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Abstract

This article presents a general review of the existing methods for balancing satellite simulators. The mathematical
modeling for the kinematics and the dynamics of the satellite simulator is described and uniformed throughout the
various methods. The available balancing methods are classified in a handful group of categories, which consider whether
the analyzed method uses linear or nonlinear filtering, adaptive control or even classical regression methods. Details
are given on the features which may be added to the dynamic model and how they are modeled, on the discretization
methods used, on the models observability and on the solution convergence. Finally, the overall performance of each
method is shown, as well as the circumstances in which each method presents advantages and disadvantages, guiding on
which method to use.
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1. Introduction

Attitude simulators are a great resource for designing
and testing attitude determination and control algorithms
[1] for spacecraft. They have been used for decades to-
gether with other simulators (magnetic field simulators [2],5

sun sensors [3]) to reproduce the operational conditions of
a satellite in space and to experimentally validate attitude
determination and control algorithms and devices [4, 5, 6].
The recent increase in the number of small satellite ini-
tiatives has made attitude simulators even more popular10

and accessible for research groups in universities and other
institutions [3, 7, 8, 9].

In order to simulate the attitude motion of a satellite
in space, many simulators rely on an air-bearing to sus-
tain the platform where the spacecraft is positioned. Air-15

bearings allow to obtain an almost friction-less environ-
ment and the consequent possibility of torque-free rota-
tional motion. In some cases, the air-bearing can be even
extended to obtain force-free translational motion [10] to
simulate docking and rendez-vous tasks together with at-20

titude problems such as inertial pointing or detumbling.

A pre-requisite for conducting spacecraft attitude sim-
ulations is to have a neutral environment in terms of me-
chanical torques. This means that the platform that car-
ries the spacecraft should be balanced so that no gravita-25
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tional torques exist. When simulating 3D rotational move-
ments, a simulator may present pendulum-like motion, as
a consequence of the unbalance produced by the distance
between the Center of Rotation (CR) and the Center of
Mass (CM) of the platform. In order to properly repro-30

duce attitude maneuvers in the Low Earth Orbit (LEO),
for example, this torque should be reduced to values as
low as 10−6 Nm [11, 12, 13].

Although in some cases balancing the platform can be
performed manually, for example if the required accuracy35

is not high, an automatic balancing procedure is preferable
because it grants more accuracy and less efforts. Balanc-
ing is, in fact, an operation that needs to be performed
on the testbed every time the set-up of the experiment
is changed, e.g. every time the spacecraft undergoes some40

modification (changing its position or structural elements).
Therefore, an automatic method avoids a human operator
to repeat the procedure multiple times.

This paper presents a general review of automatic bal-
ancing methods for spacecraft attitude simulators. The45

goal is to identify, analyze, and compare the main features
and the limitations of these methods. This perspective will
allow to show how some of these methods may be changed
in order to create new algorithms that take into account
specific characteristics of the simulators. Furthermore, the50

consequences of making simplifications in the mathemati-
cal model of the system will be presented.

The remaining sections of this work are organized as
follows. In Sec. 2 the satellite simulator model will be de-
scribed, including the kinematics and the dynamics equa-55

tions that apply, the balancing problem will be defined and
some design remarks are given. In Sec. 3 the performance
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that may be attained by manually balancing a satellite
simulator is firstly presented along with the disadvantages
of adopting this strategy, followed by a systematization of60

the methods for identifying the physical parameters of the
simulator - such as its CM and its inertia tensor parame-
ters. In Sec. 4, techniques that depend on active control
torques are presented, focusing on the use of the complete
nonlinear model of the system. Finally, Sec. 5 provides65

manners of assessing the performance of a given balancing
method and Sec. 6 concludes with final remarks.

2. Design remarks on models and hardware

Before delving into the details of the various balancing
methods, it is important to define the standards which will
be adopted in order to describe the simulator kinematics
and dynamics. Regarding the simulator kinematics, there
are many ways of representing the attitude of the testbed,
such as Direct Cosine Matrices (DCMs), rotation matrices
in various sequences, quaternions, dual quaternions and
Euler-Rodrigues parameters. In this work, only two con-
ventions are employed, the 3-2-1 sequence of the Euler an-
gles and the quaternions. With the Euler angles, attitude
is determined by three independent angles, φ (roll angle,
around the body x-axis), θ (pitch angle, around the body
y-axis) and ψ (yaw angle, around the body z-axis). Also,
when discretizing the testbed models for simulation, it is
important to know the rate at which these angles vary.
This rate is given by

Ė =

 φ̇

θ̇

ψ̇

 =

 1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sec θ sinφ sec θ cosφ

 ωx
ωy
ωz

 ,

(1)
where ωx,y,z are the components of the angular velocity
vector ω. This equation can be integrated along with the70

dynamic model equations in order to simulate the testbed
motion.

The other convention used in this work is the rotation
quaternion. The rotation quaternion follows the quater-
nion algebra for representing vector rotations. In this case,
the representation of the transformation between two vec-
tors v and w in the body and inertial frame can be given
by the following equation:

w = q⊗ v ⊗ q∗ = Qb
i · v , (2)

where q is the rotation quaternion, ⊗ the quarternion
product, and q∗ its conjugate, and Qb

i is the 3× 3 matrix-
equivalent rotation operator whose entries are given as
functions of the four components of the rotation quater-
nion, q0, q1, q2 and q3. Also, the rates at which each
quaternion component varies are given by

q̇ =
1

2
Ωq , (3)

where Ω is the 4× 4 skew-symmetric matrix of ω. Special
attention must be taken to the following remarks:

1. The adopted convention assumes that the q0 compo-75

nent is the real part of the quaternion. In other works,
instead, the components are numbered from 1 to 4,
with q4 being the real part.

2. The adopted convention assumes a world-to-body
perspective. Further understanding on the differ-80

ences between the world-to-body and the body-to-world
perspectives and its respective mathematical conse-
quences is given in [14].

In this work, the dynamic model of the testbed is given
by the Euler Equations of Motion (EOM)

dΓ

dt
= M ,

Γ̇ = Γ̇
∣∣∣
b

+ ω × Γ|b = Jω̇ + ω × Jω

M = r× FG = r×mgb , (4)

where Γ is the angular momentum around the center of
rotation, J is the inertia tensor, and the external torques85

are given solely by the gravitational torque as a conse-
quence of the CM displacement vector r, the testbed mass
m, and the local gravity in the body frame gb. Through-
out the text, depending on the balancing method, terms
may be added to represent additional external torques or90

additional angular momentum, as a consequence of the
adopted actuators or disturbances present in the system.

Another way of describing the movement of a testbed
restricted to rotational movements is given by

dΓ

dt
= M ,

Γ̇ = r×mr̈ + ω × (r×mṙ) + Jω̇ + ω × (Jω) , (5)

which is useful when performing the simplifications re-
quired by the static estimation and linear filtering meth-
ods. Once the equations have been simplified, the angular
accelerations can be expressed as [15]

ω̇ =


mg

Jx

(−ry cosφ cos θ + rz sinφ cos θ)

mg

Jy

(rx cosφ cos θ + rz sin θ)

mg

Jz

(−rx sinφ cos θ − ry sin θ)

 , (6)

which will be referred to as the “Euler Simplified Model”
(ESM) throughout the text .

Fig. 1 shows the relevant parameters of a spacecraft95

attitude simulator and its Automatic Balancing System
(ABS). The origin O of the inertial frame axes (X, Y, Z)
coincides with the the origin of the body frame (x, y, z)
and the Center of Rotation (CR) of the system and the
Z axis parallel to the gravity vector g. The ABS is com-100

posed of Movable Mass Units (MMU) responsible for con-
trolling the CM position, which is indicated by the r. In
this work, it is assumed that there are three MMUs in
the system, each one aligned with the body frame axes,
weighting mi, i ∈ (x, y, z) and capable of moving up to105
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di, i ∈ (x, y, z), although it is also possible to achieve
the same balancing capabilities with other configurations,
such as in [16].

Regarding the balancing performance an ABS may
achieve, the system mass properties and the displacement
attained by the MMUs determine an upper and a lower
bound to how much the CM offset may be changed [11].
The CM displacement vector ∆rCM has its components
defined by

∆rCM,i =
midi
M

, i ∈ (x, y, z), (7)

in which M =
∑
imi + msim, with msim being the mass

of the simulator without the MMUs. As one may no-110

tice, the ideal maximum balancing attainable by the ABS
∆rCM,max is achieved when all the MMUs start the bal-
ancing procedure in one extremity of its excursion and
finish in the opposite extremity, moving di,max each. This
maximum balancing determines how the simulator must be115

pre-balanced with fixed masses in order for the ABS to be
capable of compensating the residual unbalancing. On the
other hand, the resolution of the MMUs, i.e. the minimum
displacement di,min that each MMU may perform, deter-
mines the minimum CM offset r = ∆rCM,min that may120

be attainable by the ABS, corresponding to a minimum
residual gravitational torque τG,min = ∆rCM,min ×Mg.
As emphasized in [11], this is only an ideal minimum, since
the balancing quality may be affected by backlash in the
mechanical system, axes misalignment, measurement er-125

rors or even little variations in the simulator components
(such as cables).

This paper compares the balancing methods of many
different testbeds found in the literature. Table 1 presents
them in a synthetic way resuming the main features for130

the ease of comparison. It can be seen that the most em-
ployed configuration is the table-top air-bearing with slid-
ing masses used for balancing. While in some cases balanc-
ing is carried out manually, some platforms have automatic
balancing systems which includes the use of sensors, com-135

puters, and balancing algorithms, which will be described
in the following sections.

3. Parameters identification

A reasonable starting point to assess the performance of
an automatic balancing method is to compare its perfor-140

mance to that obtained by manually balancing the testbed.
Some works in the literature demonstrate that manual bal-
ancing allows to obtain levels of gravitational torque dis-
turbances low enough to test the attitude determination
and control algorithms of a given satellite. In [19, 26],145

manually balancing an air bearing testbed resulted in a
gravitational torque as low as 0.01 Nm.

Although these results proved to be good enough to test
most ADCS techniques, this balancing method has the
disadvantage of requiring too much time - even hours -150

(a) Upper view

(b) Bottom view

Figure 1: Spacecraft simulator elements.

and expertise from the operator. Considering that the
balancing procedure should be repeated very often, e.g.
every time a change is made in the satellite mock-up or
in the simulator as a whole, manual balancing techniques
can result impractical in many cases.155

Borrowing from [27] the categorization of the balanc-
ing techniques and adapting it to cover all methods in
a general manner, it is possible to divide the automatic
balancing techniques in the following categories: I) Batch
estimation techniques, which include various formulations160

of the Least Squares Method (LSM), such as the torque
method, the momentum integral method, the energy bal-
ance method and the equilibrium points method [28, 11,
8, 19, 29, 30, 21, 31, 15, 20, 32]; II) Filtering techniques,
which include the various versions of the Kalman filter for165

linear and nonlinear systems[20, 28, 33, 3, 34, 35]; and III)
Active control balancing techniques, which range from lin-
ear to nonlinear control methods [11, 27, 7, 36, 37].

3.1. Batch estimation techniques

Batch techniques rely on determining the testbed offset170

r and inertia J in order to compensate the CM offset in
a single step or iteratively. As one may realize from the
execution of these methods, in order to achieve reasonable
results, it is desirable to repeat the estimation-correction
cycle of the CM position iteratively. Although these meth-175

ods may be implemented in an automatic balancing sys-
tem, they might result in a time consuming solution to the
problem.

3.1.1. Least Squares Methods

Since Eq. (6) directly relates the desired CM offset
with other known variables, it is possible to determine
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Table 1: Existing testbeds and balancing methods.

Institution Platform configuration &
actuators1

Hardware specs2 Balancing method & results3

Georgia Tech [3] 1) Table-top; 2) Control Mo-
ment Gyros

OBC (general) w/ CPU @750MHz and
128MB(V)/128MB(non-V) memories; rate gyros res.
@0.029/0.073 ◦/s

Recursive LSM (mass properties
identification); CM compensation
method N/A

Naval Postgradu-
ate School [7, 17]

1) Spherical rotor; 2) Sliding
masses, reaction wheels

OBC TS-7200-32-16F (general) w/ CPU @200MHz
and 32MB(V)/up to 16MB(non-V) memories;
ADIS16400 rate gyros res. @0.05 ◦/s

1) two-step (under actuated con-
trol and parameter estimation) 2)
N/A (4.2 kg).

University of
Braśılia [8]

1) Table-top 2) Sliding masses COTS components: Arduino Uno (specific) w/
CPU @16MHz and 2KB(V)/32KB(non-V) memories;
L3GD20H rate gyros res. @0.05 ◦/s

1) LSM (mass prop. identif.);
iterative CM compensation. 2)

achievable 3.5 10−5N.m (14 kg)
University of
Bologna [9]

1) Table-top 2) Sliding masses COTS components: Arduino Due (specific) w/ CPU
@84MHz and 96KB(V)/512KB(non-V) memories;
BNO055 rate gyros res. @0.004 ◦/s (min.)

1) two-step (under act. control
and param. est.); iter. CM

comp. 2) < 5 10−5N.m or < 1µm
(11.5 kg)

University of
Florida [10]

1) Table-top; 2) Static weights OBC (general) ADLS15PC w/ CPU @1.1-1.60GHz
and up to 2GB(V)/up to 8GB(non-V) memories; at-
titude from PhaseSpace System (res. N/A)

1) Manual balancing. 2) N/A

Harbin Inst. of
Technology [16]

1) Table-top; 2) Pyramidal
sliding masses

OBC (general) ARK5260 w/ CPU @up to 1.60GHz
and up to 2GB(V)/SSD or HDD capacity (non-V)
memories; CS-ARS-03 rate gyros res. @< 0.04◦/s

1) LSM (mass prop. identif.); iter-
ative CM compensation; 2) 5 µm
final offset (platform mass N/A).

UNAM [18] 1) Table-top 2) Sliding masses OBC 16 bit SAB80C166 (general) w/16KB ROM and
1.28MB RAM; rate gyros res. @0.05 ◦/s

1) LSM 2) 0.002 Nm

Honeywell [19] 1) Umbrella 2) Prismatic ac-
tuators

OBC DS1005 (general) w/ CPU@1 GHz; rate gyros

res. 0.01
√
hr drift

1) LSM 2) 0.06096 mm

KNT Univ. of
Technology [20]

1) Dumbbell 2) Sliding masses N/A. Rate gyros res. @0.25 ◦/s Kalman filter

Virginia Tech [21] 1) Table-top 2) Linear actua-
tors

(general) 32-bit 133MHz Tri-M MZ104+ ZFx86 pro-
cessor with 64MB of RAM.

LSM

Vietnam NSC [22,
23]

1) Table-top 2) 2 sets of slid-
ing masses (coarse and fine)

N/A 1) Adaptive estimation and L1
adaptive control 2) 5E-4 mm

University of Sid-
ney [24]

1) Table-top 2) Counter-
weights

COTS components: Arduino Mega 2560 (specific) w/
CPU @16MHz and 8KB(V)/256KB(non-V) memo-
ries; L3GD20H rate gyros res. @0.05 ◦/s

1) Manual (xy plane only) 2) N/A

Aalto University
[25]

1) Spherical rotor 2) Counter-
weights

N/A 1) Manual 2) N/A

Notes: 1: for air bearing based platforms, the platform configuration borrows the classification from [1]. The Platform configuration &
actuators column is divided in two main info: 1) the platform configuration; 2) the available balancing devices (e.g. sliding masses.
2: The Hardware specs column focuses on: the capabilities of the processing unit, which may be responsible for balancing the platform
only or simulating the spacecraft ADCS as well; and the rate gyros resolution, since this spec is closely related to the mass properties
estimation precision. Resolution may be calculated from range (o/s) and resolution (bits) characteristics. General and Specific in
parenthesis refers to the OBC being application specific (balancing) or not. V/Non-V refers to the memory being volatile or not.
3: The Balancing method & results column is divided in two info: 1) the balancing method; and 2) the results achieved (minimum
gravitational torque in Nm, or imbalance length in mm) and the corresponding platform mass (in kg).

it directly. However, some of these variables carry with
themselves an inherent noise (e.g. the angular velocities
measured from the gyroscopes, the attitude angles mea-
sured from computer vision or sensor combination). To
reduce the error caused from sensor noise and other inher-
ent model uncertainties, one may use the Least Squares
Method (LSM), which oversamples the r equation aiming
to reach an estimation that optimally minimizes the mean
squared error (MSE) between the samples and the true
unbalance vector. To use this method, Eq. (6) is firstly
discretized, making it possible to separate the unbalance
vector as a 3× 1 vector of unknowns, giving

∆Ω = φr ∆ωkx
∆ωky
∆ωkz


︸ ︷︷ ︸

∆Ω

=

 0 φ12 φ13

φ21 0 φ23

φ31 φ32 0


︸ ︷︷ ︸

φ

 rx
ry
rz


︸ ︷︷ ︸

r

, (8)

in which the superscript indicates the moment at which the
measurement is taken. Then, after oversampling Eq.(8),

the unbalance vector may be obtained as

r = [φTaugφaug]
−1φTaug∆Ωaug , (9)

in which the aug subscript denotes row-augmentation of180

the vectors in Eq. (8).
A batch of 500 measurements is sufficient to estimate

the CM displacement, according to the repeated exper-
iments conducted in [8]. After having determined r, it
can be compensated in the testbed by moving the masses185

to provide the possibility of translating the CM offset in
the 3D space. These masses are usually placed parallel
to the testbed axes, orthogonally, although they might be
also disposed in other configurations, such as the pyra-
mid formation shown in [16]. In any case, it is impor-190

tant to guarantee that the chosen configuration is capable
of moving the CM offset tridimensionally. The required
mass displacement on each axis to compensate r is equal
to −di, i ∈ (x, y, z).

3.1.2. Torque method195

Batch estimation methods focus only on determining
the CM offset components. However, in order to obtain
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unbiased estimations, the principal components of the in-
ertia tensor of the testbed must be precisely determined
too. This can be accomplished by numerically calculating200

the inertia tensor components by approximating the mass
distribution of the testbed [38], or by having a reliable de-
scription of the system in a 3D Computer Aided Design
(CAD) model, which provides a proper estimation of the
inertia tensor. The inertia tensor components may also205

be estimated in an experiment by analyzing the testbed
oscillation in orthogonal axes [38]. One disadvantage of
determining the inertia components before performing the
estimation shown in Eq. (9) is that, besides adding another
step in the balancing procedure, it may lead to bias in210

the estimations, since the inertia tensor components may
change considerably with any change in the distribution of
components mounted on the testbed.

One way to avoid the need of estimating the inertia ten-
sor components is to arrange the terms of the testbed dy-
namic model in such a manner that both the CM offset
and the inertia tensor components may be estimated si-
multaneosly [20, 27]. First, it is assumed that momentum
exchange devices, e.g. reaction wheels, are present in the
system. The model in Eq. (4) may be modified in order to
take into account the torque generated by these devices,
Γ∗, leading to

dΓ

dt
=
dJω

dt
+
dΓ∗
dt

= Jω̇ +ω × Jω + Γ̇∗ +ω × Γ∗ , (10)

in which the Basic Kinematic Equation (BKE) is used. By
using the matrix form of the cross product and rearranging
the terms, the equation

Jω̇ + ω × Jω = −Γ̇∗ − ω × Γ∗ − [g×]mr , (11)

may be written as

[
Ω̇ + ω ×Ω [g×]

] [ J̃
mr

]
︸ ︷︷ ︸

x

= −Γ̇∗ − ω × Γ∗ (12)

where the terms Ω, J̃ and [g×] (in the body frame) are
given by

Ω =

 ω1 0 0 −ω2 −ω3 0
0 ω2 0 −ω1 0 −ω3

0 0 ω3 0 −ω1 −ω2

 (13)

J̃ =
[
Jx Jy Jz Jxy Jxz Jyz

]T
(14)

[g×] = g

 0 − cosφ cos θ sinφ cos θ
cosφ cos θ 0 sin θ
− sinφ cos θ − sin θ 0


(15)

providing one way of isolating the vector x with the de-
sired parameters to be estimated. In order to reduce the
effects of deriving the angular rates, which may present
considerable amount of noise, Eq. (12) may be integrated

over time, yielding[
Ω +

∫ t
t0
ω ×Ω dt

∫ t
t0

[g×] dt
]

︸ ︷︷ ︸
Φ

[
J̃
mr

]
︸ ︷︷ ︸

x

=

= −Γ∗ −
∫ t

t0

ω × Γ∗ dt︸ ︷︷ ︸
S

, (16)

which provides a least squares estimation method in a sim-
ilar manner to Eq. (9),

x = (ΦT
augΦaug)

−1ΦT
augSaug , (17)

where the Φaug and Saug terms are given by

Φaug =
[

Φ0 Φ1 . . . Φk

]T
3n×9

, (18)

Φk =
[

Ω +
∫ tk
t0
ω ×Ω dt

∫ tk
t0

[g×] dt
]

3×9
, (19)

Saug =
[

S0 S1 . . . Sk
]T
3n×1

, (20)

Sk =

[
−Γ∗ −

∫ tk

t0

ω × Γ∗ dt

]
3×1

. (21)

3.1.3. Recursive Least Squares Method (RLS)

One way to recursively estimating the x vector in215

Eq. (17) by implementing the RLS method in [39] is
through the following four steps [20],

Kk =
λ−1Pk−1Φk

1 + λ−1ΦT
kPk−1Φk

, (22)

αk = Sk −ΦT
k xk−1 , (23)

xk = xk−1 + Kkαk , (24)

Pk = λ−1Pk−1 − λ−1KkΦ
T
kPk−1 , (25)

where αk is the residual estimation error at time k and λ is
the forgetting factor, a scalar which controls the influence
of past observations in the estimation process.220

Several implementations of the RLS method are pre-
sented in [33], with each one using a different way to avoid
amplifying the noise from sensors through differentiation:
either by using integrated forms in the model equation or
by adopting tracking differentiators (TD) and extended225

tracking differentiators (ETD) in the estimation process.

3.1.4. Classical Levenberg-Marquadt (CLM) estimation

CLM is another method used to estimate the x vector
in Eq. (17) [20]. The CLM algorithm is a combination
of the Gauss-Newton Algorithm (GNA) and the Gradient230

Descent (GD) algorithm, and it decides between these two
algorithms by means of a λ parameter in the result update
equation (for large values of λ, the GD algorithm takes
place, whereas for small values GNA takes place).
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3.2. Filtering methods235

As stated in Subsec. 3.1.3, recursive estimation is partic-
ularly useful when process noise is present in the system.
The Kalman filter and its extensions are still the most
common solutions currently used, being widely applied in
on-board attitude estimators.240

As previously mentioned, the main motivation here is to
determine the unbalance vector. One of the most impor-
tant characteristics of determining the unbalance vector
through a Kalman filter is related to its ability to model
nonstationary dynamic systems driven by random process245

noise. Moreover, high dimension matrix inversion may be
avoided and there is no need to store measurements (re-
cursive versus batch processing), making possible to imple-
ment the balancing method in an embedded system with
less computational effort.250

Consider the following general system

xk = fk−1(xk−1,uk−1,wk−1), wk ∼ (0,Qk) (26)

yk = hk(xk,vk), vk ∼ (0,Rk) (27)

where xk is the state vector, uk the input signal, wk the
system additive noise, vk the measurement additive noise,
and fk and hk are functions of the previous variables.

In the linear case fk and hk reduce to linear state ma-
trices. For this kind of systems, the Kalman filter is the
main option for the recursive estimation. Specifically, as
shown in [28], Eq. (8) can be rewritten as Eq.(28), leading
to the linear Eqs. (29) and (30), ωk+1

x

ωk+1
y

ωk+1
z

 =

 ωkx
ωky
ωkz

+

 0 φk12 φk13

φk21 0 φk23

φk31 φk32 0

 rkx
rky
rkz

 (28)


ωk+1
x

ωk+1
y

ωk+1
z

rk+1
x

rk+1
y

rk+1
z


︸ ︷︷ ︸

xk+1

=


0 φ12 φ13

I3×3 φ21 0 φ23

φ31 φ32 0
03×3 I3×3


︸ ︷︷ ︸

A


ωkx
ωky
ωkz
rkx
rky
rkz


︸ ︷︷ ︸

xk

+ w
6×1

(29)

yk = H · xk + vk, (30)

where H = [I3×3 03×3] and vk is the 3× 1 vector of mea-
surement noise. The observability of the state vector may
be analyzed by checking the rank of the observability ma-
trix

O =

[
H3×6

(HA)3×6

]
=

[
I3×3 03×3

I3×3 Φ3×3

]
. (31)

On the other hand, for nonlinear systems in which the
dynamic and measurement models can be expanded in
first order Taylor series about the current estimate, the
extended Kalman filter (EKF) can be used to estimate
the CM offset components [28]. A realization for the li-
near approximation is given by the Jacobian matrices of

the vector functions f and h as follows ∂fk
∂x︸︷︷︸
F

∣∣∣∣∣∣∣
x=x̄

,
∂fk
∂w︸︷︷︸
L

∣∣∣∣∣∣∣
w=w̄

,
∂hk
∂x︸︷︷︸
H

∣∣∣∣∣∣∣
x=x̄

,
∂hk
∂v︸︷︷︸
M

∣∣∣∣∣∣∣
v=v̄

 (32)

255

In order to develop the EKF using the nonlinear dy-
namic model equations in Eq. (4), consider the Euler
equation of rotation given in Eq. (33),

ω̇ = J−1[Jω×]ω + J−1[−mgb×]r . (33)

It is important to mention that the products of inertia
(off-diagonal terms of the inertia matrix) are negligible. In
other words, the inertia matrix J becomes diagonal. The
state vector includes the angular velocities and the CM dis-
placement of the simulator, i.e. x = [ωiri]

T , i ∈ {x, y, z},
and, according to the notation of [40], the Jacobian F is
given by [28]

Fk−1 =


∂fk−1

1

∂xk−1
1

· · · ∂fk−1
1

∂xk−1
6

...
. . .

...

∂fk−1
6

∂xk−1
1

· · · ∂fk−1
6

∂xk−1
6

 =


∂f1:3
k−1

∂xk−1

∂f4:6
k−1

∂xk−1

 , (34)

=


[
∂fk−1

1:3

∂xk−1

]
3×6

03×3 I3×3

 ,

where the derivation of the partial derivatives
∂fi
∂x

was

made analytically and took into account the time prop-
agation of the angular velocities, i.e. fk−1

i = ωj,k = ωj +
ω̇jT, i ∈ {1, 2, 3}, j ∈ {x, y, z}, T being the sampling time.
Furthermore, the time propagation of the CM offset com-260

ponents, i.e. fk−1
i = rkj = rk−1

j , i ∈ {4, 5, 6}, j ∈ {x, y, z},
follows from the assumption that the offset components do
not change in time, except for the additive noises of the
filter.

The remaining Jacobians, M and L, are identity matri-265

ces since it is assumed there are only additive noises in the
filtering process, and the output equation is linear, given
H = [I3×3 03×3]. The discrete EKF may be used following
the standard procedure shown in [40].

For the case in which momentum exchange devices
(MED) are available in the system, the model from
Eq. (11) is employed, whose state vector x1 = [ωi]

T , i ∈
{x, y, z}, can be written as x1 = f(x1,J,mr,u), where
u = −Γ̇∗ + Γ∗ × ω is the torque generated by the MEDs.
In this case, the mass properties of a spacecraft simula-
tor can be estimated by augmenting the state vector with
the desired unknown parameters [33]. Then, a vector of
unknown parameters x2 = [Ji, Jij ,mri]

T , i, j ∈ {x, y, z}
containing the 9 unknown mass property parameters of
the simulator is augmented in the model, leading to the
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state-space representation

ẋ =

[
ẋ1

ẋ2

]
=

[
f(x1,x2,u)

0

]
, (35)

where ẋ2 = 0 due to the assumption that the mass pro-270

perties of the simulator are constant.

In this case, the Jacobians L and M are 12×12 and 3×3
identity matrices, respectively, and the output equation is
also linear, with H = [I3×3 03×9]T . On the other hand,
the Jacobian F has a more complex structure:

Fk−1 =


[
∂fk−1

1:3

∂ωk−1

]
3×3

[
∂fk−1

1:3

∂Jk−1

]
3×6

[
∂fk−1

1:3

∂mrk−1

]
3×6

09×3 I9×9

 .
(36)

In this case, the fi terms are given by fi = ωk−1
j +

ω̇k−1
j T + wk−1

i , i ∈ {1, 2, 3}, j ∈ {x, y, z} and fk−1
i =

γk−1 + wk−1
i , i ∈ {1, 2, 3}, where γ represents the aug-

mented parameters, γ ∈ {Ji, Jij ,mri}, i, j ∈ {x, y, z}.275

Considering the complexity of analitically determining the
Jacobians in (36), [28] proposes the use of Complex Step
Differentiation (CSD), which is exemplified in the follow-
ing equations:

[
∂fk−1

1:3

∂ωk−1

]
3×3

= I3×3 + T

[
∂ω̇k−1

∂ωk−1

]
CSD

, (37)

[
∂ω̇k−1

∂ωk−1

]
CSD

=

 Im

ω̇k−1

 ωk−1
x + h · i
ωk−1
y

ωk−1
z


h

· · ·

 .

(38)

The concept of observability for nonlinear systems [41]280

can be used to prove that the torque generated by the
momentum exchange devices is sufficient to guarantee the
observability of the 9 augmented unknown parameters [33].

It must be emphasized that all the nonlinear filtering
methods presented for the EKF can also be implemented285

with an Unscented Kalman Filter (UKF). The UKF does
not linearize the model around the current estimate, but
it approximates the model with a finite number of points
from the state space (σ-points). The σ-points are then
propagated with the nonlinear model to update the state290

estimate and covariance. The motivation besides the use
of UKF is based on the fact that the approximation of the
uncertainty through the σ-points is more accurate than
the linearization performed by the EKF.

Another result is that with the UKF there is no need to295

calculate the Jacobians as with the EKF. An analysis of
the behaviour of each filter in conditions where its devel-
opment assumptions do not hold anymore is made in [28],
showing comparatively the robustness of using an UKF.

4. Active Control techniques300

Active control techniques are those in which the bal-
ancing process is accomplished with the use of actuators
providing torque in a given control system design. The
imbalance can be approximated, during a sampling inter-
val, by the net impulse generated by antiparallel torquers305

placed in each rotating axis and can be compensated by
feedbacking this information in an analog circuit control
system [36]. This section describes recent implementations
of control systems for balancing spacecraft simulators, fo-
cusing on PID, nonlinear and adaptive control.310

PID control is used as a prior method for automatic
balancing a spacecraft 3-axes simulator. The PID control
gains can be determined with the Ziegler-Nichols method
followed by a fine tuning adjustment [22]. Following the
theory introduced in [42], the work in [22] also proposes315

an L1 adaptive control scheme and shows that it presents
better automatic balancing performance than that attain-
able through PID control, while still having the advantage
of providing more robustness when the system is subject
to external disturbances or uncertainties.320

4.1. Underactuated non-linear control balancing

In many scenarios, the available actuators do not al-
low generating a torque in the vertical direction, because
the torque generated by the MMUs motion is always con-
strained to a plane orthogonal to the gravity vector. This325

means that the control problem is underactuated. To han-
dle this situation, a two-step nonlinear control method is
proposed in [7]. The control torque is obtained solely by
the gravitational torque variation provided by the MMUs
motion. With this method, the first step is dedicated to330

compensating only the x,y-components of the CM offset,
while the z-component compensation is left to a further
step that involves an estimation step.

This balancing technique is based on the conservation of
the angular momentum, which is conserved if its derivative335

becomes null, i.e. when the external torques are null. In
other words, by assuming the only external torque acting
on the system is the gravitational torque and considering
that the MMUs may be a source of control torque, the
goal is to obtain a control torque rule for the MMUs po-340

sitions such that the derivative of the angular momentum
becomes null. To develop this problem, a control torque
τ r is added to the EOM in Eq. (4), leading to

Γ̇ + ω × Jω = τ g + τ r = r×Mg + τ r (39)

with τ r = mp

∑
i ri×gb being the designed control torque

generated by the MMUs positions. The efficacy of this con-
trol strategy can be studied selecting the Lyapunov func-
tion V

V (q,ω, Φ̃) =
1

2
ωTJω +

1

2
Φ̃T Φ̃ +

1

2
qTq , (40)

with Θ̃ = r− r̂ being the difference between the CM offset
r and its estimation r̂. The derivative of this Lyapunov
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function is obtained as V̇ = −kp||ωp||2 , which is neg-
ative semidefinite, proving the stability of the system in
the Lyapunov sense. Also, by using the La Salle Invari-
ance Principle [43], it may be proved that the system will
converge to a state such that ωp → 0, i.e. the transverse
angular velocities will diminish to zero [7]. This control
strategy may be implemented by mapping the designed
control torque in Eq. (39) to the MMUs positions as

r =
g × τ r
||g||mp

. (41)

Finally, assuming the transverse components of the im-
balance were compensated in the first step, the second step345

of the balancing procedure consists in estimating the ver-
tical component of the CM offset with an UKF. In [7], a
reduced state-space representation with respect to those
presented in [33] for the EKF or in [28] for the UKF is
proposed, whose state vector is solely defined by the an-350

gular velocities and the final imbalance components to be
estimated x = [ωx ωy ωz rz]

T . In this case, the non-linear
model used in the filter is based on Eq. (33) adapted under
the assumption that r = [0 0 rz]

T and the output equation
is linear, with H = [I3×3 03×1]. In order to maintain the355

system observable, the platform must be placed in a tum-
bling motion during the estimation, avoiding the condition
[gx, gy] = [0, 0].

4.2. Fully actuated control technique

Full three-axis actuation can be provided through three360

Control Moment Gyros (CMG) [27]. This method assumes
the presence of a control torque τ in the EOM, in the same
manner as that presented in Eq.(39), with the difference
that the designed control torque τ r gives place to τ , the
torque generated by the CMGs. This torque is given by365

τ = −Γ̇∗ − [ω×]Γ∗.
From this model equation, starting with the proposal

of a feedback control law on the actuation torque as
τ = (−K + [ω×])Γ, K being a symmetric positive def-
inite matrix, it is demonstrated that the closed loop equa-
tion of this control system may be described as Γ̇ +KΓ =
−m[ω×]r. From this equation and studying the Lyapunov

candidate function V (Γ, r) =
1

2
ΓTΓ +

1

2
rΨ−1r and its

derivatives, it is possible to prove the desired convergence
and stability which leads the system to a state in which
the total angular momentum is conserved [27]. In this case,
the null vector solution is presented, showing that the pro-
posed Lyapunov function cannot be used, since the system
can eventually reach a state where the angular momentum
is conserved and the testbed is not balanced (see Fig. ??).
This problem is addressed by selecting a desired testbed
momentum trajectory Γd, leading to changes in the prior
Lyapunov candidate function [27], which becomes

V (Γ, r) =
1

2
(Γ− Γd)T (Γ− Γd) +

1

2
rΨ−1r , (42)

providing the same required convergence and stability.

Figure 2: Null state vector solution.

5. Performance Assessment

At this point, the advantages and disadvantages of
adopting one or another balancing method can be pre-370

sented. Although the goals of parameter estimation meth-
ods and balancing methods are different, some common
criteria for evaluation can be identified. Computational
effort is one criteria that can be quantitatively assessed
in both cases. Accuracy and robustness can be qualita-375

tively assessed in both cases, too. Tables 2 and 3 present
a synthetic picture of the pros and cons of the methods
reviewed in this work.

The parameter estimation methods are subject to erratic
estimations when submitted to certain conditions, such as380

estimation under high angular velocities or if the products
of inertia have considerable magnitudes when compared
to the diagonal terms of the inertia tensor of the simula-
tor. Besides the foregoing conclusions, these estimation
techniques may still be overcome by control theory based385

methods, since, as the unbalance vector has little mag-
nitude (order of µm), it is highly subject to the hard-
ware limitations of the platform (e.g. sensors’ noise and
precision, torque excitation measurement). In the case of
control methods, the balancing procedure rely on physical390

conditions observable when the CM offset is compensated.
In order to evaluate if a given method has achieved the

desired performance or if it performed better than another
method, one must have a way of evaluating how close the
CM is to the CR by its predictable effects. In [8, 15],395

the balancing performance is determined indirectly from
the reduction of the oscillation period of the testbed. This
oscillation period may be obtained by constraining the sys-
tem to move around a single axis, or can be obtained from
the frequency spectrum of the roll and pitch angle signals,400

as shown in [8]. Other two ways of assessing the balancing
performance are: i) indirectly, through an energy method,
by measuring the amplitude of the kinetic energy signal
of the system; and ii) directly, through estimation of the
gravitational torque exerted on the platform.405

The energy method is based on the principle that, if
the CM is placed on the CR, the gravitational potential
of the system will remain constant and, consequently, its
kinetic energy will also be constant, assuming there are no
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Table 2: Parameter estimation methods.

Method Pros Cons

LSM [15] Fast convergence. Computational effort (e.g. matrix inversion); high memory
requirements (batch of measurements); mismodeling errors.

KF [28] Recursive; require less memory. Mismodeling errors.

EKF [33] Recursive; more accurate than linear meth-
ods.

Need to calculate Jacobians; inertia tensor simplification may
lead to mismodeling errors.

UKF [7] Recursive; do not need to calculate Jaco-
bians; robustness.

Require more computational effort than the other KF variants
due to σ-points calculation1.

Notes: 1: Although there are techniques to optimize the computational effort of UKF, as can be seen in [44], the algorithmic complexity
of the UKF is higher than that of the EKF considering the respective original publications of these filters, for example.

Table 3: Balancing methods.

Method Pros Cons

Manual
[10, 19, 26]

Do not require specialized hard-
ware/software. May reduce the residual
gravitational torque in a level that makes
it feasible to conduct ADCS experiments.

Require expertise and may take hours to reach reasonable
results (the procedure must be repeated every time the masses
distribution on the platform changes).

Under
actuated
[7]

Faster than manual methods. Allow to
adopt one of the control techniques for bal-
ancing without the need of another set of
actuators, besides the movable masses.

Two-step procedure: the vertical component of the CM offset
needs to be estimated through a filter and the corresponding
compensation is more susceptible to the mismodeling effect of
the movable mass (e.g. misalignment, inaccurate mass esti-
mates), since dynamics is not taken into account in this step.

Fully
actuated
[33, 27]

Faster than manual methods. With a simi-
lar hardware setup (e.g. sensor specs), they
may overcome other methods. Balancing
obtained in one step.

Require a set of actuators capable of generating any three-
dimensional torque vector, which necessarily means another
set of actuators other than the movable masses (e.g. CMGs,
reaction wheels).

energy losses (e.g. friction in the air bearing or gimbals).410

It means that any kinetic energy added to the system (e.g.
pushing the testbed) will determine a constant motion. In
practice, balancing the system will make the amplitude of
the oscillation of the kinetic energy graph decrease.

Gravitational torque estimation is a direct way of quan-415

tifying how close the CM is to the CR, since it is di-
rectly proportional to the r offsets. The external torque
M can be estimated from Eq. (4) using the gyroscope sig-
nals ω and its derivative ω̇. Furthermore, the use of Sav-
itzky–Golay filtering can be used in order to decrease the420

noise of the ω̇ signal, which is amplified by the ω signal
through differentiation [11].

6. Concluding remarks

Simulators are widely used to improve and optimize the
design of physical components, algorithms, and different425

subsystems of a satellite. Recently, small satellites have
been widely employed in many different space missions,
mainly motivated by the recent technology advances that
made them an affordable tool to access space, and also
a promising platform to develop a new variety of space430

applications. The diffusion of these small platforms has
given new impulse to the construction of small satellite
simulators in many institutions in the last years, given the
associated relatively small costs.

One aspect of satellite missions that can be easily stud-435

ied in a laboratory is the attitude motion, along with the
algorithms for attitude control and determination. A prob-
lem related to the development of attitude motion simula-
tors is the calibration of the testbed. This paper is dedi-
cated to the balancing methods and solutions for this prob-440

lem. A review representative of the current state of the
art of attitude motion simulators is presented, along with
their balancing methods and dedicated hardware compo-
nents. The balancing methods available for calibration
have been described, classified, and assessed, in order to445

present to the reader a compact and uniform tool to guide
him through the best solution for calibrating similar plat-
forms.
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(2018).

[29] J. Prado, G. Bisiacchi, Dynamic balancing for a satellite at-
titude control simulator, Instrumentation and Development.
Journal of the Mexican Society of Instrumentation. SOMI 4 (5)565

(2000) 76–81.
[30] B. Kim, E. Velenis, P. Kriengsiri, P. Tsiotras, A spacecraft

simulator for research and education, in: Proceedings of the
AIAA/AAS astrodynamics specialists conference, no. AAS 01-
367, 2001, pp. 897–914.570

[31] M. Peck, Estimation of inertia parameters for gyrostats sub-
ject to gravity-gradient torques, Advances in the Astronautical
Sciences.

[32] S. Tanygin, T. Williams, Mass property estimation using coast-
ing maneuvers, Journal of Guidance, Control, and Dynamics575

20 (4) (1997) 625–632.
[33] Z. Xu, N. Qi, Y. Chen, Parameter estimation of a three-axis

spacecraft simulator using recursive least-squares approach with
tracking differentiator and extended kalman filter, Acta Astro-
nautica 117 (2015) 254–262.580

[34] S. Wright, Parameter estimation of a spacecraft simulator us-
ing parameter-adaptive control, MS Project, Aerospace and
Ocean Engineering Department, Virginia Polytechnic Institute
and State University, Blacksburg, VA.

[35] D. Kim, S. Yang, S. Lee, Rigid body inertia estimation using585

extended kalman and savitzky-golay filters, Mathematical Prob-
lems in Engineering 2016.

[36] N. M. Hatcher, R. N. Young, An automatic balancing system
for use on frictionlessly supported attitude-controlled test plat-
forms, Tech. rep., NASA Langley Research Center (1968).590

[37] D. Small, F. Zajac, A linearized analysis and design of an au-
tomatic balancing system for the three-axis air bearing table,
Tech. rep., NASA Goddard Space Flight Center (1963).

[38] T. A. Olsen, Design of an adaptive balancing scheme for the
small satellite attitude control simulator (ssacs)., Master’s the-595

sis, Utah State University (1996).
[39] S. Haykin, Adaptive filter theory, Prentice-Hall, Inc., 1996.
[40] D. Simon, Optimal state estimation: Kalman, H infinity, and

10



nonlinear approaches, John Wiley & Sons, 2006.
[41] W. Kang, J.-P. Barbot, Discussions on observability and invert-600

ibility, IFAC Proceedings Volumes 40 (12) (2007) 426–431.
[42] N. Hovakimyan, C. Cao, L1 Adaptive Control Theory: Guar-

anteed Robustness with Fast Adaptation, SIAM, 2010.
[43] R. I. Leine, N. Van de Wouw, Stability and convergence of me-

chanical systems with unilateral constraints, Vol. 36, Springer605

Science & Business Media, 2007.
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