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ABSTRACT 

Residential demand from real residences can be resource intensive to collect. There is need to generate synthetic 

residential load in energy research, and new approaches are welcome. Most of the simulation models of 

synthetic residential load that output realistic loads are tightly coupled to historic correlations. This paper 

presents a high-resolution simulation model that generates a residential appliance load using the tools of System 

Dynamics via a bottom-up approach. In addition to being realistic, the model aims to minimise historic 

coupling. Whilst the intermediary outputs of the modelling process are subjected to systematic scrutiny, the final 

output is validated by comparing statistical characteristics of the model’s output to a validated model and data 

from real residences. The aims of the model were sufficiently met, and the modelling approach shows potential 

to simplify; by driving the model on average frequency of appliance use instead of probability distributions of 

human activities. Other outputs from the model, specifically distribution of appliances’ activation and operation, 

as well as complexity are discussed. Some benefits of the model are also discussed especially with regard to cost 

of modelling, interpretability of model and potential for transdisciplinary research. This study represents the first 

attempt to develop a bottom-up simulation model of residential load based on a System Dynamics approach.  
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1 Introduction 

With sustainability a core global agenda, this has afforded many research opportunities to reimagine residential 

and community energy systems for a sustainable future. Some of the research includes simulations of renewable 

energy systems, demand side management, smart grids, building simulation, and low voltage grid simulation, all 

which require residential load as input. However, it can be expensive and time consuming to measure residential 

loads for use in these simulations. The cheaper and faster alternative is to generate realistic residential loads 

synthetically via simulations, which provides an opportunity to explore new approaches to generating realistic 

synthetic load profiles. This paper presents the first attempt to generate synthetic residential load using a System 

Dynamics approach.  

The paper begins by providing a background to behaviour and activities in residential energy use, followed by a 

deeper look at how residential activities are measured. System Dynamics is subsequently introduced, and 

existing models are reviewed. The methods section is divided into conceptual model and simulation model. 

Results are discussed in terms of validation, other model outputs, complexity and evaluation of the model’s 

aims. Finally, some conclusions are drawn and further work is discussed.   

2 Background 

2.1 Energy Use, Behaviour and Activities 

There is agreement that occupant behaviour is a major determinant of residential energy consumption [1–5]. In 

addition to recognising that occupants are the primary consumers of energy, not buildings [4], occupant 

behaviour can undermine technological solutions to efficient energy use [2,3]. Behaviour is also recognised as a 

leverage point in public policy to influence energy use [1,4,5]. Another approach is to focus on energy consuming 

activities in households as policy levers, as in [6–8].  

Whereas behaviour encapsulates actions, patterns of actions, or manners of action, activities (or actions) may 

be a simpler construct to focus on especially for the purpose of simulating residential load. Everyday activities, 

in this context, refer to energy consuming activities in residential spaces, which may or may not involve an 

appliance; e.g. using a kettle or opening windows. There are a variety of theories explaining why individuals 

participate in everyday activities. In terms of relevance to this study, there are two groups categorised by their 

disciplines of origin as reviewed in [9]: psychology and time geography.  



The psychological theories use concepts that are difficult to measure (or even define) for the purpose of 

simulation. Concepts – and consequently variables – required to understand behaviour have several definitions 

across studies which makes it difficult to generalise their findings; e.g. beliefs, values, attitudes and motives [3]. 

Other challenges include inconsistent and incomplete findings and a lack of a conceptual framework accepted 

by the majority of researchers [3]. In addition to the complexity that arises from the many and various 

determinants of human activities [9], their interaction is likely to further complicate it. For example, [10] has 

shown how multiple psychological subsystems interconnect when participating in an activity. “In psychology, as 

in the other life sciences, probably the best one can hope for is qualitative laws” [9]. 

The psychological theories explored are limited to decisions about single activities. For the purpose of simulation 

of residential energy use, the interest is in scheduling multiple activities. The next section explores theories from 

time geography, which seek spatiotemporal patterns of activities [9].  

2.2 Properties of Activities  

Even if we do not know why or how an activity gets to take place, knowing the properties of the activities could 

facilitate modelling the activities. Three properties of activities have been identified from the literature: activities 

are routinised but adaptable; activities are periodic; activities have meanings.  

2.2.1 Activities are routinised but adaptable  

Routinised is the property of being performed in a sequence. Some activities are bundled into a sequence for two 

reasons: constraints or availability of participants and resources [6]; or in anticipation of a prior or more 

important commitment [7]. Routines establish normalcy, hence the high reliance on routines to carry out activities 

[7]. It has also been found that routines get disrupted, but then normalcy returns [6,7].  

2.2.2 Activities are periodic 

Implied in routine activities is that they are periodic. This is also supported by Time Use Surveys (TUS) which 

ask respondents about the frequency of their activities [11,12]. Whilst periodicity may not be strictly mechanical 

and precise, it is a useful way to conceptualise activities that are repeated.  

2.2.3 Activities have meanings 

The meaning of an activity, or bundle of activities, has been found to be more important than management of 

energy use [7]. For example, to fulfil the meanings of “family comfort” or “quality family time”, families do not 

mind if this is achieved by increased and expensive energy consumption [7]. Activities have meanings but the 



same meaning could be associated with different activities for different people, or in different residences or 

cultures. So while it is important to recognise that an activity may fulfil meanings, the activities – not their 

meanings – are more concretely associated with energy consumption.  

2.3 Time Use Data  

Time Use Data (TUD) provides information about how activities are located temporally and spatially with respect 

to other activities [13]. TUD is commonly collected via time diaries or Time Use Surveys (TUS), but other 

measurement techniques include Experience Sampling Method, Recall Self-reporting, Activity Checklist, and 

computer-aided telephone interviewing [13].  

Most TUS cover either a 24 hour period, or two 24 hour periods of a weekday and a weekend, per person. In a 

2010 discussion paper on valid inferences that can be drawn from TUD [14], only one international TUD covering 

a seven days period could be identified. This limitation of available TUD has implications on what it can justifiably 

be used for.  

It has been observed that certain properties of TUD make it a poor indicator of any long-run time use of an 

individual [14]; the properties are the short reference period (in Person-Day), and the large amount in day-to-

day variation in time use (since people have different routines). Consequently, TUD is not suitable for policy 

related questions which require long run time use data [14].   

Furthermore, it has been concluded that one person per household provides the same information as multiple 

persons per household, in a single day of TUD [14]. This is because of the “problem of disentangling the day-to-

day covariance of activities from the long-run covariance” [14]. Another conclusion from the same study is that 

given the designs of multiple day TUS, much cannot be learned about intra-personal variability. The first 

conclusion may be due to a limitation of information captured by TUD. Moreover, building bottom-up energy 

demand models from TUD alone has been shown to be problematic because it is difficult attributing energy 

consumption to an activity, a specific time, or even occupant [15].  

The study presented in this paper is interested in the properties of activities that could be used to model a 

simulation of residential load, intra-personal variability and also activities’ interrelationship which has been 

acknowledged in [6–8]. For these, data covering more than a day or two would be required.  

Whilst some studies have proposed methods that could be used to identify influence among activities in TUD 

using network theory [16] and co-variance analysis [17], these analyses would still lead to inferences about a 



population, not a person or household. This is similarly the case when TUD is used to extract probability 

distributions of activities in simulating residential load.      

2.4 Models of Bottom-Up Residential Load  

2.4.1 The State of The Art 

There are many models that predict interaction of occupants with buildings which has impact on energy 

consumption of the buildings; examples include windows [18–22], blinds [23,24], lighting [25], and air condition 

[26]. Such predictive models – in addition to occupancy and movement in buildings – can be integrated to Building 

Performance Simulation software using the obXML schema which is based on the DNAS (Drivers, Needs, Action, 

System) framework [27,28]. Taking it further, [29] presents a “platform” comprising models of interaction with 

building, agent-based models of synthetic occupants, stochastic models of activities, and interfaces to integrate 

with building energy simulation models (e.g. EnergyPlus). However, residential load is not the focus and was not 

discussed.     

A bottom-up simulation model of residential load outputs electricity load of a household based on more 

elementary load components, which could be a household when dealing with multiple households, or appliances 

when dealing with a single household [30]. Bottom-up models have been categorised based on scale [30] and 

include electricity demand models, and end-use models. Electricity demand models output load at utility level, 

which is multiple residences, while end-use models output load at residential level. These two require different 

input data, and whilst electricity demand models can be estimated using an accounting method that estimates 

aggregate residential electricity consumption, it is less the case with end-use models which require simulation 

to capture the dynamics within a residence. Also, end-use models can be used to build electricity demand 

models, as demonstrated in [30–32].  

Therefore, a bottom-up model at residential level could be broken down into three aspects: the set of appliances 

in the household, the individual electricity demand of these appliances, and the use of the appliances [31]. The 

first two can be considered the static aspects, while the last is the driver of model’s dynamics because it 

determines the state of the system in progressive time steps.  

Table 2 shows some bottom-up models of residential load highlighting the main model outputs, inputs, drivers 

and aims. Statistical realism refers to output of the simulation having statistical properties of the real system. A 



model outcome that is statistically realistic could be used to as input to other simulation models in place of field 

data; e.g. demand side management, building simulation and low voltage grid simulation [31].  

Reference Outputs Inputs Drivers Aims 

[33] Load of the average 

residence; 

conservation effects; 

weather sensitivity  

Appliance stock or 

saturation; 

sociodemographic 

characteristics;  

Accounting methods Forecast; what-if 

analysis 

[34] Load of residences 

and community; hot 

water energy 

consumption (daily);   

Occupancy patterns; 

energy consumption of 

appliances (daily);  

Accounting methods Forecast; energy 

system design 

[25] Lighting 

  

TUD (occupants’ 

activities); 

Stochastic modelling  Statistical realism 

[30] Load of residence Appliance ownership; 

daily usage pattern of 

appliances;  

Probability 

distribution 

Statistical realism 

[32] Load of residence TUD (occupants’ 

activities and 

occupancy); appliance 

energy consumption;  

Probability 

distribution 

Statistical realism 

[35] Load of residence; 

hot water demand 

TUD; mean appliance 

energy consumption; 

water tap data; daylight 

data 

Appliance 

(operation) power 

conversion scheme; 

Statistical realism 

[31] Load of residence; 

synthetic activity 

sequence 

TUD (occupants’ 

activities); appliance 

energy consumption; 

appliance stock or 

saturation  

Markov chain (non-

homogenous) 

Statistical realism 

[36] Load of residence 

and community  

Appliance energy 

consumption;  

Psychological model 

of human desire  

Statistical realism 

Table 2 – Models of energy use at different scales  

The models in Table 2 take different approaches. The load of an average residence is estimated which is serviced 

by a single utility company based on appliance stock and sociodemographic characteristics [33]. Whereas [33] 

consider itself an end-use model, it is actually an electricity demand model according to the distinction in [30]. 

Similarly, [34] is a load estimation model for residential and communal load called SMLP (Simple Method for 

formulating Load Profile) based on occupancy and energy consumption of appliances. On the other hand, [30] 

provides an end use model based on appliance ownership and appliance usage expressed as probability 

distributions on different time scales. Similarly, [32] employs probability distribution based on occupants’ 

activities and active occupancy, and energy consumption of appliances to create a realistic residential load. 

Taking a different approach, [31] focuses on first generating synthetic activity sequences, then using data on 

energy consumption of appliances and energy-use pattern of the appliances to generate residential load. Finally, 



[36] relies on the a model of human desire from Psychology, in addition to other parameters to generate realistic 

residential load.    

2.4.2 Limitations    

Most of the models in Table 2 aiming for statistical realism rely on TUD to drive the models. Some of the 

limitations of TUD have been explored in Section 2.3. TUD captures occupant activities in time, which is then 

incorporated into the simulation models as a form of probability distribution. Since the probability distributions 

are historic correlations, the models are tightly fitted to the source field data (TUD) especially given the typical 

high resolution of 10 minutes. To apply the models to different situations which may have different structural 

properties and consequently different correlations, the probability distribution would need to be updated, which 

may lead to new TUS which is resource intensive. To minimise the impact of this limitation, this study aims to 

model occupant activities based on simpler properties of activities which may not be as tightly coupled to historic 

correlation. It is therefore expected that the probability distribution of activities can emerge as by-product from 

the simulation, rather than as an input. It may be less accurate, but it is fit for use.  

The second limitation is to do with approach to validation of the models aiming for statistical realism. The models 

assume that if the output of the simulation model is realistic, then the conceptual model is either realistic or 

inconsequential. The limitation is that no attention is given to validating the conceptual model, and other 

intermediary steps. Whilst the models probably undergo several iterations before the final output, a framework to 

validate the modelling process is not made explicit.  

2.5 System Dynamics   

2.5.1 Introduction  

System Dynamics (SD) is a language to simulate complex systems based on a generic understanding of systems 

[37,38]. SD provides the vocabulary to describe and analyse a system and it is suitable to describe time-varying 

variables like electric power. In addition, SD provides a common means of representation and communication 

across several disciplines and beyond formal disciplines which makes it an interdisciplinary, as well as a 

transdisciplinary method. Consequently, some of the advantages of using SD includes aiding communication of 

a model’s dynamics in the language of systems even without expertise in the modelled domain, and also the ease 

of integration with other SD models of other systems that have a common variable.  



2.5.2 Causal Loop Diagram 

SD models can be presented diagrammatically using Causal Loop Diagrams (CLD) and Stock and Flow 

Diagrams (SFD). Figure 1 shows a simple Causal Loop Diagram (CLD) with three components of a system. The 

arrow shows the relationship between two components which is causal or dependency, depending on the 

reference component; causal relationship in the direction of the arrow, and dependency in the opposite direction 

of the arrow. Therefore Figure 1 shows that Production Rate and Shipment Rate cause, or affect, the state of 

inventory. Alternatively, the state of inventory depends on, or is affected by, Production Rate and Shipment 

Rate.  

Figure 1 – A simple Causal Loop Diagram (CLD)  

2.5.3 Stock and Flow Diagram 

Figure 2 shows diagrammatical representation of SFD on the left and a mirrored key on the right. The diagram 

shows inflow (Production) and outflow (Shipments) to a stock (Inventory); inflows and outflows are flows. The 

variables in SD are mainly categorised into stocks or flows; others are auxiliary variables and constants. Stocks 

are represented as rectangles, flows as valves on double arrows, and other variables as text. Links between 

variables can be material links or information links represented as double arrows or single arrows respectively. 

The direction of material links indicates the movement of the same quantity between two stocks as well as 

dependence, but information links simply indicate dependence. Stocks are accumulations, e.g. bank account, 

product inventory, employed people. Flows are the rate of accumulation, e.g. rate of savings and rate of 

spending; rate of production and rate of shipment; rate of hiring and rate of quits, firing or retirement. A source 

or sink is a stock that is outside the model boundary. Mathematically, these symbols are expressed in Eq. 1, Eq. 

2, and Eq. 3 where 𝑥 and 𝑦 can be any variable (stock, flow, auxiliary, or constant) and 𝑛 is a natural number. 

Diagrammatically, the terms of integration in Eq. 1 are connected to the stock via material links (double 

arrows), whereas the terms in Eq. 2, and Eq. 3 are connected via information links.    

Figure 2 – Notation of Stock and Flow Diagram (SFD) adapted from 



 
𝑆𝑡𝑜𝑐𝑘(𝑡) =  ∫ [𝐼𝑛𝑓𝑙𝑜𝑤𝑠 − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠]𝑑𝑡 + 𝑆𝑡𝑜𝑐𝑘(𝑡0)

𝑡

𝑡0

 
Eq. 1 

 𝐼𝑛𝑓𝑙𝑜𝑤𝑠 𝑜𝑟 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠 = 𝑓(𝑥1, … , 𝑥𝑛) Eq. 2 

 𝐴𝑢𝑥𝑖𝑙𝑙𝑎𝑟𝑦 = 𝑓(𝑦1, … , 𝑦𝑛) Eq. 3 

2.5.4 Validation in System Dynamics  

In SD, the aim of validation is to impart confidence in the users of a model about the model. Building 

confidence is not focused on the final output of the model only, but also intermediary outputs and processes of 

the modelling e.g. choice of variables, relationship among variables and parameter calibration. The aim is to 

adequately describe the model for its purpose, and the output is expected to be valid as a consequence. To 

interrogate the modelling process and intermediary outputs, validity tests have been developed in SD literature.  

The validity tests are presented in Table 1 as questions to guide the modelling process based on [38]. Boundary 

refers to the variables/elements in the system distinguishing between endogenous and exogenous, structure 

refers to the dependency between elements of the system, dimension refers to units of the variables, parameters 

refers to exogenous variables (whose values are not dependent on variables within the system boundary), 

extreme conditions refers to the behaviour of the system when parameters take extreme values, and behaviour 

refers to the state or properties of endogenous variables over time. The validity tests can be considered a 

prescriptive framework for validating the modelling process and intermediary outputs, including the final 

output.  

Validity Test Questions to ask Positive Validity Result 

Boundary 

Adequacy 

• Is the model boundary appropriate to the 

purpose?  

• Are the important concepts for addressing the 

problem endogenous to the model? 

All major variables are relevant 

to the purpose.  

  

Major variables are endogenous; 

as much as possible. 

Structure 

Verification 

• Is the model structure consistent with relevant 

descriptive knowledge of the system? 

• Is the level of aggregation appropriate? 

• Does the model conform to basic physical 

laws such as conservation laws, or contradict 

common sense?  

• Do the decision rules capture the behaviour of 

the actors in the system? 

A CLD Conceptual Model 

justified by the data sources  

Dimensional 

Consistency 

• Is each equation dimensionally consistent 

without the use of parameters having no real 

world meaning? 

Units of variables are consistent 

and balanced throughout the 

system. Units should also be 

meaningful. Choice of units is 

appropriate and justified. 



Parameter 

Verification 

• Are the parameter values consistent with 

relevant descriptive and numerical knowledge 

of the system?  

• Do all parameters have real world 

counterparts? 

Parameters are realistic to the 

system, and justified by data. 

Extreme 

Conditions 

• Does each equation make sense even when its 

inputs take on extreme values? 

• Does the model respond plausibly when 

subjected to extreme policies, shocks, and 

parameters? 

That behaviour in extreme 

condition matches anticipated or 

historical behaviour. 

  

Model is robust by behaving 

realistically to the input. 

Behaviour 

Reproduction 

• Does the model reproduce the behaviour of 

interest in the system?  

Minimal error/deviation from 

historical or expected behaviour. 

 Table 1 – Questions for validity tests and expected positive validity result  

Validity tests can be categorised into those seeking to validate the conceptual model, and those seeking to 

validate the simulation model. Conceptual model validity tests include boundary adequacy and structure 

verification, whereas simulation model validity tests include parameter verification, extreme condition and 

behaviour reproduction. That is because a conceptual model identifies the variables and structure of the model, 

while a simulation model goes further to calibrate the model parameters and run the model to obtain an output 

behaviour.  

Validity tests can address one of the limitations identified in Section 2.4.2. For this study, SD literature provides 

a framework for validating the process of modelling not just the final output as validity tests (Section 2.5.4) 

which poses questions that guide the modeller.  

3 Methods 

3.1 Conceptual Model and Validity Tests  

This section looks into the conceptual model and addresses the concerns of validity tests raised in Table 1.   

3.1.1 Problem Definition  

The purpose of the model is to generate a residential load that aims to be realistic and minimise historic coupling, 

via a bottom-up approach. Being realistic refers to statistical plausibility when compared to measured data from 

a real system or a simulation model validated with measured data; which makes it more representative of real 

systems. Minimising the historic coupling of a model refers to minimising over-fitting between what drives the 

model and historic correlations like probabilities derived from real residences; which should make the model 

applicable to wider scenarios.  



3.1.2 Model Boundary  

Table 3 shows the endogenous and exogenous variables in the system in the Model Boundary Chart (MBC), 

with their units in parenthesis. The boundary of the model is defined by the endogenous and exogenous 

variables; the endogenous variables depend on the exogenous. The boundary adequacy of the model is assessed 

based on whether the variables support the purpose of the model.  

Endogenous Variables Exogenous Variables 

Activity timer (minutes) 

Occupant’s attention (dimensionless) 

Appliance activation (dimensionless) 

State of appliance’s operation (dimensionless) 

Power consumption of appliances (kW) 

Total power consumption of residence (kW)  

Appliance/Activity cycle per time (dimensionless) 

Number of residents (dimensionless) 

Occupancy of residents (dimensionless) 

Mean duration of appliance operation (minutes) 

Mean energy consumption of appliances (kW-minutes)  

Table 3 – Model Boundary Chart of the model showing the main variables  

3.1.3 Conceptual Model 

A conceptual model presents the structure of a system. The conceptual model can be understood from four 

perspectives: aggregation; relationships; constraints; and assumptions on the behaviour of residents. These 

perspectives were informed by Structure Verification validity tests (Table 1). The conceptual model is presented 

as a CLD (Figure 3 to Figure 7), and it is the outcome of developing and testing multiple concepts based on the 

literature and progressive iterations.    

Aggregation: At the level of a residence, the main causes/sources of power consumption are appliances, and 

most appliances operate based on the activities of the residents. Residents are defined by their activities which 

are influenced by the occupancy and attention of the residents. Activities are conceptualised as timers, 

appliances as power load, while occupancy and attention as on and off switches but occupancy is exogenous 

whereas attention is endogenous. Activities have been described as timers because activities have been shown to 

be periodic and have patterns in [6,7]. Currently, activities are described as tied to only one appliance; e.g. there 

is no activity “cooking” which may involve multiple devices, but instead there is an activity “use kettle” and 

another “use microwave”. Therefore a conceptual model which describes activities, occupancy, attention and 

appliances offers an appropriate level of aggregation for modelling residential load demand. Figure 3 shows a 

CLD of the components at the chosen level of aggregation from the perspective of a single resident. The two 

types of appliances (Appliance A and Appliance B) relate to the resident’s attention differently.  



Figure 3 – CLD showing interacting components of a single resident with two types of activities and appliances  

Relationships: In the absence of automated scheduling of appliances, a resident commits their attention when 

carrying out activities, and the attention is influenced differently by type of appliance (see Figure 3); either 

depending on the appliance’s engaged state or set up period. Also, at any time, a resident can either be at the 

residence or not; and activities in the residence require active occupancy of the resident. Each resident can carry 

out multiple activities and each power consuming activity requires the operation of one appliance. However, 

automatic appliances like fridges operate without prompt from a resident and are modelled as periodic power 

consumption that is ever-present. The standby power consumption of appliances is also modelled (see Figure 4). 

Therefore the relationships among elements in the system is based on valid observations and the literature.  

Figure 4 – CLD showing standby power consumption of appliances 

Constraints: Attention of residents is finite but residents multitask, as acknowledged in TUS design which 

distinguishes simultaneous activities as primary and secondary activities, as found in [11,12]. Whilst not all 

activities are power consuming, residents have also been shown to perform multiple power consuming activities 

simultaneously [8]. However, a limit to the number of power consuming activities a resident can be engaged in 

simultaneously shall be limited and reasonable. Some power consuming activities are semi-automatic (e.g. using 

washing machine) which requires the resident’s attention to setup but not for the duration of the operation of the 

appliance, as acknowledged in [31,35]; for example, the resident’s attention in Figure 3 is determined by the 



setup period of Appliance B which may be shorter than the engaged state. Another constraint is the state of a 

resident’s occupancy determines whether an activity is initiated or not; the resident must be at the residence for 

an activity to occur, especially the part of the activity that requires the attention of the resident. Finally, 

appliances in a residence are finite, which means the availability of an appliance is a constraint in a residence 

with multiple residents who may be ready to use a single appliance while it is engaged by another resident.  

Assumptions on the behaviour of residents: It has been assumed that residents are able to estimate whether the 

end of an activity that requires their attention will be outside the time they are scheduled to be in the residence, 

and consequently, they will refuse to engage in an activity even for the duration of the available time. Also, 

residents do not share the same appliance concurrently (see Figure 5). Lighting has been modelled based on the 

assumption that when an appliance is in use, the set of lights in the room is turned on; and lights are turned off 

when no appliance is in use in a room (see Figure 6). This is the case regardless of the time of day and it should 

not make a significant difference because LED bulbs are assumed given their ubiquity and low power 

consumption.   

 

Figure 5 – CLD showing that appliances are not shared concurrently 

 

Figure 6 – CLD showing residential lighting 

The residential load is an aggregation of all the power consumption of the appliances shown in the diagrams of 

the conceptual model with orange fill; shown in Figure 7. 



Figure 7 – CLD showing residential power load  

3.2 Simulation Model and Validity Tests  

This section presents the simulation model (Section 3.2.1) developed from the conceptual model while 

addressing the concerns of validity tests raised in Table 1. The logic and formulation of the simulation model is 

explored along with the behaviour outcome (Section 3.2.2). Then the source of values for calibrating parameters 

are presented (Section 3.2.3) as well as introducing behaviour reproduction (Section 3.2.5).    

3.2.1 Simulation Model 

Activity has been implemented as a countdown timer in SFD; see Figure 8. As a timer, the following properties 

of activities are captured (see Section 2.2): periodic and routinised but adaptable. The timer corrects for delays 

which is tracked by the Due-Time Correction Factor. An activity being due is not sufficient to activate the 

associated appliance but depends on other variables, as well as resolution of conflict when multiple activities are 

due at the same time since the available attention of the resident is limited. The necessary conditions for 

activation of appliances are further discussed in Section 3.2.2. The two types of appliances are shown in Figure 

9 and Figure 10: a kettle is modelled as requiring the attention of the resident while on; whereas a washing 

machine is modelled as requiring the resident’s attention only for a setup period, not the entire operating cycle. 

To model efficiency improvement of an appliance, 'Power per User' can be decreased for more efficient 

appliances, and increased for less efficient appliances. Figure 11 shows the limited attention of a resident being 

dependent on the occupancy of the resident as well as the activation and deactivation of appliances.  

The simulation was run for three types of residences with one, two and three residents for the duration of a year. 

Since additional residents lead to marginal increase in residential load [15], the maximum of three residents 

which is simulated could represent more residents in real residences. 



Figure 8 – SFD of an activity for Kettle use  

Figure 9 – SFD of an appliance that requires attention while turned on: Kettle 

Figure 10 – SFD of an appliance that requires attention only during setup: Washing machine  



Figure 11 – SFD of attention of a resident  

3.2.2 Model Formulation  

The simulation model can be further elaborated by looking at the operational logic of the endogenous variables. 

Figure 12 shows a flowchart of the operational logic of an activity and its related appliance. When resetting the 

activity timer, the timer is adjusted for the counted delay before the delay counter is reset. There are multiple 

conditions required to activate an appliance and detailing them would make the flowchart cumbersome; also 

shown in Figure 8 as the variables pointing to Activate. The conditions to activate in the most basic set up of the 

model are: active occupancy at the start time of the activity; availability of attention of the resident; availability 

of the appliance; occupancy at the estimated end of activity; and conflict resolved in favour of the activity, in 

situations where multiple activities are due. Conflict resolution is implemented such that the longest activity due 

is carried out.  



Figure 12 – Flowchart of the operational logic of activities and appliances  

The activity timer is implemented as an exponential decay such that the countdown timer is never negative. The 

advantage of an exponential decay over a linear function is that there is less precision in the activity cycles 

which makes it perhaps more realistic to human mental model of time tracking. The cycle duration for different 

active occupancy durations of a resident has been implemented as an exogenous non-linear variable.   

Figure 13 illustrates some the behaviour of the timer in three different cycle conditions shown as six full cycles. 

A cycle is a ramp made of a vertical line and a downward curved slope up to the next vertical line. The first and 

last cycles are conditions with no constraint which shows a cycle of about 600 minutes. The second and fifth 

cycles show that the timer pauses during inactive occupancy (occupancy = 0). The third cycle shows a cycle that 

is delayed by about 200 minutes (because some conditions have not been met) and the delay is adjusted in the 

fourth cycle by the amplitude of the ramp. Furthermore, Figure 14 shows the behaviour of attention which 

depends on occupancy (see Figure 11) for the duration of 7 days; attention goes to the maximum available 

attention (which is set to 2) during inactive occupancy (occupancy = 0) so that no activity can be carried out in 

the residence, otherwise attention varies between 0 and the maximum depending on activities that are due.  



Figure 13 – Behaviour of Activity Timer in 3 conditions  

Figure 14 - Occupancy and Attention for 7 days  

3.2.3 Parameter Verification and Calibration   

Table 4 lists the system parameters and the source of values used to calibrate them; all parameters are 

exogenous variables. The values of most of the parameters are sourced from the CREST model; which has been 

well documented [39]; the choice of the CREST model is discussed in Section 3.2.5. In the case of activity 

frequency (Mean Base Cycles per Year), a scaling factor is included which is adjusted until the sum of 

residential load in the SD model is close to that of the CREST model; because activity frequency in the CREST 

model is an average from a population of non-homogenous residences which is mediated/adjusted by probability 

distributions relevant to the residence type. However, the scaling factor is applied to all activities and therefore 

the proportion of frequencies/cycles among appliances is maintained. Figure 15 shows the annual mean and sum 

of the models as calibrated with scaling factors of 0.6, 0.75 and 1.2 for residences with one, two and three 

residents respectively. Figure 15 does not show the monthly trends because available data on appliances from 

the CREST model are annual averages, not monthly. 

Parameter Source 

Mean energy consumption of appliances per 

cycle 

Mean cycle power (CREST model)  

Standby power (CREST model) 



Mean duration of appliances operation cycle Mean cycle length (CREST model) 

Delay restart after cycle (CREST model) 

Frequency of appliance use (Appliance cycle 

per time)  

Mean base cycles per year (CREST model) 

Start times of appliances/activities Modeller’s choice 

Appliances available and quantity Same as parameters set in CREST model being compared  

Number of residents  Same as parameters set in CREST model being compared 

Occupancy/schedule of residents  Same as parameters set in CREST model being compared 

Maximum attention capacity  Modeller’s choice; 2 is the default. This allows for 

multitasking as well as for residents to carry out other 

activities while their attention is waiting for the most due 

activity to be performed.  

Table 4 – System parameters and sources of calibrated values 

Figure 15 – Calibrated sum and mean of the SD models by adjusting the scaling factor of the activity frequency  

There is a secondary group of parameters that add stochasticity to the model; termed the noise parameters. 

These achieve stochasticity by randomly modifying an associated parameter around its mean value. The noise 

parameters include: Schedule Shift Noise; and Appliance Duration Shift Noise. Schedule Shift Noise moves 

occupancy forward or backward every 24 hours, while Appliance Duration Shift Noise changes the duration of 

the appliance’s operation ever cycle. All the noise parameters are based on the Normal Distribution with the 

mean set as the calibrated value of the associated parameter. The standard deviation for Schedule Shift Noise is 

set to 8 minutes, while for Appliance Duration Shift Noise, it is 30% percent of the magnitude. Being random 

noise, the accumulated effect is cancelled out at the end of the simulation of 525,000 minutes.     

3.2.4 Extreme Conditions 

Most of the extreme and unrealistic conditions that could arise in the model are controlled in the logic of the 

model; e.g. only one resident can use an appliance at the same time instead of multiple of infinite number. Other 

controls are specified as parameters e.g. maximum attention per resident set to 2.  
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3.2.5 Behaviour Reproduction  

The aim of behaviour reproduction is to evaluate the similarities of the model’s output to a reference dataset. 

The reference dataset could be a measured residential load or a synthetic residential load which has been 

validated against measured residential load. Table 5 shows behaviours that will be tested which are based on 

validations carried out in [31] and [32], but limited to statistical characteristics that apply to a single residence 

while also excluding characteristics showing the effects of some limitations of the model (e.g. seasons). The 

simulation model is run at 1-minute time steps for the duration of one year. 

Property Description 

Load profile Plot of the output load of the residence per minute 

Annual mean daily load profile  Plot of the annual mean load for every minute of a day 

Hourly load duration curve  Plot of the hourly mean load for a year in descending order 

Table 5 – Statistical properties for comparison and brief description  

High resolution measured data on residential load demand is available like the UK-DALE dataset [40] and the 

UKDA-6385 dataset [41] but comparing these quantitatively with the SD model’s output is challenging because 

some of the calibrated parameters of the SD model that define scenarios are not specified in the datasets; e.g. 

active occupancy of residents, number of residents, power consumption of appliances and available appliances. 

In the UKDA dataset, there are data on available appliances and number of residents, whereas in the UK-DALE 

dataset, there are data on available appliances and their power consumption only.   

On the other hand, the output dataset from the CREST model [39] could be used for validation because many of 

the model parameters can be extracted from the input parameters of the CREST model. This has been shown in 

the parameter calibration Table 4. However the CREST model has a limitation, which is that its output 

represents an average residence from a population because the model is driven by probability distributions 

generated from TUD which covers many residences in two days (a weekday and a weekend). In contrast, the SD 

model in this study aims to simulate a single residence across many days. Hence a dataset from a single 

residence, or simulated based on data from a single residence, would be preferred, and therefore behaviour 

comparison is carried out in light of this limitation.  

Based on the above, there are two aspects to behaviour comparison: a visual-quantitative and a qualitative 

aspect. Visual-quantitative comparison refers to visual comparison of plots on quantitative axes. The visual-

quantitative comparison is between SD and CREST models on how well the former matches the latter on a two 

dimensional surface of power consumption and time. Purely quantitative comparison is tedious and inconclusive 

for time series – without qualitative judgement – according to sources like [42–45]. Moreover, all the reviewed 

literature on synthetic residential load focus on visual comparison to validate at individual-residence level. On 



the other hand, the qualitative comparison first identifies some qualitative properties of real measurements 

(UKDA dataset), then compares the two models on how well they exhibit those properties.    

Since the CREST model allows for the SD model to be calibrated better for comparison, a few adjustments have 

been made in the CREST model: maintain the same appliances and occupancy schedule for weekdays and 

another for weekends, for the simulation period of a year. The appliances selected and their quantity for the 

residence is provided in Table 6. The main measured residence to be compared with from the UKDA dataset has 

the same appliances as in Table 6, however the power consumption of the appliances are not available. The 

residents are assumed not to be children because every resident has access to all the appliances. Children may 

have access to none or few, which may not be operated by them in reality but would be determined by their 

routine.  

Appliance Quantity 

Fridge freezer 1 

Personal computer 1 

TV 1 

Microwave 1 

Kettle 1 

Washing machine 1 

Table 6 – Appliances in each residence  

4 Results and Discussion  

4.1 Behaviour Comparison  

4.1.1 Load Profile 

The load profiles for a 7-day period for the CREST model, SD model and a residence from UKDA dataset are 

shown in Figure 16, Figure 17 and Figure 18 respectively; all have two residents. Figure 18 is the residence with 

the same appliances as the CREST and SD models. The three load profiles highlight the similarities of varying 

and steep peaks resulting from different activities, as well as similar amplitudes between the CREST and SD 

models. The absence of these similarities would terminate further comparisons.   



Figure 16 – Load Profile from CREST model 

Figure 17 – Load Profile from SD model 

Figure 18 – Load Profile measured from a residence in the UKDA dataset 



Looking at the period of a week in Figures 16-18, there is significant difference in peak amplitude between SD 

and UKDA, but not between SD and CREST. The similarity in average amplitude between SD and CREST is 

because the parameters of appliances in SD were obtained from CREST. The doubling of peak amplitude in 

CREST is an outlier which can occur in SD at different time. However, the difference in average peak between 

SD and UKDA is likely due to higher power consumption of appliances in the UKDA residence, which is not 

available in the UKDA data. Nonetheless, the three models (Figures 16-18) show similar qualitative properties: 

intermittent peaks, short but consistent low power cycles, and sparse intermediate power cycles lasting minutes 

or hours.  

The aggregate energy for the period in Figures 16-18 is 24.60 kWh, 27.85 kWh and 30.30 kWh for SD, 

CREST and UKDA respectively, which indicates that the appliances in UKDA consume the most power and 

that the difference between SD and CREST would be smaller were it not for the outlier in CREST. However, 

these values represent a short period of a week and it cannot be generalised for other parts of the year especially 

given the limitation that SD does not model seasonal variation in residential load. For a more comprehensive 

qualitative comparison, which should be between SD and CREST, the annual energy consumption for SD and 

CREST have been shown in Figure 15. 

4.1.2 Annual Mean Daily Load Profile (AMDLP) 

Residential load profiles are not suitable for comparing the models over a long period of time like a year at 1-

minute resolution because the data points are many and the entire dataset is considered a single instance of the 

data; a year’s data could be split into instances of sub-units like weeks or days. The AMDLP summarises a 

year’s load profile by plotting the annual average of every minute in a day, and this addresses the limitations of 

load profiles. In this section, the AMDLP plots will be explained first, then a visual-quantitative and qualitative 

comparison, as explained in Section 3.2.5.  

Figure 19 and Figure 20 compare the AMDLP of the SD model with the corresponding CREST model having 

similar parameters, for residences with two and three residences respectively. The plots show clusters of peaks 

which coincides with the active occupancy for weekdays and weekends; the weighted weekly occupancy of the 

two residence types are provided in Figure 21. Figure 22 shows the AMDLP of measured residences from 

UKDA dataset where the number in the name indicates the number of residents; Res2b is the residence with the 

same appliances as the SD and CREST models, having two residents. The qualitative properties of AMDLP 

from the real residences (Figure 22) are: gradual transition between trough and peak; at least, visually distinct 

mountain-like peaks; and continuity between the end of the plot and the beginning. The exception is a steep 



transition in Res1a which could be due to a scheduled device that operates at the time of day throughout the 

year.   

Figure 19 – Annual Mean Daily Load Profile for the CREST model and SD model for residences with 2 Residents  

Figure 20 – Annual Mean Daily Load Profile for the CREST model and SD model for residence with 3 Residents 

Figure 21 – Occupancy of the residences used in the CREST and SD model; for residences with 2 and 3 residents    
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Figure 22 – Annual Mean Daily Load Profile from UKDA dataset for residences with different number of residents 

Visual-quantitative comparison of the AMDLP in Figure 19 and Figure 20 are generally similar in terms of 

power consumption and time. Where the power consumption from the SD model falls short of the CREST 

model, it compensates for it in other peaks. Moreover, the difference between the two models on total power 

consumed in a year is less than 1%: 0.67%, 0.78% and 0.5% for residences with 1, 2 and 3 residents respectively 

(see Figure 15). For qualitative comparison with the identified properties of real residences, the CREST model 

is steeper during occupancy transition, flatter during active occupancy, and lacks visual continuity from the end 

to the beginning of the plot. Therefore it seems the SD model behaves more similar to the real residences than 

the CREST model.    

4.1.3 Hourly Load Duration Curve (HLDC) 

Similar to the AMDLP, the HLDC is another way to summarise the load profile over a long duration by plotting 

the average hourly load per time in descending order as shown in Figure 23, Figure 24 and Figure 25. Figure 23 

and Figure 24 show the HLDC of residences with two and three residents respectively, while Figure 25 shows 

the HLDC of real residences from the UKDA datasets. The plots have been separated to aid readability because 

the pair of plots in Figure 23 and 24 follow each other closely. The qualitative property of the real residences 

(Figure 25) to be used for qualitative comparison is that the HLDC are smooth, each like a single curved line; 

not angled straight lines.    



Figure 23 – Hourly Load Duration Curve for the CREST model and SD model for residence with 2 residents 

Figure 24 – Hourly Load Duration Curve for the CREST model and SD model for residence with 3 residents  

Figure 25 – Hourly Load Duration Curve from UKDA dataset for residence with varying number of residents 



For the visual-quantitative comparison in Figure 23 and Figure 24, the SD model approximates the CREST 

model well. Qualitatively, the SD model appears smoother than the CREST model, and that makes the SD 

model more similar to the real measurements of Figure 25.   

4.1.4 Summarising Behaviour Comparison  

In summary, the SD models behave like the CREST models with the same number of residents in terms of load 

profile, AMDLP and HLDC. Where the SD model deviates from the CREST model, it behaves more like real 

residences from the UKDA dataset.  

4.2 Output on Appliances  

In addition to the residential load, other outputs from the simulation include the distribution of appliances’ 

activation and operation. Figure 26 and Figure 27 show the distribution of the operation of appliances in a day 

over a year from the output of the SD model for residence with two and three residents respectively; and these 

can be used as probability distributions. The distributions fall within active occupancy period except the 

washing machine which is semi-automatic and only requires to be setup and started within active occupancy. In 

other simulation models reviewed (Section 2.6) functionally similar probability distributions are extracted from 

TUD and provided as input to the models, whereas it is an output in these SD models; Figure 28 shows an 

example of input to the CREST model. Serving similar function as input in the SD model is a single value: 

average frequency of appliance use. Having these distributions and their derivatives as input makes the other 

models more coupled to historic correlations, while the SD model is less coupled to historic correlations. 

Furthermore, these outputs from the SD model could be used for analysis or as input to other simulations.  

Figure 26 – Distribution of appliance operation in a day over a year, from SD model with 2 residents   



Figure 27 – Distribution of appliance operation in a day over a year, from SD model with 3 residents  

Figure 28 – Input to CREST model showing probability of activities as proportion of households where at least one occupant 

is engaged in a particular activity during a particular ten minute period  

4.3 Complexity 

4.3.1 System Complexity 

There are two sources of complexity in any system [38]: detailed complexity which arises from aggregation of 

system components linearly; and dynamic complexity which arises from relationships among system 

components which are characterised by feedbacks, non-linearity and delays. The detailed complexity of the SD 

model is proportional to the amount of elements in the system e.g. residents and appliances. On the other hand, 

the dynamic complexity is determined mainly by the dependencies and constraints within the system as 

formulated in the system’s logic.  
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The two types of complexity are not necessarily complementary; e.g. when a residence with two residents has 

one of its two (non-sharable) kettles removed from the system, then one resident would have to wait for the 

other to finish using the kettle before using it if they both plan to use it at the same time. In this example, the 

detailed complexity reduced because there are fewer appliances but the dynamic complexity increased because 

of the increased dependency between the activities of the residents. Therefore the multiple constraints and 

conditions required before activating an appliance in the SD model can be considered as contributors to dynamic 

complexity.  

Stochasticity from noise parameters could increases complexity in terms of uncertainty about the value of the 

associated parameter, and this may be considered dynamic complexity because the noise parameters affect time 

variables (occupancy and appliance operation duration), the effect of which is a delay or advancement of the 

activation of an appliance in time. Delay or advancement in timing has cascading/ripple effects in time which 

alters the dependencies in the future, but not infinitely.   

4.3.2 Computational Complexity and Cost  

Computational cost can be expressed in terms of time taken to run a model, and it is directly proportional to the 

complexity of the model. There are two levels to evaluate and compare the computational complexity associated 

with the models. The first is at the level of algorithm, and the second is at the level of the implemented model. 

Complexity of algorithms can be estimated using the Big-O notation which expresses the rate of growth of run 

time relative to the size of input. On the other hand, implemented models are impacted by the inefficiencies of 

the software platforms they are built on, and therefore the actual time taken to run a model can represent the 

cost.   

The Big-O complexity of the algorithms for SD and CREST is linear because the number of operations increase 

as the input size increases; input could be time duration of the simulation. This is based on the two models ran 

for duration of 4, 36, and 365 days, being approximate factors of 365. The time taken to simulate a residence 

(having the same appliances) with three residents for the duration of a year (525,600 time steps) is 186 seconds 

and 660 seconds for SD and CREST models respectively. The time was measured using a stopwatch and inline 

python code respectively. It should be noted that while the SD model is implemented in Vensim with some 

input read from Microsoft Excel, the CREST model was implemented in Microsoft Excel (VBA) for daily 

simulations and a Python script was written to automate the daily simulations for a year. Therefore, whilst both 

models are linear, the SD model has a lower rate of growth and is computationally less costly compared to the 

CREST model in the current implementation.     



4.4 Evaluation of the Model’s Aims 

The two aims of the SD simulation model are to be realistic and minimise historic coupling. The SD model has 

been shown to be realistic to the extent that it behaves similar to the CREST model and measurements from real 

residences of the UKDA dataset, in Section 4.1.  

Whereas most of the reviewed simulation models (Section 2.6) are driven by historic probabilities of appliance 

use, the SD model is driven by the average frequency of an appliance use, and that makes the SD model less 

historically coupled or fitted. This is because the historic probabilities are typically generated from high 

resolution data of activities (TUD) which makes it sensitive to granular change in the time and 

individuals/residents in the sample population, whereas average frequency of appliance use is a summary 

statistic that is less sensitive to granular changes. Moreover, multiple TUD for the same activity (or appliance 

use) could summarise to the same average frequency of appliance use. Similarly, some of the reviewed models 

also describe occupancy of residents from historic probabilities derived from TUD, whereas the SD model 

allows occupancy to be described as a simple binary for times of weekday or weekend. 

4.5 Some Benefits of the SD Model 

Compared to the some of the reviewed models, the benefits of the SD model include being more cost effective, 

more interpretable and enabling transdisciplinary research. Interpretability aims to simplify translation of the 

main variables between the model and real world; which should aid policy research. Enabling transdisciplinary 

research refers to employing a modelling language that is not discipline-specific. 

Compared to models based on TUD, the SD model could be less expensive to collect data on appliance use, 

assuming data collection is part of the model’s cost. Unlike TUD which is resource intensive in terms of cost 

and person-time, the average frequency of appliance use can be estimated from asking a single question about a 

household appliance. Since TUD is also scarce, average frequency – estimated or collected – could facilitate 

empirically grounded models. Computationally, it may also be simpler to calculate average frequency of 

appliance use compared to generating probability distribution of appliance use from TUD. Furthermore, output 

from the SD model can be used as probabilities of appliance use as show in Section 4.2.  

The SD model is more interpretable than other reviewed models because its driving input (average frequency of 

appliance use) is easier to translate to the real world than the more abstract driving input (probabilities) of the 

other models. Being more interpretable could simplify simulating real residences in the model and extracting 



insight from the model to a residence in the real world; e.g. a limit to average or total use of an appliance in a 

duration.  

Finally, the model enables transdisciplinary research by using the generic language of systems in the form of 

CLD and SFD. Furthermore, the use of SFD eases integration with other SFD models as long as the models 

share a common variable, regardless of disciplinary boundaries. Whereas integration between models could be 

achieved via a common interface (for inputs and outputs), integration among SD models makes the interface 

seamless while allowing for interaction between variables of the models, including endogenous variables. 

Therefore common variables are not limited those that are input in one model and an output in the other model.  

5 Conclusion and Further Work 

The tools of system dynamics have been utilised to simulate a residential load using a bottom-up approach, and 

the aims of the model have been achieved. The model was conceptualised as a CLD based on literature and 

reasonable assumptions, and from that, a simulation model was presented as a SFD. Both the conceptual and 

simulation models addressed the concerns of SD validity tests. The output load from the SD model was 

compared to output from the well validated CREST model, as well as load measurement from real residences 

(UKDA), and the behaviour was found to be similar. Therefore, output from the SD model could be used as 

input to other simulations like other synthetic simulation models. Furthermore, distribution of appliance use was 

explored as an output from the SD model. In conclusion, the complexity of the SD model and some benefits 

were discussed.  

The novel contributions of this work that are significant to research on synthetic residential models are four. 

First is that this work represents the first attempt at using SD tools to generate realistic bottom-up residential 

load in high resolution. The significance of using SD is that integration would be facilitated with other SD 

models that have a common variable; like top-down residential models.  Second is the use of average statistics 

of appliances as input to the model which is cheaper to obtain or estimate compared to the commonly used 

TUD. Third is the logic of the SD model which could be adapted and implemented using programming tools. 

Fourth is the output of distribution of appliance use which could be used as input to other simulations.     

A limitation of the SD model includes the lack of modelling seasonal variation in residential demand, which can 

be achieved by using subannual averages of appliance data instead of annual. Another limitation is that the SD 

model does not describe different types of residences (e.g. single houses, condominiums) because it does not 

model envelop or heating and cooling within the building. These limitations can be explored in future work. 



Other areas to explore in the future include: calibration of the model parameters using measured data from a 

single residence; explore further constraints on the total power consumed by appliances like the maximum 

supply available to a residence; integration of the model with other SD models based on SFD; explore the 

scalability of the model beyond a single residence to multiple residences; and simulation of a community energy 

system composed of several residences.  
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