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Abstract
Background Impaired DNA repair mechanism is one of the cancer hallmarks. Flap Endonuclease 1 (FEN1) is essential for 
genomic integrity. FEN1 has key roles during base excision repair (BER) and replication. We hypothesised a role for FEN1 
in breast cancer pathogenesis. This study aims to assess the role of FEN1 in breast ductal carcinoma in situ (DCIS).
Methods Expression of FEN1 protein was evaluated in a large (n = 1015) well-characterised cohort of DCIS, comprising 
pure (n = 776) and mixed (DCIS coexists with invasive breast cancer (IBC); n = 239) using immunohistochemistry (IHC).
Results FEN1 high expression in DCIS was associated with aggressive and high-risk features including higher nuclear grade, 
larger tumour size, comedo type necrosis, hormonal receptors negativity, higher proliferation index and triple-negative phe-
notype. DCIS coexisting with invasive BC showed higher FEN1 nuclear expression compared to normal breast tissue and 
pure DCIS but revealed significantly lower expression when compared to the invasive component. However, FEN1 protein 
expression in DCIS was not an independent predictor of local recurrence-free interval.
Conclusion High FEN1 expression is linked to features of aggressive tumour behaviour and may play a role in the direct 
progression of DCIS to invasive disease. Further studies are warranted to evaluate its mechanistic roles in DCIS progression 
and prognosis.
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Introduction

Factors that affect DNA integrity and genome stability play 
a significant role in carcinogenesis [1, 2]. Genotoxic insults, 
which drive DNA damage, are a hallmark of cancer initiation 
and progression. These are induced by exogenous sources 
such as radiation, chemicals and environmental conditions, 
or intrinsic factors such as age-induced genetic changes and 

genetic predisposition [3–11] that lead to impaired DNA 
repair mechanisms [12, 13]. There are several mechanisms 
for DNA damage that include DNA double-strand breaks 
(DSBs), intra- and inter-strand DNA crosslinks, protein 
DNA adducts, methylated, mismatched and oxidised bases 
[13, 14]. DNA damage repair (DDR) is a complex mecha-
nism, depends on the interaction between various pathways 
to repair damaged DNA [15].

Flap endonuclease 1 (FEN1) is recognised as a key 
enzyme that has a critical role in multiple DNA metabolic 
pathways involved in DNA replication, repair and apoptosis 
[16]. FEN1 has an essential role in cancer evolution and pro-
gression [17–19]. FEN1 belongs to the Rad2 structure-spe-
cific nuclease family, and it participates in Okazaki fragment 
maturation and recombination. FEN1 is recognised as a 5′ 
exonuclease (EXO activity) and gap endonuclease depend-
ent (GEN activity) [26]. Therefore, FEN1 plays a vital role 
in maintaining genomic stability [20]. However, FEN1 is a 
pleiotropic protein with various functions. Three key inter-
playing mechanisms can regulate FEN1 functions including 
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(I) Construction of complex with diverse proteins partner 
[21]. (II) Sub-cellular compartmentalisation: during DNA 
damage, FEN1 is localised in the nucleus [22], and superior 
localisation of FEN1 in the nucleolus may preserve the sta-
bility of the organisational structure of duplicated ribosomal 
DNA [23]. Moreover, the localisation of FEN1 in the mito-
chondrion has a vital function in repairing and replicating 
mitochondrial DNA (mtDNA) [24]. (III) Post-translational 
modifications: the ability of FEN1 to phosphorylate, methyl-
ate and acetylate proteins could be beneficial for the adjust-
ment of the activities of the nuclease, protein partner and/or 
subcellular compartmentalisation [25, 26].

FEN1 mutations play a role in some autoimmune dis-
eases, chronic inflammatory conditions and cancer predis-
position. This suggests that mutator phenotype may initiate 
and develop cancer, while chronic inflammation promotes 
cancer progression [18]. Several studies showed that FEN1 
is expressed intensively in proliferating cells with high DNA 
replication levels such as testes, bone marrow and thymus 
tissue [27–30]. In addition, FEN1 is upregulated in pros-
tate cancer [19, 31], pancreatic cancer [32], gastric cancer 
[33], neuroblastoma [34] and lung cancer [35]. Some studies 
showed that FEN1 is upregulated in invasive breast cancer 
(IBC) compared to normal breast tissue. The dysregulation 
of FEN1 protein in breast and ovarian cancer is correlated 
with aggressive behaviour and worse outcome [16, 36].

Due to the controversy of FEN1 roles in cancer progres-
sion and behaviour and lack of studies describing its role 
in breast ductal carcinoma in situ (DCIS), we have hypoth-
esised that FEN1 expression in DCIS plays a role in the dis-
ease progression. This study aims to assess the expression of 
FEN1 in a large cohort of pure DCIS and DCIS coexist with 
IBC using immunohistochemistry (IHC) and to determine its 
association with the various clinicopathological parameters 
and disease outcome.

Material and methods

Study cohort

This retrospective study was based on a large well-charac-
terised cohort (n = 1015) diagnosed at the Breast Cancer 
Institute, Nottingham City Hospital, UK [37]. The study 
series comprised a primary pure DCIS (n = 776), and a 
cohort of DCIS coexists with IBC (n = 239). In addition, 
the adjacent apparently normal terminal ducto-lobular units 
(TDLUs) were assessed, whenever present (n = 65), among 
the included cases. Clinicopathological data of the pure 
DCIS cohort including age at diagnosis, disease presenta-
tion (screening or symptomatic), nuclear grade, presence of 
comedo necrosis, tumour size, type of surgery and postop-
erative  radiotherapy were collected. Molecular classification 

of breast cancer based on the expression of oestrogen recep-
tor (ER), progesterone receptor (PR), Her2 status and pro-
liferation index Ki-67 index was performed as previously 
described [37]. ER and PR positivity were defined when 
more than or equal to 1% of the tumour cell nuclei showed 
positivity [38]. Her2 was assessed using the Herceptin test 
method, where IHC scoring of 0 or 1 was considered as 
negative, 2 + considered as equivocal and 3 + considered 
as positive [39]. Ki-67 proliferation index was defined as 
high if > 14% of malignant epithelial cells showed nuclear 
expression [40]. Local recurrence-free interval (LRFI) (in 
months) was estimated from the date of primary DCIS surgi-
cal treatment to the time of development of ipsilateral recur-
rence event as DCIS or IBC. Cases with positive tumour 
margin for patients who underwent re-excision in the first 
six months after breast-conserving surgery (BCS) and cases 
with contralateral breast event were censored. Pure DCIS 
median follow-up was 112 months (range 6–336). Out of 
the 1015 patients, only 95 (representing 9% of the whole 
cohort) in the primary DCIS series developed a local recur-
rence either in situ (34 cases; 36%) or IBC recurrence (61 
cases; 64%). Supplementary Table S1 summarises the main 
demographic and clinicopathological parameters of the pure 
DCIS cohort.

Analysis of FEN1 mRNA in IBC

Due to the limited transcriptomic DCIS data, the Molecu-
lar Taxonomy of Breast Cancer International Consortium 
(METABRIC) (n = 1980) was used to validate the clinical 
implication and prognostic significance of FEN1 in BC [41]. 
Moreover, analysis using the Breast Cancer Gene Expression 
Miner v4.1 (bc-GenExMiner v4.1) database was performed 
to evaluate the prognostic role of FEN1 in IBC.

FEN1 protein expression 
and immunohistochemistry

Prior to IHC and to validate the antibody specificity, 
FEN1 antibody (Sigma; rabbit polyclonal, product num-
ber HPA00784, Lot number Ro7492) was validated using 
Western blot (WB) on a panel of human breast cell lysates: 
MCF7, SKBr3, MBA-MD-231 and MCF10DCIS that were 
obtained from the American Type Culture Collection; 
Rockville, MD, USA. FEN1 was used at a concentration of 
1:1000 and showed a single specific band at the predicted 
size of approximately 43 kDa. Anti-tubulin antibody was 
used as a housekeeping marker (Abcam ab56676, Concen-
tration 1:5000) which showed a single band at the expected 
molecular weight (55 kDa) (Fig. 1a).

IHC of FEN1 (dilution of 1:50) was performed on 4 µm 
tissue microarray (TMA) sections [37] using the Novocastra 
Novolink polymer detection system (Leica, Newcastle, UK) 
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following the manufacturer’s guidelines. In addition, full-
face tissue sections from 10 randomly selected cases were 
prepared to assess the heterogeneity of FEN1 protein expres-
sion prior to score the TMA sections. Tonsil was included as 
a positive control, whereas a negative control was achieved 
by omitting the primary antibody.

FEN1 expression scoring

Semi-quantitative histochemical score (H-score) was 
used to assess FEN1 nuclear and cytoplasmic expression, 
including the intensity (negative, weak, moderate and 
strong expression as 0, 1, 2 and 3, respectively) multiplied 
by the percentage of stained tumour cells. The score was 
expressed in a range of 0–300 [42]. All cores that have less 
than 15% tumour or been folded or lost in processing were 
excluded. Dichotomisation of nuclear FEN1 staining into 
high (H-score > 70) and low (H-score ≤ 70), and cytoplas-
mic staining into high (H-score > 55) and low (H-score ≤ 50) 
was performed. Cut-off points were determined using X-tile 
(X- tile Bioinformatics software, University of Yale, version 
3.6.1) [43]. Scoring was performed blind to clinicopatholog-
ical data and patient outcome. Thirty percent of cases were 
double scored by another trained observer and the discrepant 
cases were reviewed, and a final score was agreed.

Statistical analysis

SPSS software version 24 (Chicago. IL. USA) was used for 
statistical analysis. Based on the data distribution (para-
metric or non-parametric), appropriate statistical tests were 
carried out. Association between FEN1 mRNA level and 
the clinicopathological parameters in the METABRIC data-
base was performed using Chi-square test. The correlation 

between FEN1 protein expressions with the clinicopatho-
logical parameters was carried out by using Chi-square, 
Mann–Whitney and Kruskal–Wallis tests. To compare 
between FEN1 expression in apparently normal TDLU and 
DCIS, Wilcoxon-signed test was used. To compare between 
FEN1 expression in pure DCIS and the DCIS component in 
mixed cases, independent samples T-test were performed. 
Paired samples T-test and Wilcoxon Signed Ranks Test were 
performed to compare between FEN1 expression in mixed 
DCIS component and invasive component in the mixed 
cohort. Outcome analysis was carried out using log rank 
test and Kaplan–Meier. A P value of less than 0.05 was con-
sidered significant.

Results

FEN1 mRNA expression in METABRIC data

High FEN1 mRNA expression was observed in 50% of 
cases. High FEN1 mRNA level was associated with younger 
patient age (p = 0.037), large tumour size (p < 0.001), high 
nuclear grade (p < 0.001), positive lymph node involve-
ment (p < 0.001), hormonal receptor negativity (p < 0.001), 
positive HER2 status (p < 0.001) and basal-like subgroup 
(p < 0.001) (Supplementary Table S2). In addition, a high 
level of FEN1 mRNA was predictive of short breast can-
cer-specific survival (BCSS) (p < 0.001, HR = 2.170, 95% 
CI = 1.355–2.031). Moreover, Breast Cancer Gene Expres-
sion Miner v4.2 (bc-GenExMiner v4.2) data demonstrate 
that high FEN1 was significantly associated with increased 
probability of distant metastasis and shorter overall sur-
vival (p < 0.001, HR = 1.64, 95% CI = 1.50–1.81) (Fig. 1b, 
c respectively).

Fig. 1  a FEN1 antibody validation, western blot showing sin-
gle band (green band) of predicted size around 42.6 KDa in 5 cell 
lysates (MCF7, SKBr3, 231, Hela and MCF10DCIS). Tubulin used 
as a standard control shows a single band (red band) at 50 KDa. b 
Kaplan–Meier curve showing a high level of FEN1 mRNA expres-
sion in tumour breast epithelial cells associated with shorter breast 

cancer-specific survival 0f IBC within METABRIC cohort, c 
Kaplan–Meier curve showing high level of FEN1 was significantly 
associated with increased probability of distant metastasis and shorter 
overall survival in Breast Cancer Gene Expression Miner v4.2 (bc-
GenExMiner v4.2)
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FEN1 protein expression

Full-face tissue sections revealed a homogenous staining 
pattern indicating the suitability of TMA for evaluation 
of FEN1 expression.

A total of 437 pure DCIS cases were suitable for scor-
ing and evaluation. FEN1 nuclear median H-score was 40 
(range 0–120), 70 (range 0–230), 70 (range 0–200) and 
85 (range 0–220) in TDLU, pure DCIS, DCIS component 
and the invasive component of the mixed cohort, respec-
tively. FEN1 cytoplasmic median H-score was 10 (range 
0–80), 50 (range 0–120), 70 (range 0–120) and 70 (range 
0–100) in TDLU, pure DCIS cohort, DCIS component 
of the mixed cohort and IBC component, respectively 
(Fig. 2a–d).

High nuclear FEN1 expression was detected in 187 
(43%) of pure DCIS cases. In the mixed cohort, FEN1 
expression was higher in the invasive component com-
pared to the DCIS component: 116 (62%) and 85 (46%) 
cases, respectively.

High cytoplasmic FEN1 protein expression was 
observed in 240 (55%) cases in pure DCIS. Within the 
mixed cohort, high cytoplasmic FEN1 expression was 
seen in 100 (54%) in the DCIS component and 91 (49%) 
of the invasive component.

The correlation between FEN1 protein expression 
and clinicopathological parameters

High nuclear FEN1 expression was associated with aggres-
sive clinicopathological variables in the pure DCIS cohort 
including larger tumour size (p = 0.008), high nuclear 
grade (p < 0.001), comedo type of necrosis (p < 0.001), 
negative hormonal status (p < 0.001), higher proliferation 
index (p < 0.001) and triple-negative tumours (p < 0.001) 
(Table 1). Similar results were shown when the analysis 
was carried out using the continuous data (Supplementary 
Table S3). High FEN1 cytoplasmic protein expression was 
significantly associated with negative hormone receptor sta-
tus (p < 0.001), positive HER2 (p = 0.009), high prolifera-
tive index (Ki-67) (p = 0.042) and triple-negative subtype 
(p = 0.001) (Table 2) (Supplementary Table S4).

Combined FEN1 nuclear/cytoplasmic protein expres-
sion was assessed in the pure DCIS cohort, where 142 
cases (33%) showed high nuclear/high cytoplasmic 
(H.N/H.C), 152 cases (35%) showed low nuclear/low 
cytoplasmic (L.N/L.C), 98 cases (22%) showed low 
nuclear/high cytoplasmic L.N/H.C) and 45 cases (10%) 
showed high nuclear/low cytoplasmic (H.N/L.C) FEN1 
expression. Cases with H.N/ H.C FEN1 expression were 
more likely expressed in DCIS with an aggressive behav-
iour: larger tumour size (p = 0.012), high nuclear grade 
(p = 0.003), comedo necrosis (p < 0.001), negative ER 

Fig. 2  FEN1 protein expres-
sion in a Normal ducto-lobular 
units in human breast shows the 
weak expression of FEN1 and 
arrangement of the ducto-lob-
ular units (X10). b Expression 
of FEN1 in a mixed DCIS/IBC 
case showing strong staining 
of FEN1 in IBC component 
than DCIS component (X40). 
c Strong nuclear expression of 
FEN1 in pure DCIS cancer cells 
(X40). d FEN1 expression in 
nuclear and Cytoplasmic cancer 
cells (X40)
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(p < 0.001), negative PR (p < 0.001), higher proliferation 
index (p < 0.001) and triple-negative subtype (p < 0.001) 
(Table 3).

No significant association was observed between FEN1 
expression and the DCIS outcome in terms of ipsilateral 
recurrence.

FEN1 nuclear protein level of the adjacent TDLUs epi-
thelial cells revealed the lowest level. The proportion of 
cases with high nuclear FEN1 expression in apparently 
normal TDLUs was lower than in DCIS (p = 0.024). IHC 
assessment exhibits a higher nuclear protein level of FEN1 
in the DCIS component in a mixed cohort than the primary 
DCIS cohort (p = 0.032). Similarly, in the mixed DCIS/

IBC cohort, the FEN1 nuclear protein level in the inva-
sive component was higher than in the DCIS component 
(p < 0.001).

Within the DCIS mixed cohort, high nuclear FEN1 
expression was observed in 85/185 cases (46%) in the 
DCIS component and 100/185 cases (54%) showed high 
cytoplasmic expression. High nuclear FEN1 expression 
in the DCIS component of the mixed cohort was associ-
ated with higher nuclear grade (p < 0.001), DCIS comedo 
necrosis (p < 0.001) and negative ER status (p = 0.002), 
while FEN1 cytoplasmic expression did not reveal any 
significant association in statistical analysis.

Table 1  Correlation 
between nuclear FEN1 
protein expression and 
clinicopathological parameters 
in pure DCIS cohort using 
categorical values

Significant p values are in bold, No: Number,  X2: Chi square
FEN1 Flap endonuclease 1, DCIS Ductal Carcinoma in Situ, HER2 Human epidermal growth factor recep-
tor2

Parameters Low Exp. No. (%) High Exp. No. (%) Total No. (%) (χ2) p-value

Age (years)
  ≤ 50 65 (61.0) 41 (39.0) 106 (24.0) 0.967

  > 50 185 (56.0) 146 (44.0) 331 (76.0) 0.325
Size
  ≤ 20 mm 124 (64.0) 69 (36.0) 193 (44.0) 6.960

  > 20 mm 125 (52.0) 117 (48.0) 242 (56.0) 0.008
DCIS presentation
 Screening 120 (57.0) 93 (44.0) 213 (49.0) 0.129
 Symptomatic 130 (58.0) 94 (42.0) 224 (51.0) 0.750

Nuclear grade
 Low 41 (77.0) 12 (23.0) 53 (12.0) 15.960
 Moderate 74 (64.0) 42 (36.0) 116 (27.0)  < 0.001
 High 135 (50.0) 133 (50.0) 268 (61.0)

Comedo necrosis
 No 108 (71.0) 45 (30.0) 153 (35.0) 17.217
 Yes 142 (50.0) 142 (50.0) 284 (65.0)  < 0.001

Oestrogen receptor
 Negative 38 (36.0) 67 (64.0) 105 (27.0) 31.108
 Positive 193 (67.0) 93 (33.0) 286 (73.0)  < 0.001

Progesterone receptor
 Negative 71 (44.0) 92 (56.0) 163 (41.0) 24.882
 Positive 160 (69.0) 73 (31.0) 233 (59.0)  < 0.001

HER2 Status
 Negative 179 (61.0) 115 (39.0) 294 (76.0) 3.414
 Positive 46 (50.0) 46 (50.0) 92 (24.0) 0.065

Proliferation index(Ki-67)
 Low (< 14%) 183 (67.0) 89 (33.0) 272 (76.0) 45.394
 High (≥ 14%) 22 (26.0) 63 (74.0) 85 (24.0)  < 0.001

Molecular classes
 Luminal A 119 (72.0) 46 (28.0) 165 (50.0)
 Luminal B 38 (56.0) 30 (44.0) 68 (21.0) 31.307
 HER2 enriched 16 (40.0) 24 (60.0) 40 (12.0)  < 0.001
 Triple negative 20 (35.0) 37 (65.0) 57 (17.0)
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Discussion

DCIS is a non-obligatory precursor of IBC [44]. Despite the 
massive similarity between IBC and DCIS at the molecular 
levels, the proposed similarity stemmed from the fact that 
cells that have progressed into invasive carcinomas were 
indeed originated from DCIS. Consequently, this could have 
a similar impact on the response of neoadjuvant and adju-
vant therapy in both DCIS and IBC [45, 46].

Several studies demonstrated that FEN1 has a dual func-
tion. Alteration of FEN1 in cancer cells makes it a potential 
target for anticancer therapy [27, 47, 48]. Overexpression of 
FEN1 has been reported in previous studies such as in breast 

[36], prostate, testis, lung, brain and gastric tumours [49, 
50]. Some studies found that FEN1 protein overexpression 
promotes cell growth, as reported by Kim et al. [28] and He 
et al. [51], and that the level of FEN1 was induced while 
DNA is replicating during cell proliferation. Consequently, 
this increased FEN1 level may have a role in the resistance 
to other DNA damage agents which eventually leads to an 
increased rate of cancer cell proliferation. Furthermore, 
FEN1 overexpression might be one of the main reasons for 
genome instability and impaired DNA replication in cancer 
cells [52, 53]. FEN1 overexpression has been proved to be 
associated with aggressive behaviour and poor survival in 
different tumours [36, 50].

Table 2  Correlation between 
cytoplasmic FEN1 protein 
expression in DCIS with 
clinicopathological parameters 
in pure DCIS cohort using 
categorical values

Significant p values are in bold, No Number,  X2 Chi square
FEN1 Flap endonuclease 1, DCIS Ductal Carcinoma in Situ, HER2 Human epidermal growth factor recep-
tor 2

Parameters Low Exp. No. (%) High Exp. No. (%) Total No. (%) (χ2) p-value

Age (years)
  ≤ 50 51 (48.0) 55 (52.0) 106 (24.0) 0.520
  > 50 146 (44.0) 185 (56.0) 331 (76.0) 0.471
Size**
  ≤ 20 mm 83 (43.0) 110 (57.0) 193 (44.0) 0.729
  > 20 mm 114 (47.0) 128 (53.0) 242 (56.0) 0.393

DCIS presentation
 Screening 97 (46.0) 116 (54.0) 213 (49.0) 0.035
 Symptomatic 100 (45.0) 124 (55.0) 224 (51.0) 0.851

Nuclear grade
 Low 30 (57.0) 23 (43.0) 53 (12.0) 3.560
 Moderate 53 (53.0) 63 (54.0) 116 (27.0) 0.169
 High 114 (43.0) 154(57.0) 268 (61.0)

Comedo Necrosis
 No 78 (51.0) 75 (49.0) 153 (35.0) 3.310
 Yes 119 (42.0) 165(58.0) 284 (65.0) 0.069

Oestrogen receptor
 Negative 31 (30.0) 74 (70.0) 105 (27.0) 17.214
 Positive 125 (53.0) 134 (47.0) 286 (73.0)  < 0.001

Progesterone receptor
 Negative 55 (34.0) 108 (66.0) 163 (41.0) 16.649
 Positive 127 (54.0) 106(46.0) 233 (59.0)  < 0.001

HER2 Status
 Negative 137 (47.0) 157 (53.0) 294 (76.0) 0.275
 Positive 40 (44.0) 52 (56.0) 92 (24.0) 0.600

Proliferation index (Ki-67)
 Low (< 14%) 140 (51.0) 132 (49.0) 272 (76.0) 4.147
  High (≥ 14%) 33 (39.0) 52 (61.0) 85 (24.0) 0.042

Molecular classes
 Luminal A 93 (56.0) 72 (44.0) 165 (50.0)
 Luminal B 34 (50.0) 34 (50.0) 68 (21.0) 17.227
 HER2 enriched 15 (38.0) 25 (62.0) 40 (12.0) 0.001
 Triple negative 15 (26.0) 42 (74.0) 57 (17.0)
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The current study showed that high FEN1 expression 
is significantly associated with aggressive behaviour of 
DCIS. Similar to previous studies [54–56], the current study 
showed high expression of FEN1 is associated with ER and 
PR negativity. Abdel-Fatah et al. [36] reported that FEN1 
could interact directly with ER and increase the interaction 
of ER-α with DNA-containing oestrogen response elements 
and impact the expression of oestrogen-responsive genes in 
cells. Lari and Kuerer [57] reported that DCIS patients with 
ER negative tumours were more likely to have a local recur-
rence than ER-positive patients. In previous studies, Schultz 

et al. [58] and Wang et al. [59] showed the association 
between the double function of FEN1 with the ER receptor 
in epithelial cells where FEN1 influences ER-α-mediated 
gene expression in epithelial cells in different ways depend-
ing on the presence or absence of 17β-Estradiole 2 (E2).

This study showed a positive correlation between high 
FEN1 protein levels with aggressive clinicopathological 
parameters including hormone status negativity, which can 
promote FEN1 as a good candidate biomarker for prog-
nostication of DCIS according to their hormonal status. It 
has been reported the dual function of FEN1, based on its 

Table 3  The correlation between Nuclear/Cytoplasmic (clustering) FEN1 protein expression in pure DCIS cohort with clinicopathological 
parameters

Significant p values are in bold
FEN1 Flap endonuclease 1, DCIS ductal carcinoma in  situ, HER2 Enriched; Human epidermal growth factor receptor 2. H.N/ H.C; High 
Nuclear/ Low Cytoplasmic expression. H.N/ L.C; High Nuclear/ Low Cytoplasmic expression. L.N/ L.C; Low Nuclear/ Low Cytoplasmic 
expression. L.N/ H.C; Low Nuclear/ High Cytoplasmic expression

Parameters H.N/ H.C No. (%) H.N/ L.C No. (%) L.N/ L.C No. (%) L.N/ H.C No. (%) Total No. (%) χ2 P value

Age (years)
  ≤ 50 33 (31.0) 43 (41.0) 22 (21.0) 8 (8.0) 106 (24.0) 2.628
  > 50 109(33.0) 109(33.0) 76 (23.0) 37 (11.0) 331 (76.0) 0.453

DCIS Size
  ≤ 20 mm 55 (29.0) 69 (36.0) 55 (29.0) 14 (7.0) 193 (44.0) 10.888
  > 20 mm 86 (36.0) 83 (34.0) 42 (17.0) 31 (13.0) 242 (56.0) 0.012

DCIS Presentation
 Screening 69 (32.0) 73 (34.0) 47 (22.0) 24 (11.0) 213 (49.0) 0.436
 Symptomatic 73 (33.0) 79 (35.0) 51 (23.0) 21 (9.0) 224 (51.0) 0.933

Nuclear Grade
 Low 10 (19.0) 28 (53.0) 13 (25.0) 2 (4.0) 53 (12.0) 20.247
 Moderate 29 (25.0) 40 (35.0) 34 (29.0) 13 (11.0) 116 (27.0) 0.003
 High 103(38.0) 84 (31.0) 51 (19.0) 30 (11.0) 268 (61.0)

Comedo Necrosis
 No 32 (21.0) 65 (45.0) 43 (28.0) 13 (9.0) 153 (35.0) 17.855
 Yes 110(39.0) 87 (31.0) 55 (19.0) 32 (11.0) 284 (65.0)  < 0.001

Oestrogen receptor
 Negative 54 (51.0) 18 (17.0) 20 (19.0) 13 (12.0) 105 (27.0) 36.346
 Positive 66 (23.0) 125(44.0) 68 (24.0) 27 (9.0) 286 (73.0)  < 0.001

Progesterone receptor
 Negative 72 (44.0) 35 (22.0) 36 (22.0) 20 (12.0) 163 (41.0) 24.842
 Positive 52 (22.0) 106(46.0) 45 (23.0) 21 (9.0) 233 (59.0)  < 0.001

HER2 Status
 Negative 85 (29.0) 107(36.0) 72 (25.0) 30 (10.0) 294 (76.0) 3.653
 Positive 35 (38.0) 29 ( 32.0) 17 (19.0) 11 (12.0) 92 (24.0) 0.301

Proliferation index (Ki-67
 Low (≤ 14%) 66 (24.0) 117(43.0) 66 (24.0) 23 (9.0) 272 (76.0) 45.779
 High (> 14%) 46 (54.0) 16 (19.0) 6 (7.0) 17 (20.0) 85 (24.0)  < 0.001

Molecular classes
 Luminal A 31 (19.0) 78 (47.0) 41 (25.0) 15 (9.0) 165 (50.0) 38.922
 Luminal B 23 (34.0) 27 (40.0) 11 (16.0) 7 (10.0) 68 (21.0)  < 0.001
 HER2 enriched 17 (43.0) 8 (20.0) 8 (20.0) 7 (18.0) 40 (12.0)
 Triple Negative 31 (54.0) 9 (16.0) 11 (19.0) 6 (11.0) 57 (17.0)
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expression, was found to be inducible to DNA synthesis 
during cell proliferation and is down-regulated during cell 
differentiation [27]. Depletion and/or inhibition of FEN1 
activity elevate endogenous DNA damage sensitivity to 
alkylating insults [13, 47]. However, long exposure to DNA 
alkylating insult may ultimately generate adapted cancer 
cells to these agents [60]. In tumour cells, down regulation 
of FEN1 protein could enhance DNA-damaged inducing 
agent’s toxicity leading to both DNA replication and repair 
failure. Because of the high rate of replication, cancerous 
cells accumulate and tend to promote innate DNA damage 
compared to adjacent normal cells. Moreover, post-phos-
phorylation activates the P53 pathway which is the most 
common pathway of apoptosis (Tp53-dependent apoptosis) 
and acts as a transcription process to stimulate the expres-
sion of genes involved in apoptosis. Besides, cell prolifera-
tion was suppressed by the FEN1 inhibitor and stimulates 
DNA damage; consequently, the accumulation of unrepaired 
double-strand breaks elevates the proportion of G1 phase 
and decreases the proportion of S and G2/M phase in the 
cell cycle. This could mean FEN1 protein is essential for 
the cells to enter S phase, otherwise cells will be arrested 
[51]. Cytotoxicity sensitivity of anticancer drugs may be 
increased by FEN1 depletion and/or inhibition. Inducing 
the cytotoxicity could promote impaired DNA repair and 
replication [47, 48].

We also investigated the nuclear/cytoplasmic clusters 
which revealed that DCIS who had high nuclear/high cyto-
plasmic clusters were most likely associated with aggres-
sive DCIS behaviour. This observation supports our initial 
results in nuclear protein expression and cytoplasmic protein 
expression revealing an association between high protein 
levels and aggressive tumour behaviour. Our data of FEN1 
protein expression in patients who had primary DCIS did 
not show any significant association with patient’s outcome. 
This lack of association could be due to the limited number 
of patients who had an ipsilateral recurrence in the study 
cohort.

As previously discussed, depletion and/or inhibition of 
FEN1 activity showed more impact risk on tumour cells than 
in adjacent normal cells, which revealed the poor outcome 
for patients who had DCIS. Although a high protein level of 
FEN1 was associated with clinicopathological parameters 
characteristics of poor prognosis, multivariate analysis did 
not show an independent prognostic value of FEN1 expres-
sion in DCIS patients underwent BCS treatment. This may 
be due to the limited number of patients who developed ipsi-
lateral recurrence. We recommend further functional and 
mechanistic studies to clarify the specific roles of FEN1 in 
DCIS.

This study has some limitations. All the samples in this 
study were obtained from patients diagnosed in one cen-
tre from the city hospital in Nottingham UK, and for more 

verification, samples can be retrieved and used from multi-
ple centres. Moreover, the study was performed on a cohort 
of patients that were not treated with endocrine therapy. 
In addition, the study was performed on TMA sections. 
Although all cases were reviewed histologically before con-
struction and multiple cores with heterogeneous grades and 
morphological patterns were used for the cases, they might 
still underestimate the heterogeneity of the tumour roles.

Conclusion

Our data present evidence that high FEN1 protein level is 
associated with aggressive behaviour in the DCIS and could 
be an indicator for progression from DCIS into IBC. Our 
speculation is that FEN1 may have different roles in the 
nucleus and cytoplasm.
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