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35 Correction for multiple comparisons in general
36 Research articles typically present the results of several hypothesis tests and often state ‘All tests

with p-values <0.05 were considered statistically significant’. Ignoring that multiple tests were

39 performed induces false positive findings. Indeed, when multiple true null hypotheses are tested, the
40 probability of rejecting at least one null hypothesis (referred to as the overall Type-I error rate or

family-wise error rate [FWER]) increases with the number of tests. For instance, if 20 independent

43 statistical tests are performed at the 0.05 significance level in a scenario in which all null hypotheses

44 are true, the probability of rejecting at least one null hypothesis is almost 65%. This inflation of the

Type-I error rate, known as multiple testing problem or multiplicity, constitutes a real challenge to

researchers and partly explains the lack of reproducibility of scientific findings 1 Many procedures

48 have been developed to overcome multiplicity 2 Due to its simplicity, the most widely used approach
49 is the Bonferroni procedure, where Type-I error for each test equals the target overall Type-I error

level (usually 0.05) divided by the number tests. This multiplicity correction leads to a FWER close to

52 the target overall Type-I error level when all tests are independent but is known to be overly

53 conservative when the tested hypotheses are related, leading to an unnecessary loss of power (i.e.,

lower probability of finding true associations). Therefore, multiplicity correction methods taking their

56 dependence into account are generally preferred to gain power (e.g. resampling methods such as

57 bootstrap and permutation tests) “. When the number of tests is very large, like in omics studies
58 (e.g. genomics or transcriptomics), the control of the false discovery rate (FDR, i.e. the proportion of

true null hypothesis among all rejected null hypotheses) is usually preferred to the control of the
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3 FWER as it allows notable gains in power5. The choice regarding which method to use depends on

the type of study and the hypotheses to be tested. This editorial aimed to briefly discuss multiplicity

6 correction used in different contexts and state BiD multiplicity requirements for publication.

7
8
9 Clinical Trials
10 Sample sizes of clinical trials are based on a single or co-primary endpoints 6,7 A trial with co-primary
11 endpoints is considered negative if the result related to any of the co-primary endpoints is not

significant. The use of multiple primary endpoints for a given sample size induces a loss of power but

14 does not increase the Type-I error rate. In addition to the primary endpoint(s), a set of secondary
15 and exploratory endpoints, for which no a priori sample size calculation was performed, is usually

tested as well. In order to prevent false positive findings among the set of secondary endpoints, a

18 clear distinction between the true secondary endpoints (i.e. which may support the primary endpoint

19 and/or show additional effects after success of the primary endpoint) and the exploratory endpoints
20 (i.e. hypothesis generating or endpoints with very low event rate) should be made ‘. Hypothesis

testing for exploratory endpoints is not recommended 6, but the Type-I error rate should be

23 controlled for secondary endpoints, typically by means of a FWER approach. If there is no effect on
24 the primary endpoint(s), no effect on related secondary endpoints may be expected so that one may

need to decide to stop statistical testing after a non-significant result (a fixed sequence or serial

27 gatekeeping approach)8. Endpoints may also be grouped into families (e.g. a family of multiple

28 effectiveness outcomes and a family of multiple quality of life scores). All endpoints within a family
29 can be tested with a correction for multiple comparisons and one may only proceed to the next

family when there is statistical success in the preceding family (a fixed sequence approach applied to

32 families).

Ornics studies
36 Omics studies investigate the relationship between a particular type of sample molecules and a

sample attribute. Examples are Genome Wide Association Studies (GWAS) in which a large set of

Single Nucleotide Polymorphisms (SNP) is tested for the association with an outcome of interest (e.g.

40 skin cancer) or RNA-Seq experiments in which differences in gene/protein expression between
41 conditions (e.g., treated vs not treated) are investigated.

As such studies typically involve hundreds to millions of (usually dependent) simultaneous tests, a

44 FWER control of the Type-I error would lead to a drastic loss of power, explaining why FDR

45 approaches, controlling for the fraction of false discoveries among the rejected hypotheses, are
46 preferred . The most often used FDR multiplicity correction is the one introduced by Benjamini and

Hochberg (BH) and is valid for independent 10 or positively dependent test statistic “, like, for

49 example test statistics (positively) correlated due to measurement errors affecting all or some
50 parameters of interest in a common way. As other dependence structures may be observed in

practice, a FDR approach valid under more general dependence structures was later introduced by

53 Benjamini and Yukutieli (BY) at the price of some loss of power “.

54
55
56 Subgroup analyses
57 False positive findings may occur in studies where subgroup analyses are performed without
58 multiplicity adjustment (e.g. a meta-analyses stratified by time-points of an outcome). As tests of

such analyses typically involve correlated outcomes and/or comparisons repeatedly involving the
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3 same groups, a resampling-based FWER multiplicity correction would lead to the greatest power. To

maintain a high power, a limited number of subgroup analyses should be pre-specified in the

6 protocol, where the subgroups chosen should be based on a clear hypothesis with a pre-existing

7 biological rationale.
8
9
10 Regression analyses
11 If regression models are used for causal inference, hypotheses of the association between an

exposure and outcome are tested and multiplicity should be addressed, if there is more than one

14 outcome, using the methods mentioned above. Note that in parametric models (e.g. generalised

15 linear models and survival models), the dependence between the tests of interest can usually be

obtained under standard asymptotic normality assumptions, allowing the dependence between

18 them (e.g. middle age vs young age and old age vs. young age) to be taken into account when

19 performing FWER multiplicity corrections2. This leads to gain in power compared to Bonferroni-like
20 multiplicity corrections.

When developing prediction models, the number of subjects (linear regression), cases (logistic

23 regression) or events (survival models) determines the amount of statistical power and thus how

24 many variables can be included in the model 12,13 As a rule of thumb 10 subjects/cases/events are

needed per variable. When developing a prediction model with a multiplicity of variables and a too

27 low number of events, there is a risk of predicting random error (i.e. overfitting) and very poor

28 performance of the prediction model in another patient sample. In those situations even more than
29 10 subjects/cases/events per variable may be required 14

30
31
32 Correction for multiple comparisons in the BJD
33 .

34
Multiple comparisons can be foreseen at the design phase of the study, when multiple hypotheses

are formulated. Therefore, methods to correct for multiple comparisons should be pre-specified in

36 the protocol and/or the statistical analysis plan. The BJD requires that clinical trials and systematic

reviews are pre-registered and encourages that the protocols of trials are published elsewhere and

39 submitted as a supplementary file. We encourage authors of any type of study to consider multiple

40 testing strategies before the start of the study and clearly report the strategy of choice in the
41 methods.
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