑒0𝐢𝑠𝑞0 + 𝐢𝑠𝑞0(𝜔𝑒 − 𝜔𝑒0) + 𝜔𝑒0(𝐢𝑠𝑞 − 𝐢𝑠𝑞0) (6) 

 

where 𝜔𝑒0 , 𝐢𝑠𝑑0 and 𝐢𝑠𝑞0 are the linearized model operating 

points. 

b) Faulty state model  

The fault is presented by the added impedance 𝐳𝐬/𝐜 to the 

machine equation which causes the increase in the consumed 

current from the machine. In this case, the total current of the 

machine can be expressed as: 

 

𝐢s
′

𝑑𝑞
= 𝐢𝑠𝑑𝑞

+ 𝐢s/c
′

𝑑𝑞
= 𝐢𝑠𝑑𝑞

+ 𝐳s/c𝑑𝑞

−1 𝐯s𝑑𝑞
  (7) 

 

where 

𝐳𝐬/𝐜𝑑𝑞
−1 = ∑

2𝑛𝑆 𝐶⁄ 𝑘 

(3−2𝑛𝑆 𝐶⁄ 𝑘  )𝑅𝑠
  P(θ)T Q(θs 𝑐 ⁄ )P(θ)T3

𝑘=1   (8) 

P(θ)2×2 = [ 
cos θ − sin θ

sin θ cos θ
 ] (9) 

Q(θs 𝑐⁄  )2×2
= [  

cos2 θS/C sin θS/C cos θS/C

sin θS/C cos θS/C sin2 θS/C
  ]  (10) 

𝐢s
′

𝑑𝑞
 is the total consumed current from the machine in case 

of the fault, P(θ)2×2 is the dq-transformation matrix, 

Q(θs 𝑐⁄  k)2×2
is the localization matrix, 𝑛𝑆 𝐶⁄ 𝑘 represents the 

short circuit turns ratio of the fault at a definite phase k and 

θs 𝑐⁄   is the phase location of the fault at 0, 
2𝜋

3
 or 

4𝜋 

3
. 

c) The General state-space model  

The PMSM equations could be represented in the state 

space model as: 

{
�̇�𝐜(𝐭) = Ac. 𝐱𝐜(𝐭) + Bc. 𝐮𝐜(𝐭) + 𝛅𝐜

𝐲𝐜(𝐭) = Cc. 𝐱𝐜(𝐭) + Dc. 𝐮𝐜(𝐭)
 (11) 

where        

xc(t)
T = [𝐢𝑠𝑑 𝐢𝑠𝑞 ωe]  (12. a) 

𝐮𝐮(𝐭)
𝐓 = [𝐯sd 𝐯sq] (12. b) 

𝐲𝐜(𝐭)
𝐓 = [𝐢𝑠𝑑

′ 𝐢𝑠𝑞
′ ωe] (12. c) 

Ac=

[
 
 
 
 
 

   

−
𝑅𝑠 

𝐿𝑑
𝜔𝑒0 𝐢𝑠𝑞0

−𝜔𝑒0 −
𝑅𝑠 

𝐿𝑞
−(𝐢𝑠𝑑0 +

𝜆

𝐿𝑞
)

0
3𝑃2𝜆

2𝐽
−

𝐵𝑓

𝐽

  

]
 
 
 
 
 

 (12. d) 

Bc= [

1
𝐿𝑑

⁄ 0

0 1
𝐿𝑞

⁄

0 0

  ] (12. e) 

Cc=[ 
1 0 0
0 1 0
0 0 1

 ]  (12. f) 

𝛅𝐜 =

[
 
 
 
−𝜔𝑒0𝐢𝑠𝑞0

𝜔𝑒0𝐢𝑠𝑑0

−
𝑝𝑝. 𝑇𝑙

𝐽 ]
 
 
 

 (12. g) 

Dc = [
D1

0
]     (12. h) 

D12×2 = −∑
2𝑛𝑠

𝑐𝑘

(3−2𝑛𝑠
𝑐𝑘

 )𝑅𝑠

  P(θ)T Q(θs 𝑐⁄  k)P(θ)3
𝑘=1   (12. i) 

where xc(t), 𝐮𝐜(𝐭) and 𝐲𝐜(𝐭) represent the state, input, and 

output vectors. Ac, Bc, Cc and Dc represent state, input, 

output, and feed forward matrices. 



III. THE PROPOSED FAULT DIAGNOSIS ALGORITHM  

The proposed technique is one of the model-based 

techniques to gain the merits of the machine state-space 

model presence in both, healthy and faulty conditions. UKF 

is one of the recursive techniques based on the state space 

model. It can estimate the values of the unmeasurable 

parameters inside the nonlinear systems. 

a) Discretization and Extending of the states  

The first step in the UKF procedures is to extend the states 

with the unknown parameters such as: 

�̃�𝑘 = [
𝐱𝐜(𝐭)

𝛄(𝐭)
] =

[𝐼𝑠𝑑
′ 𝐼𝑠𝑞

′ 𝜔𝑒
𝑛𝐴 𝑠/𝑐 𝑛𝐵 𝑠/𝑐 𝑛𝐵 𝑠/𝑐 ] 𝑇  

(13) 

where �̃�𝑘 represents the total estimated states, 𝛄(𝐭) is the 

additional estimated parameters to the original states, 

 𝑛𝐴 𝑠/𝑐 ,  𝑛𝐵 𝑠/𝑐  and  𝑛𝐶 𝑠/𝑐 . The discretizing using Taylor first 

order equation can be expressed as: 

 

{
�̃�𝑘+1 = F𝑘 �̃�𝑘+ B𝑘  𝐮𝑘+ 𝐰𝑘

�̃�𝑘 = H𝑘 �̃�𝑘+ D𝑘  𝐮𝑘 + 𝐯𝑘
 (14) 

where 

Fk = [
1 + 𝑇𝑠. A𝑐 0

0 I3×3
] (15. a) 

B𝑘 = [
𝑇𝑠. B𝑐

03×3
] (15. b) 

  H𝑘 = C𝑐 (15. c) 

D𝑘 = D𝑐 (15. d) 

b) UKF Algorithm  

The UKF calculates the sigma points of the posterior 

estimated states and works recursively to decrease the error 

between the current states and the posterior ones [30]. This 

approach will provide more accuracy for the estimated states 

than other Kalman filter techniques [31]. The equations of the 

UKF can be divided into three groups: the first group is the 

initialization and calculation of sigma points, the second 

group is the time update process, and the third group is the 

measurement update process. The initialization process is the 

set of initial values for the estimated states  �̂�0
𝑎 and the 

covariance matrix P0
a, assuming the estimated states  �̃�𝑘 has 

the mean of X̂𝑘−1
𝑎  and the covariance matrix of P𝑘−1

𝑎 . Also, a 

matrix of 2L+1 sigma vector X𝑘−1
𝑎 could be formed, where L 

is the length of the estimated states vector and 𝛾 is a weighing 

factor equal to   𝛼2((𝐿 + 𝑘) − 𝐿). 𝛼 could be tuned from 

10−4 to 1 and 𝑘 usually is set to zero.  

The time update equations include the calculation of the 

covariance matrix P𝑘 based on (14), 𝑊𝑖
𝑚 and 𝑊𝑖

𝐶  are 

weighting factors and they are equal to 1 2(𝐿 + 𝛾)⁄ . Finally, 

the measurement update equations will include the Kalman 

gain 𝐾𝑘 for the correction of the next state estimation �̂�𝑘 and 

covariance matrix P𝑘. Fig. 1 shows the UKF algorithm 

flowchart, including equations of the three groups.  

 
Fig. 1. The UKF algorithm flowchart. 

IV. THE PROPOSED FAULT TOLERANT ALGORITHM 

The fault tolerant scenario is developed based on the MPC 

controller to achieve a faster behaviour under faulty 

conditions than classical control techniques. The MPC 

controller and its equations will be illustrated followed by the 

remedial action of the control system in case of the inter-turn 

fault. 

a) The model predictive control 

MPC has been developed as a successful controller to 

improve the system’s response and robustness. The MPC cost 

function could be illustrated by [32]: 



 

𝒋 = ∑ 𝐞𝐓(𝑘)Q(𝑘) 𝐞(𝑘) +
𝑛𝑦

𝑘=1
∑ 𝐮𝐓(𝑘)R(𝑘)𝐮(𝑘)

𝑛𝑢−1
𝑘=0   (29) 

 

subject to the discretised PMSM model in (14), where 

𝐞(𝑘)3∗1 = 𝐲(𝑘)3∗1 − 𝐫(𝑘)3∗1 is the system error, 𝐲(𝑘)3∗1 is 

the output, 𝐫(𝑘)3∗1 is the reference, 𝐮(𝑘)2∗1 is the controlled 

input, Q(𝑘)3∗3 and R(𝑘)2∗2 are weighting matrices, ny is the 

prediction horizon and nu is the control horizon. The model 

will be employed recursively through ny such as: 

�̂�(𝑘 + 1) = Px 𝐱(𝑘) + Hx �̂�(𝑘) (30) 

�̂�(𝑘 + 1) = P 𝐱(𝑘) + H �̂�(𝑘)  (31) 

 

 

where           

�̂�(𝑘 + 1) =

[
 
 
 
 
𝐱(𝑘 + 1)

𝐱(𝑘 + 2)
𝐱(𝑘 + 3)

⋮
𝐱(𝑘 + 𝑛𝑦)]

 
 
 
 

 (32. a) 

Px =

[
 
 
 
 

A
A2

A3

⋮
A𝑛𝑦]

 
 
 
 

 (32. b) 

Hx =

[
 
 
 
 

B 0 0 …
AB B 0 …
A2B AB B …
⋮ ⋮ ⋮ ⋮

A𝑛𝑦−1B A𝑛𝑦−2B A𝑛𝑦−3B …]
 
 
 
 

  (32. c) 

�̂�(𝑘) =

[
 
 
 
 

𝐮(𝑘)

𝐮(𝑘 + 1)
𝐮(𝑘 + 2)

⋮
𝐮(𝑘 + 𝑛𝑦 − 1)]

 
 
 
 

 (32. d) 

�̂�(𝑘 + 1) =

[
 
 
 
 
𝐲(𝑘 + 1)

𝐲(𝑘 + 2)
𝐲(𝑘 + 3)

⋮
𝐲(𝑘 + 𝑛𝑦)]

 
 
 
 

 (32. e) 

P =

[
 
 
 
 

CA
CA2

CA3

⋮
CA𝑛𝑦]

 
 
 
 

 (32. f) 

H =

[
 
 
 
 

CB 0 0 …
CAB CB 0 …
CA2B CAB CB …

⋮ ⋮ ⋮ ⋮
CA𝑛𝑦−1B CA𝑛𝑦−2B CA𝑛𝑦−3B …]

 
 
 
 

 (32. g) 

�̂�(𝑘 + 1)(3∗𝑛𝑦)∗1 is the predicted states, �̂�(𝑘 + 1)(3∗𝑛𝑦)∗1 is 

the output, �̂�(𝑘)(2∗𝑛𝑦)∗1 is the controlled input and P𝑥(3∗𝑛𝑦)∗3 
 

,  H𝑥(3∗𝑛𝑦)∗(2∗𝑛𝑦)
 ,  P(3∗𝑛𝑦)∗3 , H(3∗𝑛𝑦)∗(2∗𝑛𝑦) are the system 

parameters. The solution of (29) considering 𝐮(𝑘) is [33]: 

 

𝐮(𝑘)𝐌𝐏𝐂 = L[(HTQ̂(𝑘)H +

HTQ̂T(𝑘)H+2R̂ T(𝑘))−1 2HTQ̂T(𝑘)(�̂�(𝑘) − P𝐱(𝑘))]  
(33) 

 

where L2∗(2∗𝑛𝑦) = [I  O] with I2*2  is an identity matrix and 

O2*(2*ny-2) is a zero matrix, �̂�(𝑘)(3∗𝑛𝑦)∗1 is the reference, 

Q̂(𝑘)(3∗𝑛𝑦)∗(3∗𝑛𝑦) and R̂(𝑘)(2∗𝑛𝑢−1)∗(2∗𝑛𝑢−1) are weighting 

matrices. The system constraints have been handled through 

the implementation of a softening constraints method. The 

cost function will be [26]:  

𝒋 = ∑ 𝐞𝐓(𝑘)Q(𝑘)𝐞(𝑘) +
𝑛𝑦

𝑘=1
∑ 𝐮𝐓(𝑘)R(𝑘)𝐮(𝑘) 

𝑛𝑢−1
𝑘=0 +

∑ (𝐮(𝑘) − �̅�(𝑘))T𝑛𝑢−1
𝑘=0 S(𝑘) (𝐮(𝑘) − �̅�(𝑘))  

(34) 

 

where 𝐮(𝑘)2∗1 is the controlled input constraint and its value 

is [𝑉𝑑𝑐
2⁄

−𝑉𝑑𝑐
2⁄
]
𝑇

. S(𝑘)2∗2 is the weighting matrix. The 

solution of (34) considering 𝐮(𝑘) will be:   

 𝐮(𝑘)𝐌𝐏𝐂 = L[(HT Q̂(𝑘)H + HT Q̂T(𝑘)H + 2R̂ T(𝑘) +

2ŜT(𝑘))
−1

(2HT Q̂T(𝑘)(�̂�(𝑘) − P𝐱(𝑘)) + 2ŜT(𝑘) �̂�(𝑘))]  
(35) 

where �̂�(𝑘)(2∗𝑛𝑢−1)∗1 and Ŝ(𝑘)(2∗𝑛𝑢−1)∗(2∗𝑛𝑢−1) are the 

constraints values and weighting matrix with length of 𝑛𝑢 −
1. 

 

b) Fault tolerant control action  

In order to make the machine operates in the presence of 

the stator inter-turn fault, the proposed strategy is to adjust 

the load torque which consequently decreases the phase 

current to an equivalent amount of the added value of the 

short circuit current without affecting the operating speed. 

This degradation in current will decrease the electrical stress 

to the winding insulation and prevents possible machine 

temperature increase. The proposed remedial action will give 

the operator enough time to prepare a redundant system or to  

proceed with any other backup scheme after the fault alarm 

has been triggered. As a result, the amount of torque 

degradation will depend on the value of the estimated short 

circuit turns ratio in any of the three phases. The relation 

between the load torque and the 𝑛𝑠/𝑐  can be expressed as: 

𝑇𝑙
∗ = 𝑇𝑙 − 𝑊 𝑛𝑠/𝑐𝐴 − 𝑊 𝑛𝑠/𝑐𝐵 −  𝑊 𝑛𝑠/𝑐𝐶   (36) 

𝑊 =
𝑇𝑙

 𝑛 𝑠/𝑐
∗ −

3 𝑝𝑝 𝜆 (𝐼𝐿𝑝𝑒𝑎𝑘
′ −𝐼𝐿𝑝𝑒𝑎𝑘

)

 2 𝑛 𝑠/𝑐
∗   (37) 

where 𝑇𝑙
∗ is the calculated reference load torque to the MPC 

controller after the existence of the fault,  𝑛 𝑠/𝑐
∗  is the 

maximum applicable value of short circuit turns ratio that the 

machine could withstand, 𝐼𝐿𝑝𝑒𝑎𝑘
 is the peak value of the 

instantaneous load current at the torque 𝑇𝑙   in the healthy state 

and 𝐼𝐿𝑝𝑒𝑎𝑘
′  is the peak value of total instantaneous current 

consumed by the machine in case of short circuit turns ratio 

equal to  𝑛 𝑠/𝑐
∗ . Fig. 2 shows the block diagram of the FTC 

approach for the PMSM system.  



 
Fig. 2. The proposed FTC strategy for PMSM.  

V. RESULTS AND DISCUSSION 

The Simulation is developed using MATLAB Simulink 

workspace, the PMSM parameters are stated in TABLE I. 

The sampling time is selected to be 100 µSec to be suitable 

for the rated frequency and the time constant for the proposed 

machine.  

a) Fault detection results 

At T = 0.5 Sec, a stator inter-turn fault of 10 % is 

simulated in phase A of the PMSM, the load current increased 

to reach a peak value of 13 A. As shown in Fig. 3, the fault 

causes a 31 % increase in the value of the load current. In this 

case, the temperature of the machine is expected to increase, 

and high vibration will appear due to the unbalance phase 

currents. Also, the overcurrent protection will disconnect the 

motor due to the detected increase in the load current. 

So, it is important to detect the presence of the fault before 

the protection device takes an isolation action. Fig. 4 shows 

the UKF estimation response of  𝑛𝐴 𝑆 𝐶⁄  in case of the fault. 

The estimation takes 0.02 Sec (2 cycles of the rated angular 

velocity) to reach the steady state value. Also, the value of 

the estimated parameter is nearly identical to the reference 

value of the fault as illustrated in TABLE II. It shows the 

UKF estimation response of  𝑛𝐴𝑆 𝐶⁄  at different values of  

𝑛𝐴 𝑆 𝐶⁄  from 5 % to 100 %. The estimation accuracy is 

significant in all fault cases. Besides, the fault estimation is 

tested for the other two phases and provides the same 

response. 

TABLE I: PMSM NOMINAL PARAMETERS 

Machine Parameter Value 

Power (P) 2300 W 

Current (Is) 9.5 A 

Voltage (Vs) 220 V 

Frequency (f) 100 Hz 

Stator Resistance (𝑅𝑠 ) 0.55 Ω 

Stator Inductance (𝐿𝑠) 2.225 mH 

Torque (𝑇𝑙 ) 6 Nm 

Speed (Ns) 1500 RPM 

Pole Pairs (𝑝𝑝) 4 

PM Flux (𝜆) 0.114 Wb 

 

 

Fig. 3. The instantaneous values of the total consumed current 𝐼𝐿
′  at 𝑛𝐴𝑆 𝐶⁄  = 

10%. 

 
Fig. 4. Estimation response of 𝑛𝐴𝑆 𝐶⁄  = 10%. 

TABLE II: UKF ESTIMATION RESPONSE ANALYSIS 

Operating 

Points 

Total RMS 

Current (A) 

Ref S/C 

turns ratio 

(%) 

Estimated 

S/C turns 

ratio (%) 

Error 

(%)  

1 7.30 5 5.01 0.200 

2 8.60 10 10.02 0.180 

3 10.6 15 15.00 0.020 

4 13.0 20 19.99 0.060 

5 15.5 25 24.99 0.024 

6 18.1 30 30.00 0.017 

7 20 35 35.00 0.009 

8 22 40 40.00 0.001 

9 24.8 45 45.00 0.001 

 

b) Fault tolerant control Results 

To verify the fault tolerant topology, a scenario of stator inter-

turn fault is simulated at phase A of  𝑛𝑠/𝑐𝐴 = 2 % and the fault 

starts to increase gradually by 2 % every 0.5 Sec at the rated 

load torque of 6 Nm and 9 A load current peak value. The 

torque will start decreasing with the increase of the estimated 

 𝑛𝑠/𝑐𝐴  value based on (36) as shown in Fig. 5 and Fig. 6. On 

the other hand, the total consumed current of the machine 

remains relatively constant despite the increase of the fault 

percentage as shown in the RMS value of the total consumed 

current in Fig. 7. Besides, the speed is being maintained 

constant during all fault cases. However, a small tribulation 

appears in the speed when a higher fault severity is 

experienced as shown in Fig. 8.   



 
Fig. 5. Load torque when the fault increased by 2 % every 0.5 Sec. 

 
Fig. 6. The UKF  𝑛𝑠/𝑐𝐴  estimation at the gradual increase of the fault 

percentage.  

 

 

Fig. 7. The total machine RMS current after the FTC action. 

  

Fig. 8.  Speed response at the fault case scenario.  

 

VI. CONCLUSION 

The paper has presented a fault tolerant control 

approach for the inter-turn fault of PMSM. The PMSM 

healthy model is firstly introduced then the faulty model is 

presented as an integrated part of the estimating parameters 

procedure. The results proved the efficiency of the UKF in 

estimating the exact values of inter-turn fault ratios. Also, the 

MPC controller was applied successfully to have a faster 

response of the system to maintain the motor speed constant 

at inter-turn fault from 2 % up to 10 %. This implementation 

keeps the phase current relatively unchanged and balanced 

despite the fault being localized in one phase. Although the 

motor torque is degraded, it is an acceptable procedure to 

keep the motor running at a reduced torque in the presence of 

the fault. The practical implementation of the proposed 

results will be considered in future work to extend the fault 

frame and fault tolerant strategies. 
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