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Abstract 12 

Building ventilation accounts for up to 30% of the heat loss in commercial buildings and 25% in 13 

industrial buildings. To effectively aid the reduction of energy consumption in the building sector, the 14 

development of demand-driven control systems for heating ventilation and air-conditioning (HVAC) is 15 

necessary. In countries with temperate climates such as the UK, many buildings depend on natural 16 

ventilation strategies such as openable windows, which are useful for reducing overheating prevalence 17 

during the summer. The manual opening and adjustment of windows by occupants, particularly during 18 

the heating season, can lead to substantial heat loss and consequent energy consumption. This could 19 

also result in the unnecessary or over ventilation of the space, or the fresh air is more than what is 20 

required to ensure adequate air quality. Furthermore, energy losses build up when windows are left open 21 

for extended periods. Hence, it is important to develop control strategies that can detect and recognise 22 

the period and amount of window opening in real-time and at the same time adjust the HVAC systems 23 

to minimise energy wastage and maintain indoor environment quality and thermal comfort. This paper 24 

presents a vision-based deep learning framework for the detection and recognition of manual window 25 

operation in buildings. A trained deep learning model is deployed into an artificial intelligence-powered 26 

camera. To assess the proposed strategy's capabilities, building energy simulation was used with various 27 

operation profiles of the opening of the windows based on various scenarios. Initial experimental tests 28 
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were conducted within a university lecture room with a south-facing window. Deep learning influenced 29 

profile (DLIP) was generated via the framework, which uses real-time window detection and 30 

recognition data. The generated DLIP were compared with the actual observations, and the initial 31 

detection results showed that the method was capable of identifying windows that were opened and had 32 

an average accuracy of 97.29%. The results for the three scenarios showed that the proposed strategy 33 

could potentially be used to help adjust the HVAC setpoint or alert the occupants or building managers 34 

to prevent unnecessary heating demand. Further developments include enhancing the framework ability 35 

to detect multiple window opening types and sizes and the detection accuracy by optimising the model. 36 
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1. Introduction and Literature Review  42 

Buildings are known as one of the fastest-growing sectors, which is responsible for up to 40% of the 43 

total energy demand [1]. Heating, ventilation and air-conditioning (HVAC) systems and its associated 44 

operations are currently the largest contributors to the consumption of buildings [2, 3]. Therefore, 45 

reducing the energy demand of HVAC is crucial towards the overall energy conservation and the 46 

reduction of greenhouse gases. Ventilation systems are critical as ventilation accounts for up to 30% of 47 

the heat loss in commercial buildings and 25% in industrial buildings [4]. Energy-efficient techniques 48 

and strategies that can minimise ventilation and uncontrolled air infiltration losses are continuously 49 

being developed [5]. However, these strategies should also comply with the building requirements, 50 

which require the building to be adequately ventilated to provide a healthy and safe indoor environment 51 

for occupants. 52 

Natural ventilation can aid the reduction of moisture levels of indoor spaces and reduce building energy 53 

consumptions via passive cooling [5,6]. It also provides substantial cost savings as compared to other 54 

mechanical ventilation systems [7,8]. According to CIBSE Guide B [9], there is a demand for natural 55 

ventilation in mild or temperate climates such as the UK. This is due to high amounts of large city-56 

centre office buildings currently being mechanically ventilated but have the ability to employ a mixed-57 

mode ventilation strategy or even solely natural ventilation-based strategy. In addition, smaller and 58 

public buildings, such as schools and hospitals also employ natural ventilation strategies.   59 

More guidelines are being put in place to encourage the use of natural ventilation systems in buildings. 60 

The UK Commission for Architecture and the Built Environment (CABE) suggests natural ventilation 61 

must be used wherever possible and should be an integral part of any new building or building 62 

refurbishment design process. In addition, the carbon reduction strategy of the UK National Health 63 

Service (NHS) [10] states that buildings designed with natural ventilation would be more resilient to 64 

energy supply failure than mechanically ventilated buildings.  65 

Lomas and Ji [11] suggests the need for building to become resilient to climate change and increasing 66 

internal heat gains [12]. However, compared to other ventilation systems, natural ventilation is still 67 

considered a system with many requirements for it to be an efficient and effective option for specific 68 

types of buildings [13]. The unreliability of natural ventilation system operation and the indoor air 69 
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quality indicated by Rasheed et al. [14] influences many buildings to consider other options. Many 70 

buildings cannot solely rely on the use of natural ventilation due to these limitations. Hence building is 71 

increasingly using solutions such as the ‘mixed-mode or ‘hybrid’ approach to ventilating buildings [15]. 72 

Natural ventilation by openable windows relies on natural forces of wind and buoyancy forces to 73 

ventilate and passively cool the desired building space [16, 17]. However, this strategy's effectiveness 74 

depends on the conditions between the indoor and outdoor environment [18] and the window opening 75 

patterns [19]. Two important parameters that influence energy consumption in buildings are indoor 76 

temperature and air change rate, directly linked to the occupant’s usage of the window [20]. According 77 

to Pan et al. [21], many studies explored occupants’ window-opening behaviour and indicated that the 78 

indoor and outdoor air temperatures, outdoor seasonal environmental factors, personal preferences are 79 

important factors that can influence window-opening behaviour.  80 

Furthermore, Oropeza-Perez [6, 7, 22] highlights the importance of operation or handling of the natural 81 

ventilation or passive methods required to increase or decrease the indoor temperature. Hence, improper 82 

window use in buildings can have a negative impact on the building energy demand and indoor 83 

environment [23]. This indicates the need for the development of solutions such as demand-based 84 

controls or strategies that can coordinate the use of building technologies to occupancy patterns 85 

reducing energy use and providing adequate comfort conditions [24].  86 

Solutions are being developed to aid various aspects of the built environment to improve safety, security 87 

and efficiency [25]. This includes various types of sensors and detectors to reduce the risks of accidents 88 

within home dwellings and in commercial buildings, through the triggering of sound or signal indication 89 

[26]. The advancement of these techniques will improve window operations and their suitability for 90 

current and future building needs. To understand window operations, Du et al. [27] performed a 91 

qualitative and quantitative investigation, whereby data from a series of surveys, photographic image 92 

observations and onsite measurements were collected and performed on existing windows. The work 93 

suggests that most of the window operations were performed for the provision of most of the window 94 

operations were performed to provide natural ventilation. The data collected can be integrated into 95 

building simulations with realistic profiles for a more accurate prediction of buildings' energy 96 

consumption. Since data were highly dependent on the selected case study building and occupancy 97 

behaviour, the window operations patterns cannot be used to predict other window conditions.  98 

Furthermore, for example, Ou [28] along with companies such as Geze UK [29], Pressac [30] and 99 

Window Master [31] developed technologies for windows that employs artificial intelligence, which 100 

was intended to cope with future advancements and technical requirements. GEZE [29] products consist 101 

of window sensors connected to a building management system that effectively monitors the opening 102 

or closing of windows. However, the solution requires sensors to be installed with every window, which 103 

is not cost-effective, and it also requires windows of existing buildings to be replaced with automated 104 

windows. 105 

Approaches based on the use of machine learning techniques have been developed for the investigation 106 

of window operations. Machine learning regression algorithms are commonly used in the form of a 107 

forecasting method to predict window conditions or to identify the cause-and-effect relationship 108 

between both indoor and outdoor environmental variables with the window operations. For example, 109 

Chen et al. [32] collected data in the form of common environmental indicators such as temperature, 110 

the CO2 concentration of both indoor and outdoor conditions. These indicators were selected and 111 

formed as an input variable for a Cox model (proportional hazard model) to identify occupancy 112 

behaviour's influence towards window operations. Similarly, Rouleau and Gosselin [33] used indoor 113 
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and outdoor temperatures environmental and temporal parameters with a logit regression model to 114 

identify window opening behaviour differences between different households. Therefore, these 115 

solutions suggest the ability to predict window conditions based on environmental conditions.  116 

Furthermore, Shi et al. [34] proposed a novel reinforcement learning (RL) method for the advanced 117 

control of the window opening and closing. Correspondingly, Shi et al. [34] also acknowledged that 118 

window conditions are highly dependent on occupancy behaviour and environmental conditions. 119 

However, using a reinforcement learning technique enabled the identification of the window 120 

opening/closing through observing and learning from the environment. Results suggest that the 121 

developed strategy can improve indoor thermal and air quality by up to 90%. Hence, the development 122 

of solutions highlighted here suggests a desire for novel approaches that implement AI-based techniques 123 

that can accurately detect and monitor window opening behaviour.  124 

Besides machine learning, deep learning (DL) is becoming a popular and widely used tool for solving 125 

building-related problems and improving building HVAC systems. This includes the use of deep 126 

learning-based models for detecting and recognising problems in buildings such as damage [35], faults 127 

and diagnosis issues [36]. Other applications include energy prediction methods [37], energy 128 

management and control [38] and improving building energy efficiency [39]. This indicates that 129 

emerging, deep learning-based methods are becoming fundamental techniques that can provide 130 

solutions to several aspects of building problems.  131 

The majority of the HVAC system deep learning methods are for mechanical systems. Such application 132 

includes [40], where a data-driven ventilation control system based on a deep reinforcement learning 133 

(DeepDL) algorithm was developed and [41] where techniques were designed for mechanical 134 

ventilation systems. However, deep learning could also be a viable technique to enhance building 135 

natural ventilation strategies, but limited solutions are currently available in the literature. Chen et al. 136 

[42] proposed an approach for ventilation systems where deep learning is used to predict the building 137 

thermal responses for the building HVAC system. 138 

Deep learning techniques have recently been adopted in the development of window opening models. 139 

Markovic et al. [43] used a deep feed-forward neural network to model the opening of windows in 140 

offices which showed an evaluation accuracy between 86% and 89%. In addition, Markovic [44] 141 

suggests that deep learning can be used for the prediction of the time of window opening actions 142 

performed by occupants. This study shows the potential for deep learning techniques for enhancing 143 

building system operations. 144 

Since most buildings do not have strict operation times, it leads to uncontrolled operations of windows. 145 

This is also strongly influenced by occupancy behaviour and the variation within the indoor-outdoor 146 

conditions. The time delay between the prediction results and the ability to inform the occupants of the 147 

situation and the system performance's effectiveness must be taken into account. In addition, the 148 

approach suggested by Markovic [43, 44] only focuses on the accuracy of the detection and prediction 149 

of the window opening.  150 

Future works should quantify the impact of the approach on energy performance and practicality. In 151 

addition, there is a need for further developments towards the use of deep learning techniques to enable 152 

real-time building window detection specifically for the effective application of natural ventilation 153 

systems. Additionally, Fabi et al. [19] indicate that existing studies on window opening behaviour are 154 

aimed at investigating the state of the window itself instead of the transition from one state to another 155 
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(opening and closing). Hence, there is a need to develop a solution that recognises the opening and 156 

closing of windows and the time when these actions were performed. 157 

1.1 Novelty and Gaps in Knowledge 158 

The most common methods for window detection are based on the use of window sensors which uses 159 

a magnet and reed switch and motion or passive infrared (PIR) sensors located on every window of a 160 

building. The majority of these sensors are used for security and alarm purposes, with limitations such 161 

as their sensitivity to environmental parameters, including temperature and sound, resulting in up to 162 

25.5% of false-positive results [45]. The study by Surantha and Wicaksono [46] improved a traditional 163 

home security system by incorporating AI techniques. Initial detection was performed by the PIR 164 

sensor, and further recognition was performed using machine learning techniques to provide detection 165 

of intruders with up to 89% accuracy.  166 

While there are many window detection methods available, there is limited research on the use of 167 

window detection to aid demand-driven control solutions for energy and comfort management in 168 

buildings. This is necessary to allow building control systems for HVAC systems to dynamically adjust 169 

to the indoor-outdoor environment changes [43]. Strategies such as computer vision and artificial 170 

intelligence (AI) techniques can be implemented into building controls for higher accuracy monitoring 171 

and control [48]. This can also provide solutions to effectively employ natural ventilation in buildings 172 

while minimising the associated heat loss [49]. 173 

The use of video or vision-based methods to detect occupancy behaviour within a building space is 174 

promising [40]. Compared to other shallow learning methods, the use of deep learning techniques can 175 

lead to a better detection and recognition performance [51]. Recognition tasks are performed by 176 

detecting the shape, characteristic or motion. Zheng et al. [42] proposed a non-intrusive measurement 177 

method to identify window positions and their opening proportion. Unlike other research-based 178 

solutions where numerical and textual data were used along with deep learning techniques as a 179 

forecasting method, Zheng enhanced the method by using an image recognition-based approach. It 180 

consisted of a collection of photographs of windows from various angles which were then processed to 181 

allow further understanding of the window opening state. In conjunction with this, data on the internal 182 

and external environmental conditions were also collected. This enabled the analysis of the direct impact 183 

of window openings towards building performances.  184 

The work [52] proposed Convolutional Neural Network (CNN) in future studies to enhance the window 185 

recognition method. Hence, the present work aims to address this by using a vision-based convolutional 186 

neural network-based deep learning method. Many works have already implemented vision-based deep 187 

learning methods to identify human presence [53] and object classification with high performance and 188 

detection accuracies [54]. However, the application of detection and recognition-based techniques for 189 

the building sector, in particular towards the improvement of building system controls and energy 190 

management is limited.  191 

Based on the review of previous works on detection methods and the impact of unprecedented 192 

occupancy behaviour towards building energy demands, it was observed that there is a necessity for the 193 

development of a demand-driven control and management solution. Whereby novel deep learning-194 

based detection approaches can be used [55 - 57]. Specifically, to prevent windows from being left 195 

unintendedly opened over long periods, real- a better understanding of the utilisation of spaces for 196 

enhancing the building operation and energy effective detection and recognition of window operations 197 

must be achieved. No work has attempted to use computer vision-based window detection and 198 
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recognition method to provide data that could provide real-time information of the window state or 199 

condition for building occupants and building control systems.   200 

1.2 Aims and Objectives  201 

To address the issues and gaps detailed previously, the present study proposes a vision-based deep 202 

learning framework that enables the real-time detection and recognition of the conditions of windows 203 

being opened or closed by occupants. It is based on a similar detection framework proposed by Tien et 204 

al. [53]. For this window detection and recognition approach, it can provide real-time notification to 205 

building occupants and data for building control systems, which can allow it to respond in real-time 206 

depending on the requirements of a space. This could effectively reduce the unnecessary building 207 

energy loads resulting from windows unintendedly left open by the occupants.  208 

 209 

A faster region-based convolutional neural network (Faster R-CNN) was developed and trained for the 210 

classification and detection of windows using a camera. Validation of the developed deep learning 211 

model is conducted using a set of testing data, and the accuracy and suitability for live detection were 212 

also evaluated. Experiments are carried out within a case study university lecture room to test the 213 

capabilities of the proposed approach. Using building energy simulation, the case study building was 214 

simulated with different scenario-based operation profiles, to assess the potential energy savings that 215 

can be achieved. 216 

2. Method 217 

The following section presents an outline of the proposed research approach and the framework 218 

for the development of a method for detecting and recognising the conditions of windows, specifically 219 

focusing on the detection of opened windows.  220 

 The Proposed Approach 221 

The proposed approach is based on a data-driven deep learning framework that enables the detection 222 

and recognition of window openings within a building for effective management of windows and 223 

building HVAC systems. An architectural engineering lecture room within a case study building was 224 

selected to carry out the initial testing of the deep learning framework. The room was also modelled for 225 

the evaluation of its potential impact on the energy usage of the building. The approach can be split into 226 

two parts; 1. development and implementation of the proposed deep learning framework and 2. 227 

framework performance analysis.  228 

Part 1 consists of the formation of a suitable deep learning model for the application of window 229 

detection. The developed deep learning framework is based on the convolutional neural network 230 

(CNN), trained, and validated for real-time window detection and recognition of opened windows. Part 231 

2 is the utilisation of the deep learning model for real-time detection. The model was deployed to an 232 

AI-powered camera, and the detection data are used to form the DLIP of the window operation. This 233 

enables the system to alert occupants/building managers that specific windows are left open during 234 

unoccupied periods. In addition, the profiles could feed into the control system to make adjustments to 235 

minimise unnecessary loads. However, for the initial analysis, different scenarios will be simulated in 236 

BES to predict the potential impact on energy demand. Further details are presented in Figure 1 and are 237 

discussed in the next sections. 238 
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 239 

Figure 1. The proposed research method for the detection and recognition of window conditions. 240 

 Deep Learning Method 241 

The classification-based algorithm Convolutional Neural Networks (CNN) is employed to form the 242 

deep learning window classification detection model (Figure 2a). It is a form of deep, feed-forward 243 

artificial neural network which is most suited to perform modelling for computer vision-related tasks 244 

with image datasets [51]. Deep CNNs have been extensively used to form various types of object 245 

detection frameworks. It directly learns the automatic designated features to produce a state-of-the-art 246 

recognition result, which is ideal for the project’s purpose by enabling the actions of detection and 247 

recognition. Figure 2b presents the method used to develop and test the window detection deep learning 248 

model. Following a general deep learning workflow [58], this consists of data collection and processing, 249 

model training and deployment of model.  250 
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 251 

Figure 2. (a). CNN-based model configuration used for the training of the model. (b). Workflow for 252 

model development and application. 253 

2.2.1. Datasets and Pre-Processing Stages 254 

To enable the identification of window opening on any buildings, the first step of any deep learning 255 

detection and classification models was to form the input datasets and pre-process the input data to the 256 

desired format for training. Like other object detection models, images are used as the desired input 257 

data to form a large dataset that was used to define the condition of windows. The dataset used for this 258 

initial study was limited to the ‘open’ categories of window conditions.  259 

The initial data consisted of more than 650 images in the training dataset, and more than 150 images in 260 

the testing dataset. The number of images used approximately followed the rule of thumb and the 261 

suggestion given by Ng [59] with 80% of the images was assigned for training and 20% for testing. The 262 

images within the datasets must be pre-processed before enabling the data to become ready for model 263 

training. All images were labelled manually using the software LabelImg [60].  264 

Figure 3 shows an example of the images of opened windows assigned to the dataset and how bounding 265 

boxes were drawn manually around the specific region interest of each image. Bounding boxes were 266 

explicitly assigned to the opening gaps of the windows. Using the images in the dataset, 1,398 labels 267 

were assigned to the images in the training dataset and 318 labels in the testing dataset. For some cases, 268 

multiple numbers of labels were assigned to each image as this was highly dependent on the appearance 269 

of the gaps of the windows across the multiple sides of each window in the individual images.  270 
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 271 

Figure 3. Example images, obtained from Google Images, of various window opening types.  272 

2.2.2. Convolutional Neural Network Model Selection and Configuration 273 

To configure the main deep learning model, conditions for the formation of the deep learning model for 274 

window detection must be established. Suitable deep learning framework platforms that were 275 

previously selected for modelling were explored. Many deep learning framework libraries and 276 

platforms such as TensorFlow, PyTorch and Keras are highly popular and is recommended according 277 

to Google Trends (as of February 2020) [61] and along with the comparison of deep learning 278 

frameworks by Fonnegra et al. [62], it suggests that TensorFlow [63] is one of the highest-ranked tools 279 

used for deep learning due to its high capabilities, compatibility, speed, and support it provides.  280 

According to previous works, many choose TensorFlow as the desired platform for the development of 281 

solutions for building-related applications. This includes [43], which used TensorFlow as a platform to 282 

train the desired deep learning model. Vázquez-Canteli et al. [64] fused the TensorFlow technique with 283 

building energy simulation (BES) to develop an intelligent energy management system for smart cities 284 

and Jo, and Yoon [65] indicated that TensorFlow was used to establish a smart home energy efficiency 285 

model. In this present study, the CNN TensorFlow Object detection Application Programming Interface 286 

(API) [61] framework was used to configure the desired window model. Applications such as [62-64] 287 

suggest the ability of the framework to aid the provision of a highly effective and accurate detection 288 

model.  289 

To train the convolutional neural network model to perform classification tasks, the general process 290 

requires defining the network architecture layers and training options. Based on the findings of existing 291 

research which utilised the CNN TensorFlow Object detection API, a transfer learning approach was 292 

incorporated into the model configuration [70]. For the window detection model, the network architecture 293 

layers were not defined from scratch. Instead, the TensorFlow detection model zoo [71] provided a 294 

collection of detection models pre-trained on various large-scale detection-based datasets specifically 295 

designed for a wide range of machine-learning research.  296 
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 297 

For the initial development of the deep learning model, the COCO-trained model of Faster R-CNN (With 298 

Inception V2) was selected and fine-tuned from the list of various types of models. This was selected due 299 

to the popularity in the use for in many object detections models, including [72, 73]. Faster-RCNN with 300 

Inception V2 uses the Faster R-CNN method and inception V2 architecture directly to find the type of 301 

window condition in an image. More details about the selected training model can be found in [71]. Figure 302 

2a summarises the architecture and the pipeline configuration of the model used for window detection. 303 

 Application of the Deep Learning Model 304 

Once the model was trained to a sufficient level where losses did not decrease any further, the associated 305 

inference graph was exported. Directly, the model was prepared for real-time detection via the 306 

deployment to a camera. During the real-time detection, continuous predictions of the window were 307 

classified to the predicted output response of ‘open’ when opened windows were identified, while also 308 

displaying the accuracy of the recognition in terms of percentages. 309 

2.3.1. Case Study Building 310 

An architectural engineering lecture room located on the first floor of Marmont Centre at the University of 311 

Nottingham (Figure 4a) was used as a case study to support various stages of the design and testing of the 312 

framework. The building is naturally ventilated and integrated with a simple heating system. This building 313 

was also modelled using Building Energy Simulation (BES) tool IESVE [74] to further assess the potential 314 

of this framework and the impact of the method on building energy loads. 315 

The selected room has a floor area of 96.9m2 with the dimensions of 12.75m x 7.6m and a floor to ceiling 316 

height of 2.5m. The room consists of four sets of windows.  Figure 4b presents the experimental setup in 317 

the test. The setup consists of a ‘detection camera’ located near the centre of the room. The camera used 318 

was a standard 1080p camera with a wide 90-degree field of view. 319 
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 320 

 321 

Figure 4. (a) Marmont Centre Building at the University of Nottingham, UK. (b). Experimental set-up 322 

for the experimental test. (c). 1st Floor plan. 323 

Figure 5 shows two different window configurations within the lecture room. The north-facing windows 324 

are in an arrangement of 2 x 3 with a total of six 0.915m x 0.416m (0.38m2) glazing panels. The two south-325 

facing windows are in an arrangement of 4 x 4 with a total of 8 0.835m x 0.657m (0.55m2) glazing panels. 326 

The windows have a top hung opening strategy, and they are double glazed with a U-value of 2.20 W/m2K. 327 

For the purpose of building energy simulation, an assignment of 50% of the maximum opening area was 328 

selected for an opened window, and 0% was assigned for a closed window. From architectural drawings, 329 

the building components of the wall, roof, ground and doors consist of U-values of 0.33, 0.22, 0.32 and 330 

3.00 W/m2K. 331 
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 332 

Figure 5. Marmont building lecture room window types. 333 

Furthermore, Nottingham, UK weather data file was used for the simulation. Heating profiles were set to 334 

maintain an indoor temperature of 21°C during occupied hours. Details about the associated profiles for 335 

windows and occupancy assigned were given in the BES section. For the air exchanges, the infiltration rate 336 

value was set to 0.5ach. 337 

2.3.2. Real-time Detection and Deep Learning Influenced Profile (DLIP) Formation 338 

Based on the setup given in Figure 4, two 15-minute experimental tests were performed within the selected 339 

room, focusing on the detection of the south-facing windows 1. This is an initial real-time detection for the 340 

assessment of the capabilities of the method. The experimental test would start with all windows being 341 

closed. After a while, the person will open some of the windows.  342 

In experimental test 1, the person would open one of the windows, and in experimental test 2, two windows 343 

from different heights will be opened. The windows would be opened while the person is present within 344 

the detection frame. Later on, the person left the room, and the windows will be kept open under the 345 

conditions of lights staying on and when the lights were switched off.  346 

During both experimental tests, the continuous real-time detection provided response output window 347 

detection data which were recorded at every two seconds. This was used to form the DLIP. Figure 6 shows 348 

an example of the process of DLIP formation. It presents several snapshots of the recorded frame 349 

indicating the detected window condition and the percentage of prediction accuracy. Due to the method 350 

in the labelling of the gaps of opened windows within the images in the training dataset, it resulted in 351 

instances of windows to achieve two bounding boxes assigned to one window.  352 

For example, this was indicated by the detection shown in frames 2 and 3 with one horizontal and one 353 

vertical bounding box assigned. This suggested the gaps across the whole window were identified, 354 

indicating the response of showing the window is opened. Since more than one bounding box could be 355 

assigned to an opened window, a rule was set to ensure that a single-window opening will only be 356 

detected once. 357 
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 358 

Figure 6. The formation process of the DLIP from window detection data.  359 

The DLIP would be set based on a modulating profile. The maximum value achieved in the profile is 360 

dependent on the possible number of windows which can be identified as open from the number of 361 

windows present within the camera detection region. Based on the experimental setup given in Figure 362 

4 for the experimental tests with a focus on the south-facing windows, a total of 4 windows can be 363 

classified. This is equivalent to the value of 1, as shown in the profile. Effectively, as shown in frame 2 364 

when one opened window is detected, the profile presents a value of 0.25, and when two opened were 365 

identified as opened in frame 3 a value of 0.5 will be recorded.  366 

Furthermore, this DLIP profile will be assessed along with the use of three other profiles; constantly open, 367 

constant closed and the actual observation, which represents the true window condition during the 368 

experiment time and enables the verification of the results obtained for the DLIP. 369 

 Conditions for Framework Performance and Analysis 370 

The performance of the model would be assessed based on real-time window detection. As indicated in 371 

Figure 1, further analysis would be conducted using a scenario approach through BES. The following 372 

section provides the conditions used to perform such analysis. 373 

2.4.1. Detection Model Performance Evaluation Metrics 374 

To perform an initial evaluation of the performance of the model, images assigned in the test dataset 375 

will be used to evaluate the detection performance to provide results in the form of a confusion matrix. 376 

Values for the terms of true positive (TP: representing the achievement of a correct detection), true 377 

negative (TN: representing correct detection when windows are closed or as other), false positive (FP: 378 

representing the number of instances that the prediction was not true, or another instance being wrongly 379 

identified as this response, and false negative (FN: representing the number of instances as predicted to 380 

be something else, but it wasn’t).  381 

 382 
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Based on the created confusion matrix, precision and recall are frequently used to evaluate the accuracy 383 

of the algorithm for object detection, which is defined by Eq. (2) and (3) respectively. Precision is the 384 

measure of exactness or quality, while recall is a measure of completeness or quantity. However, it is 385 

not sufficient to evaluate the detection performance when precision and recall were separately used. 386 

With the consideration of a balance between precision and recall, a measure called F1 Score is formed 387 

by combining these two measures and expressed as Eq. (4). 388 

 389 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑃 + 𝑁)
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 S𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 390 

2.4.2. Test Scenarios and Building Energy Simulation 391 

During the winter seasons in cold or temperate climate locations such as the UK, high amounts of energy 392 

would be wasted due to windows being left open while building heating systems would still be in 393 

operation. An example is the lecture room within the Marmont Centre, where it relies on conventional 394 

control systems for the HVAC. Typical “static” or fixed operation schedules were used. However, this 395 

cannot adjust according to the actual requirements of the space [55, 56].  396 

The following presents the set-up of test scenarios used to investigate the impact on building energy 397 

demand when the deep learning approach is applied. The scenario consists of the schedules indicated 398 

in Figure 7. The four-day period, Friday to Monday timeline provides a sample structure of how the 399 

room is occupied during a typical weekend during the winter months, between Friday 10th and Monday 400 

13th January. Specifically, the heating season was selected for analysis as parameters such as outdoor 401 

airflow and temperature must be considered when designing the control strategy i.e., night cooling and 402 

passive cooling.    403 

The room was timetabled to have a lecture session on Friday (day 1) at 14:00–16:00 and another session 404 

at 10:00–12:00 on Monday (day 4). At these times, it was assumed that the building had maximum 405 

occupancy with 40 students present. Furthermore, the room was assumed to be unoccupied for the rest 406 

of the time. These occupancy-based conditions were presented as the scenario-based occupancy profile 407 

in Figure 8c.  408 

For all scenarios (S1 – S3), it was assumed that only the highlighted south-facing windows in  Figure 7 409 

were opened by occupants during the lecture session at 15:00 on Friday (Day 1). For Scenario 1, the 410 

window was left open until 10:00 am on Monday, where a person who attended the session decided to 411 

close these windows.  412 

In scenario 2, the window detection strategy is employed which is assumed to have the ability to inform 413 

the occupants or building manager. This was highlighted in Figure 1 as the first response when windows 414 
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are detected as opened when they are not intended to be in this state. For this scenario, the opened 415 

windows were detected, and it informed the occupants/building manager to close the windows at 17:00. 416 

Scenario 3 adopts an approach in which the opened windows were continuously detected after alerting 417 

the occupant/ building manager and hence adjustments were made to the setpoint temperature. 418 

 419 

Figure 7. Description of the scenario schedules. 420 

Figure 8 presents the window operation and heating setpoint profiles used within BES. The static 421 

profiles are presented in Figure 8a and are incorporated within the scenario-based building energy 422 

modelling. The comparison of the static profiles (Figure 8a) with the DLIP would provide an 423 

understanding of the difference between actual window conditions and the use of static profiles.  424 

Based on the scenarios described above, Figure 8b presents the corresponding window profiles. The set 425 

indoor room temperature was based on ASHRAE 90.1 [75] and ASHRAE 55 [76]. For occupied hours, 426 

it advised a temperature of 22 – 27°C for cooling and 17 – 22°C for heating, while during unoccupied 427 

hours it suggested 27 – 30°C for cooling and 14 – 17°C for heating.  428 

Effectively, given in Figure 8d, a generalised room setpoint temperature of 21°C was set during the 429 

typical occupied hours of 09:00 – 17:00 and 15°C during the unoccupied hours. It should be noted that 430 

occasionally students may occupy this room during both Saturdays and Sundays. Hence, the standard 431 

heating profile shows the same profiles for all four days. However, due to the approach given for 432 

Scenario 3, it, therefore, follows the heating profile indicated in Figure 8e.  433 

 434 
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Figure 8. Window and building energy modelling profiles.  436 

The modelling of the windows consisted of an exposed wall type exposure, with a top hung window 437 

opening. Following Figure 5, the windows were assigned with an openable area of 50% and a maximum 438 

openable angle of 45°. The degree of the opening was assigned with a modulating profile corresponding to 439 

the window profiles created (Figure 8a and b). Table 1 summarises the simulation cases and the associated 440 

window and heating profiles used.  441 

Table 1. Summary of the building energy performance simulation scenario cases. 442 

Simulation 

Case 

Assigned Profiles 

Window Heating Occupancy 

Constant Open Constant open (Figure 8a) 

Standard (Figure 8d) 
Scenario-based (Figure 

8c) 

Constant 

Closed 

Constant closed (Figure 

8a) 

Scenario 1 

Scenario-based (Figure 

8b) 

Scenario 2 

Scenario 3 
Scenario 3 (Figure 

8e) 

 443 

3. Results and Discussion 444 

The following presents the results and discussion of the developed deep learning-based window 445 

detection model. The trained model was used to conduct the described experimental tests and the 446 

following section shows the initial performance and analysis along with the further evaluation based on 447 

scenario-based building energy performances.  448 

 Deep Learning Model Training Performance and Evaluation 449 

The initial deep learning model was trained using the graphics processing unit NVIDIA GTX1080. The 450 

training was conducted for 199,630 steps, and it took eleven hours, 29 minutes for the total losses to 451 

reach the level indicated in Figure 9. Using the pre-trained model Faster-RCNN with InceptionV2 to 452 

aid the training of the model for the detection of windows, the results provided a maximum loss of 1.237 453 

and a minimum loss of 0.0152.  454 

The convergence of the loss function implies that the model has been effectively trained. Observations 455 

made for this proposed approach can be used to compare with different modifications applied. Table 2 456 

presents the results in form of a confusion matrix and evaluation metrics, which were devised from the 457 

total number of predicted labels assigned to the application of the images from the dataset.  458 

A total of 160 images from the test dataset were used. The results suggested that 279 labels out of 318 459 

prediction labels were correctly assigned to the presented opened windows, an average detection 460 

accuracy of 87.74%.  Furthermore, 11 of the labels were assigned to the opened windows when they 461 

actually closed or other, and 28 labels were not assigned to windows when they were presented as 462 

opened. Overall, an F1 score of 0.9347 was achieved. This indicated that the majority of the images of 463 
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windows were correctly classified and validated the model being suitable for window detection and 464 

recognition.   465 

 466 

Figure 9. Training results. (a). Classification loss, and (b). A total loss against the number of training 467 

steps. 468 

The images assigned in the test data were used to test and assess the initial model performance. 469 

Prediction labels were assigned to the images as a response to the application of the detection model. 470 

To provide effective evaluations, the dataset consisted of images of various windows with an opened 471 

condition. It included images of windows with top-hung and side-hung designs. 472 

Table 2 presents the results in form of a confusion matrix and the common machine learning 473 

classification model evaluation metrics, which were devised from the total number of predicted labels 474 

assigned to the application of the images from the dataset.  475 

Table 2. Model performance based on the number of predicted labels assigned to the application of 476 

the images from the testing dataset.  477 

Confusion Matrix 
Window 

Classification  
Accuracy Precision Recall 

F1 

Score 

 

Open 87.74% 0.9621 0.9088 0.9347 

 478 
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 Framework Performance: Detection and Recognition  479 

The section presents the initial performance of the trained window detection model. The trained model 480 

was deployed to form an AI-based camera, enabling real-time detections within the selected case study 481 

building. Section 3.2.1. introduces the model’s ability in providing effective applications within a series 482 

of different types of windows, while Section 3.2.2. presents the application of the model during the 483 

selected experimental tests.    484 

3.2.1. Real-time Detection and Recognition of Windows 485 

Figure 10 shows the live detection and recognition results for the different windows located in the room. 486 

Predicted bounding boxes were assigned to windows when they were recognised as open. Above the 487 

bounding boxes, the accuracy percentage of prediction was displayed. Through the detection of the 488 

north-facing window, along with the south-facing window 1 from two different camera angles and 489 

lighting conditions, it was observed that windows that were opened were identified. Further training 490 

would be made to improve the detection accuracy and to reduce the possibility of achieving false 491 

detections.  492 

 493 

Figure 10. Detection and recognition results on different windows in the selected Marmont Lecture 494 

Room. 495 

3.2.2. Experimental Detection and Recognition Results  496 

To show the capability of the proposed approach, two real-time experimental detection tests, 497 

Experimental Test 1 and 2 was performed within the Marmont Lecture room. The test was based on the 498 

set-up given in Figure 4, and each test was performed for 15 minutes. Figure 11, along with Video 1 499 

and 2 presents a preview of the real-time window detection and recognition model during the two 500 

experimental tests, focusing on the south-facing windows 1. Both experimental tests had the camera 501 

positioned at the height and angle replicating typical occupancy sensors, by locating the camera near to 502 

the ceiling of the room.  503 

It should be noted that in practice, the device won't be storing or outputting images. It will only output 504 

real-time information on the number and location of open windows. The images and videos of the 505 

detection performance are for visualisation purposes and are to give a preview of how the detection and 506 

recognition works. It is envisioned that the detection technology and AI camera will be integrated into 507 

a single device and will only output data required by the demand-driven control system. 508 

 509 
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 510 

Figure 11. Preview of the real-time window detection and recognition model during (a). Video 1 – 511 

Experimental Test 1 and (b). Video 2 – Experimental Test 2. See links for the videos on the last page. 512 

Figure 12 and Figure 13 presents examples of window detection and recognition during Experimental 513 

Test 1 and 2, based on the key stages as highlighted by the timelines given in Figure 11 and Videos 1 514 

and 2. The results showed its capabilities in detecting if the windows are open such as when there is no 515 

person near the window and when a person is opening the window and sitting near the window. It also 516 

showed its capabilities when artificial lighting is switched off. 517 

As given by the snapshots in Figure 12 and Figure 13, the size and shape of these bounding boxes varied 518 

between each detection interval. It was dependent on the size of the detected space, the distance of the 519 

camera with the detected window, and it was also dependent on the influence of the presence of a person 520 

which can be considered as an obstructing object.  521 

Furthermore, due to the method in the labelling of the gaps of opened windows within the images in the 522 

training dataset, it resulted in instances of windows to achieve two bounding boxes assigned to one 523 

window. For example, this was presented in all the detections highlighted in Figure 12, with one 524 

horizontal and one vertical bounding box assigned. Otherwise, in instances such as the top left window 525 

shown in Figure 13, only one bounding box was present as the vertical gap within the window was not 526 

clearly shown.  527 

Hence, the proposed method of detecting window opening gaps potentially reduces the occurrence of 528 

issues such as obstruction as typically, the size of the windows will be larger in comparison to objects 529 

such as occupancy body size and size of general objects within a room. This suggests the full window 530 

would be unlikely be blocked at all times. In addition, a window should not be blocked at all times as 531 

this could lead to other issues such as daylighting and visual comfort within buildings. 532 
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 533 

Figure 12. Example snapshots of various key point stages during the application of the window 534 

detection approach during Experimental Test 1. 535 
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 536 

Figure 13. Example snapshots of various key point stages during the application of the window 537 

detection approach during Experimental Test 2. 538 
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 Framework Performance: Detection Performance Analysis 539 

Based on the detections made in Section 3.2.2., the following shows the analysis of the model detection 540 

and recognition performance that was based on the experimental tests conducted within the case study 541 

building.  542 

3.3.1. Analysis of the Real-time Detection Performance 543 

Figure 14 presents the average bounding box detection accuracy for both experiments.  No results were 544 

obtained for parts 1 and 2 of both experiments, as all windows were identified as not being opened. For 545 

the other parts, it indicated an average detection accuracy of 98.19% was achieved for experimental test 546 

1, and 96.67% for experimental test 2. A threshold limit with a minimum detection accuracy of 60% 547 

was set to only enable the display of detections when the accuracy is above this value. This mitigates 548 

any form of uncertain predictions. Stable performance was achieved, as minimal variations were 549 

presented within the accuracies between parts 3, 4 and 5 in both experimental tests. 550 

The highest prediction accuracy was achieved in part 3. This was when the windows were opened, and 551 

minimal movement was performed by the person. Similar results were achieved in part 4, and only a 552 

slight decrease in accuracy values was achieved when the lights were switched off in part 5. Overall, 553 

the results suggest that the developed model is capable of detecting multiple numbers of windows under 554 

various room conditions. However, this is only based on the initial detection at the selected period of 555 

time. Hence, further model training and testing would be performed to achieve higher detection 556 

accuracies for various types of windows.  557 
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 558 

Figure 14. Average detection accuracy based on the displayed bounding box during real-time 559 

predictions in a). Experimental Test 1 and b). Experimental Test 2. 560 

Figure 15 presents the overall detection performance of the proposed approach during the two 561 

experimental tests. For experimental test 1, Figure 15a showed that the approach provided correct 562 

detections for an average of 99.61% of the time, 0.28% of the time to achieve incorrect detections and 563 

subsequently, 0.11% of the time with no detections. Similarly, for experimental test 2, Figure 15b 564 

suggests it achieved correct detection for 97.56% of the time, 1.94% of the time to achieve incorrect 565 

detections and no detections occurred for 0.50% of the time.  566 

Obtaining a correct detection represents the instance when the opened windows were correctly 567 

identified as open, and also for the times when detection was correctly not made when windows were 568 

closed. Generally, the performance of the model was better in experimental test 1 than experimental 569 

test 2.  570 
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Based on the breakdown of the detection performance for each of the 5 parts of each of the experimental 571 

tests, in experimental test 1, part 2 achieved the most amount of incorrect detection, 1.25% of the time. 572 

This could be because the person was within the detection frame and displaying false results in 573 

suggesting windows being identified as opened when they were not.  574 

Similarly, this may also cause the result of incorrect detection in part 3 of detection performance during 575 

the experimental test 2, with incorrect detections was recorded for 3.13% of the time and no detection 576 

for 1.88% of the time.  577 

 578 

Figure 15. Detection performance during a). Experimental Test 1 and b). Experimental Test 2. 579 

Identification of the percentage of time achieving correct, incorrect, and no detections during the 580 

whole duration of each test and for each of the sections. 581 

3.3.2. Further Evaluation of the Detection Accuracy Based on Classification Evaluation Metrics 582 

Figure 16 presents the results for the different parts of the experimental tests in the form of a confusion 583 

matrix based on the prediction response label of ‘open’ displayed on the detected windows. Since no 584 

windows were opened in parts 1 and 2 of both tests, no results were given for the majority of the 585 

confusion matrix displayed.  586 
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However, for part 2 in experimental test 1, three labels were present in identifying windows as opened, 587 

when they were not. This resulted in the only value displayed in this matrix. Similar to the results shown 588 

in Figure 15 of the overall detection performance, the results shown in the confusion matrix for parts 3, 589 

4, and 5 for both experimental tests, suggests that most labels were correctly assigned to the opened 590 

windows. Only the occasional instances when the opened windows were not identified, so no labels 591 

were assigned. Also, times when labels were assigned to windows that were closed.  592 

 593 

Figure 16. a). Experimental. Test 1 and b). Experimental Test 2 detection performances evaluated in 594 

the form of the confusion matrix based on the labels identified. From clockwise; no person, a person 595 

sitting with windows closed, a person sitting with windows opened, no person, no person with lights 596 

off, entire duration. 597 

The confusion matrix results displayed in Figure 16 for each part enabled the evaluation of the results 598 

in the form of the different classification evaluation metrics, as shown in Error! Not a valid bookmark 599 
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self-reference.. An accuracy of over 99% accuracy with an F1 score of 0.9951was achieved for the 600 

performance during the experimental test 1 and an accuracy of 96% with an F1 score of 0.9797 for 601 

experimental test 2.  602 

Table 3. Evaluation of the model performance during Experimental Test 1and 2, based on common 603 

evaluation metrics. 604 

Section Accuracy Precision Recall F1 Score 

Experimental Test 1 

Part 1: No person - - - - 

Part 2: Person sitting, 

window closed 
- - - - 

Part 3: Person sitting, 

windows opened 
99.15% 1.0000 0.9915 0.9957 

Part 4: No person 99.45% 0.9945 1.0000 0.9972 

Part 5: No person, 

lights off 
99.67% 0.9967 1.0000 0.9983 

Whole duration of 

experimental test 1 
99.03% 0.9931 0.9972 0.9951 

Experimental Test 2 

Part 1: No person - - - - 

Part 2: Person sitting, 

window closed 
- - - - 

Part 3: Person sitting, 

windows opened 
93.28% 0.9569 0.9737 0.9652 

Part 4: No person 98.18% 0.9818 1.0000 0.9908 

Part 5: No person, 

lights off 
95.27% 0.9527 1.0000 0.9758 

Whole duration of 

experimental test 2 
96.01% 0.9680 0.9916 0.9797 

 605 

 Framework Performance: DLIP of Window Operation 606 

The real-time detections enabled the formation of the DLIP. Video 3 shows an example of the window 607 

detection and recognition along with the generation of the DLIP profile. The DLIP was based on a 608 
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modulating number of detected opened windows, with the value of 1 representing the times when all 609 

four windows within the detection frame were identified as open.  610 

 611 

Video 3. A video presenting the application of the developed window detection and recognition model 612 

in Experimental Test 2 along with the generation of the DLIP. See the link for the video on the last 613 

page. 614 

Figure  presents the generated DLIP of the opening patterns for the selected windows in the Marmont 615 

Room during a). Experimental test 1 and b). Experimental test 2. The formation of the profile 616 

corresponds to the process indicated in Figure 6 The Actual Observation Profile defines the ‘actual’ 617 

window condition. This profile was used to assess the accuracy of the DLIP, as shown in Figure . Based 618 

on the initial experimental results, at times the DLIP still alternates between the values of the window 619 

profile schedule, indicating prediction error. Therefore, further improvements are required to enhance 620 

the accuracy, reliability and stability of the detection model.  621 
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 622 

Figure 17. Generated DLIP based on the window detection results performed in Experimental Test 1 623 

and 2, along with the corresponding actual window conditions.  624 

 Scenarios and Building Energy Performance Analysis 625 

Based on the proposed research method shown in Figure 1, this section presents the analysis of the 626 

framework performance based on different scenarios-based situations. Building energy simulation was 627 

conducted to provide the following discussion in terms of heating demand and ventilation heat losses.  628 

3.5.1. Heating Demand 629 

Figure  presents the heating results for the four days under the different simulation cases. Based on the 630 

use of “static” profiles for the window operation in the BES, the maximum (constant open) and 631 

minimum (constant closed) heating load that can be achieved depending on the window opening is 632 

presented in Figure 18a. When the windows were constantly closed, the high number of occupants 633 

present within the room led to high internal occupancy heat gains which led to the lower heating 634 

requirement for these periods of time.  635 

Figure b shows the results for the heating load for the three scenarios. For scenario 1 the results suggest 636 

the heating load would be similar to constant open as the windows were kept open from 15:00 on Friday 637 

(day 1) to 10:00 on Monday (day 4). The only differences occurred at the times before the window was 638 

opened on Friday (day 1) and after it was closed on Monday (day 2). The opened windows resulted in 639 

a high increase in heating loads due to the continuous heating of the room to reach the desired setpoint 640 

temperatures (Figure 8d). 641 

For scenario 2, the deep learning method was used to assist the detection of the opened windows and 642 

notification was given to either the occupants or the building manager. Prior to the closure of the window 643 



 

 

30 

at one hour after the lecture was finished (at 17:00), the same amount of heating load as scenario 1 was 644 

required. However, once the windows were closed, it resulted in a significant decrease in heating load. For 645 

this case, heating was not required for the rest of the day. Instead, heating was only required for the periods 646 

where the room had a set point temperature of 21°C.  647 

Scenario 3 was simulated using the same window profiles as for scenario 1 (Figure 8b) since the 648 

windows were kept open from Friday night to Monday morning. Instead of a standard heating profile 649 

based on the typical room occupied hours, a different heating profile given in (Figure 8e) was used to 650 

model the situation where the deep learning detection method assisted the building controls through 651 

sensing the opened windows which therefore informed the operations of the building HVAC systems.  652 

Due to it being the end of the office day and no occupants present after 17:00, the second approach 653 

given in the deep learning framework shown in Figure 1 was followed. The sensors from the detection 654 

model informed the building energy management system controls and influenced the building HVAC 655 

system to reduce the heating setpoints until Monday.  656 

Figure 18 presents the corresponding heating load results for Scenario 3. By comparing the results 657 

across all three scenarios, similar heating loads were achieved on day 1 and since the room setpoint 658 

temperature was changed to 10°C for the times when the window was detected as opened, it resulted in 659 

the requirement of no heating.  660 

Furthermore, a high peak in an increase of heating demand was presented a 10:00 on Monday (day 4) 661 

as the room setpoint was then changed to 21°C. However, the requirement of a high heating load only 662 

occurred for a short period of time as occupants were present within the room.  663 
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 664 

Figure 18. Heating load results for a weekend (Friday 10th – Monday 13th January) achieved using 665 

building energy simulation cases of a). constant scheduled window profiles and b). the three different 666 

scenario-based cases. 667 

Figure 19 presents the total heating demand between the scenario simulation days. It suggested the room 668 

with windows assumed to be constantly opened required a heating load of 606.6kWh. This is based on 669 

a worst-case scenario which indicates the maximum amount of heating that is essential to maintain the 670 

room at 21°C during occupied hours. In comparison, for constantly closed windows, heating of 671 
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91.4kWh was needed. This was due to no ventilation heat losses through windows. It should be noted 672 

that the occupancy profile was assigned in the model and hence the occupancy heat gains led to the 673 

requirement of less heating.  674 

Furthermore, Scenario 1, 2 and 3 achieved a total heating load of 238.5kWh, 99.3kWh and 68.0kWh. 675 

Given by scenario 2, heating after 17:00 was decreased by approximately 7kW (during the next hour) 676 

as the occupancy/building manager was informed about the opened windows, which prevented the 677 

windows from being left open.  678 

Additionally, Scenario 3 consisted of the DLIP data to inform the HVAC system to provide lower indoor 679 

temperature during unoccupied times. This was shown by the achievement of decreased heating loads 680 

to the minimum. With the setpoint temperature of the room being dependent on the window conditions, 681 

building demands can be effectively reduced.  682 

 683 

Figure 19. A comparison between the total heating load (Friday 10th – Monday 13th January) predicted 684 

based on BES cases of constant scheduled window profiles and the three different scenario-based 685 

cases. 686 

3.5.2. Ventilation Heat Loss 687 

Figure a shows the ventilation heat losses within the room throughout the four days. The losses are 688 

influenced by the outdoor air conditions on the selected day and also directly with the window profiles 689 

given in Figure 8. From the constant open and constant closed results, generally shows the maximum 690 

and minimum possible losses.  691 

The results for scenarios 1, 2, and 3 were directly influenced by the window profiles given in Figure 8b 692 

which indicates the importance of knowing whether windows are either opened or closed, as it can 693 

significantly affect the ventilation conditions within an indoor environment, which therefore justifies 694 

the importance of the deep learning detection method. Figure 20b shows the total ventilation heat losses 695 

for each scenario. 696 

The ventilation heat loss achieved was solely based on the consideration of the window opening 697 

behaviour. However, other contributing factors such as the wind direction, velocity, airflow 698 

performance would also have a large impact on the indoor air quality, airflow performance and also the 699 



 

 

33 

amount of ventilation losses via the opened windows. These contributing factors would be considered 700 

within the future development of the approach towards the design of the response system that would be 701 

integrated with building controls to enable the achievement of effective operations of building HVAC 702 

system. 703 

 704 

 705 

Figure 20. Building ventilation heat loss (Friday 10th – Monday 13th January) predicted based on BES 706 

cases of assigning constant scheduled window profiles and the three different scenario-based cases. 707 

b). A comparison between the building ventilation losses. 708 

4. Conclusion and Future Work 709 
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The present study introduces a data-driven deep learning framework for the detection and recognition 710 

of window openings within a typical university building to minimise unnecessary energy usage. A 711 

Faster R-CNN model was employed and trained for the classification and detection of windows. The 712 

deep learning framework was evaluated using the detection within the selected lecture room in the case 713 

study building. The detection and recognition of windows formed the DLIP, which was compared with 714 

‘Actual Observation’ profiles.   715 

The deep learning framework was evaluated using the detection within the selected lecture room in the 716 

case study building. The detection and recognition of windows formed the DLIP which was compared with 717 

‘Actual Observation’ profiles. To analyse the model detection performance, two experimental tests were 718 

performed. Correct detections were achieved for over 95% of the time, with an average detection accuracy 719 

of 97.29%. This initial result showed the capabilities of this framework for detecting and recognising 720 

the conditions of the windows. 721 

Using BES, the selected room was modelled and simulated to assess the potential impact of the proposed 722 

approach on the building energy demand. Results show the assumption of windows being constantly 723 

opened can provide an over-prediction of the heating load by up to 208% or the assumption of windows 724 

being constantly closed can result in an under-prediction by up to 57%. To further analyse the impact 725 

of the DLIP and window detection approach, a typical four-day (Friday – Monday) period was 726 

simulated based on three scenarios.  727 

For Scenario 1, leaving the windows open during the entire period led to a total heating load of 239kWh. 728 

In Scenario 2, the deep learning method was used to assist the detection of the opened windows and 729 

notification was given to either the occupants or the building manager who closed the windows one hour 730 

after the lecture was finished. This resulted in the total heating load to decrease by 139kWh. In Scenario 731 

3, adjusting the setpoints based on the detection data led to a much higher reduction in heating loads. 732 

Further developments will be carried in the proposed future works. The deep learning framework can 733 

be optimised by adding more training data to improve the detection accuracy with modifications to the 734 

deep learning model architecture. Moreover, a streamlined transfer of the data obtained from the deep 735 

learning model to the building profile generator would be necessary. It would provide a direct and 736 

automated adjustment of setpoints for the HVAC system based upon the detection results. Whereby, 737 

the framework would be enhanced to enable direct detection of windows that feeds data to an actual 738 

building control system. Future works would also consider the exploration of how the information of 739 

the window condition can also be provided to the user or control the openings (for the case of 740 

automatically controlled windows) to optimise the indoor air quality and comfort during occupied 741 

periods. 742 

As shown in Figure A1, a combination of occupancy [50, 52] and window detection can be evaluated 743 

and to improve the model performance, a series of test will be conducted to allow the approach to 744 

effectively be able to work under various types of building spaces along with different environmental 745 

conditions and settings.   746 
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Appendix 992 

 993 

Figure A1. Application of the window detection model with other occupancy-based detection models 994 

to provide real-time data in form of various deep learning influenced profiles to inform the controls of 995 

building HVAC systems. 996 


