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a b s t r a c t 

Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding 

the head; this means that they are maximally sensitive to superficial brain structures. New technology based 

on optical pumping means that we can now consider more flexible and creative sensor placement. Here we 

explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also 

at the roof of the mouth. We found that simulated hippocampal sources gave rise to dipolar field patterns with 

one scalp surface field extremum at the temporal lobe and a corresponding maximum or minimum at the roof 

of the mouth. We then constructed a fitted dental mould to accommodate an Optically Pumped Magnetometer 

(OPM). We collected data using a previously validated hippocampal-dependant task to test the empirical utility 

of a mouth-based sensor, with an accompanying array of left and right temporal lobe OPMs. We found that the 

mouth sensor showed the greatest task-related theta power change. We found that this sensor had a mild effect 

on the reconstructed power in the hippocampus (~10% change) but that coherence images between the mouth 

sensor and reconstructed source images showed a global maximum in the right hippocampus. We conclude that 

augmenting a scalp-based MEG array with sensors in the mouth shows unique promise for both basic scientists 

and clinicians interested in interrogating the hippocampus. 
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. Introduction 

Optically Pumped Magnetometers (OPMs) offer new ways to ex-

lore the magnetic fields generated by human brain function. Simula-

ion ( Boto et al., 2016 ; Iivanainen et al., 2017 ) and empirical recordings

 Boto et al., 2017 ) have shown that it is possible to realize a five-fold sig-

al magnitude increase for cortical sources, simply because OPMs can be

laced much closer to the head (with a separation between the sensors’

ensitive volume and the scalp of around 6 mm) compared to their cryo-

enic counterparts (which require a separation of around 17–30 mm).

owever, for the hippocampus and other sub-cortical structures, the rel-

tive change in distance (and hence performance gain) we expect with
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PMs over cryogenic systems is smaller - a factor of 2 or less - than

or neocortical sources. For this reason, the ability to further leverage

he flexibility of OPM-placement to design arrays that are specifically

ensitive to these deeper brain areas is desirable. 

In this study we exploited the flexibility offered by OPMs to test

hether there are other places, besides the scalp surface, one might use-

ully place sensors. We first examined, in simulation, the topographies

f simulated magnetic fields due to hippocampal sources over both the

calp surface and the roof of the mouth. We found that a typical hip-

ocampal generator gave rise to a scalp surface field extremum over the

emporal lobe with a corresponding maximum or minimum at the roof

f the mouth. We then built a sensor casing into a dental mould and

xplored the empirical utility of such an arrangement. Using a previ-

usly validated hippocampal-dependant task ( Barry et al., 2019a ), we
ober 2020 
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ssessed the change in theta power across sensors. We then tested the

mportance of this additional channel for source reconstruction. Finally,

e used the temporal lobe array to construct a beamformer image and

ested for regions of the brain which were coherent with the mouth

hannel. 

. Materials and methods 

The study had two components, an initial simulation phase followed

y the recording and analysis of empirical data. 

.1. Exploring fields due to hippocampal generators 

We first used a single participant head-model to explore the field gen-

rated across the scalp and over the roof of the mouth by current sources

n the hippocampal manifold. We used the individual cortical surface

f the participant as extracted from Freesurfer ( Dale et al., 1999 ). For

he lead-field modelling, we used an individually segmented hippocam-

al surface for the single participant, with sources oriented normal to

he hippocampal envelope ( Meyer et al., 2017 ). The sources were ap-

roximately equally distributed across the entire hippocampal envelope

341 sources, ~2.5 mm separation). The outer scalp and inner-skull

eshes were based on the SPM inverse-normalised template meshes

 Mattout et al., 2007 ; Litvak et al., 2011 ). We assumed the OPMs to

e ideal point-source magnetometers with no orientation, position or

ain errors. All lead-field calculations were based on the Nolte single-

hell forward model ( Nolte, 2003 ). To produce a scalp-level field map

or each hippocampal source we computed point estimates that were

riented normal to the outer scalp surface and offset by 6.5 mm from

he surface in this direction. This resulted in 2562 samples of external

scalp) field for each source on the hippocampal envelope. Note that for

he empirical data, in the next section, the hippocampal geometry was

ot made use of and the beamfomer sources were reconstructed onto a

rid with source orientation at each location chosen to maximise SNR. 

.2. Empirical recordings 

.2.1. Participants 

One participant (male, aged 50 years) took part in the study. Data

ollection took place at the University of Nottingham, UK. The research

rotocol was approved by the University of Nottingham Medical School

esearch Ethics Committee and written informed consent was obtained

rom the participant. The data from the temporal channels of this sub-

ect formed part of the cohort of participants reported in ( Barry et al.,

019b ). 

.2.2. Mouth sensor holder 

In order to record from the roof of the mouth, an intraoral appli-

nce to hold the OPM sensor was constructed by S4S (UK) Limited

 https://www.s4sdental.com/ ). Construction started with standard in-

raoral impressions of the upper and lower dental arches. The appliance

 Fig. 1 ) was constructed from 3 mm Erkoloc-Pro (Erkodent Australia).

his is a dual-laminate material composed of two individual thermo-

lastic layers that are chemically bonded: soft inner layer, helping to

mprove the comfort of the appliance, and a rigid outer layer that pro-

ides stiffness and is able to withstand forces from biting. The appli-

nce was constructed on the upper dental arch which provided a stable

ase. The use of material with a soft compressible lining enabled us to

omfortably engage the majority of the tooth surface while reducing

ovement and rotation, with minimal risk of the appliance being unre-

ovable. The OPM was fully encapsulated by the appliance to minimise

aliva contamination. The dual-laminate material was able to undergo

he repeated disinfections needed to ensure hygiene without deteriora-

ion. 

A limitation on how far into the mouth the appliance can be placed

s imposed by the need to avoid activating the gag reflex by imping-

ng on structures in the posterior portion of the oral cavity (soft palate,
osterior of tongue, uvula, posterior wall of pharynx, palatoglossal and

alatopharyngeal arches). We determined the posterior limit of the ap-

liance to be just anterior of the soft palate. The border of the hard and

oft palate is also clearly identifiable both intraorally and radiographi-

ally. Based on visual inspection (with approximately ± 1 cm of potential

rror) of the participant’s structural MRI brain scan, we estimated the

ocation of the mouth sensor in native space. This corresponded to MNI

oordinates x = − 2.4, y = 15, z = − 103 and the orientation of its sen-

itive axis in MNI space to be described by the unit vector (0, 0.9885,

 0.1513). 

.2.3. Hippocampal-dependant task 

We used a task known to be hippocampal-dependant, full details

f which are described elsewhere ( Barry et al., 2019a ). In summary,

he experimental task required the imagination of novel scenes in re-

ponse to single-word cues, and there was an additional baseline con-

ition involving counting. During scanning, experimental stimuli were

elivered aurally via an MEG-compatible earbud using the Cogent tool-

ox ( www.vislab.ucl.ac.uk/cogent.php ), running in MATLAB. To pre-

are the participant for each trial type, they first heard either the word

scene ” or “counting ”. The participant immediately closed his eyes and

aited for an auditory cue which was presented following a jittered

elay of between 1300 and 1700 ms. During each scene trial, the partic-

pant had 3000 ms to construct a novel, vivid scene in their imagination

ased on the cue (e.g. “jungle ”). Each counting trial involved mentally

ounting in threes from a given number cue (e.g. “forty ”) for 3000 ms

beginning after the instruction had ended). 

.2.4. Data acquisition 

All measurements were made inside a magnetically shielded room,

anufactured by Vacuumschmelze, comprising two layers of mu-metal

nd one of aluminium designed to limit environmental interference. The

articipant wore a 3D printed scanner-cast that accommodated 20 tem-

oral lobe OPM sensors bilaterally and a single mouth OPM in its custom

ade holder. OPM data were sampled at 1200 Hz using a 16-bit national

nstruments A/D converter. Data were recorded in 3 contiguous blocks

nd concatenated resulting in a total of 73 scene, and 68 counting, trials,

ach of 3000 ms duration. 

A bi-planar coil system ( Holmes et al., 2018 ) was used, in con-

unction with a reference array (comprising 4 OPMs placed immedi-

tely behind the participant), to cancel the mean background field (in

hree orthogonal directions) inside the MSR and its first order spa-

ial derivatives(dBx/dBz, dBy/dBz, dBz/dBz) over a central volume of

0 × 40 × 40 cm 

3 ( Boto et al., 2018 ; Tierney et al., 2018 ). 

.2.5. Data analysis 

All OPM data were first acausally filtered 1–8 Hz using a 4th order

utterworth filter. The data were then epoched into 3 s blocks based on

igitally recorded triggers. The reference OPM array, and its temporal

erivatives (i.e., 8 channels) were then used to reduce the environmental

oise from each scalp OPM channel in turn on a trial by trial basis by

eans of a linear regression. The design matrix of reference sensors was

nverted using the pseudoinverse (pinv in matlab) and multiplied by the

ata to obtain weights that defined a linear combination of reference

ensors that when subtracted from the data minimised the residual sum

f squares. 

In order to verify that the data from the mouth sensor was quali-

atively consistent with those from the temporal lobes we constructed

ime-frequency spectrograms of the difference between scene and count-

ng trials at each sensor. We used the field-trip (( Oostenveld et al., 2011 ),

ttp://www.fieldtriptoolbox.org/ ) based multi-taper spectral estimate

ethod (spm_eeg_specest_ft_mtmconvol.m) over 1–8 Hz and 0–3000 ms.

e then used a paired sample t -test to compare between time-frequency

ins in the two conditions of interest. 

Based on our previous cryogenic MEG experiment using the same

timuli ( Barry et al., 2019a ) we had a single hippocampal-specific time

https://www.s4sdental.com/
http://www.vislab.ucl.ac.uk/cogent.php
http://www.fieldtriptoolbox.org/
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Fig. 1. Experimental set-up. A. The custom translucent thermoplastic intraoral sensor holder to encapsulate the end of a Quspin Gen 1 sensor (grey). B. Distribution 

of the sensors with respect to the participant’s cortex (green). The mouth sensor is shown as a pink circle, right and left temporal lobe sensors are shown as red boxes 

and blue diamonds, respectively. C. The participant wearing a scanner-cast with the temporal lobe OPM array and the mouth sensor. Each individual scalp sensor is 

oriented normal to the scalp. 
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requency window of interest of 0–3000 ms and 4–8 Hz (theta power-

btained from 5th order acausal Butterworth filter). At the sensor level

e tested for the anticipated change in theta power between the 0 and

000 ms post-stimulus windows in counting and scene conditions. Data

rom each trial and channel were windowed with a Hann window and

and-pass filtered from 4 to 8 Hz. We used a paired-sample t -test to look

or power change between scene trials and counting trials (68 of each

n order to equalise the comparison). 

All subsequent processing was carried out in

PM ( https://www.fil.ion.ucl.ac.uk/spm/ ) or DAISS

 https://www.fil.ion.ucl.ac.uk/spm/ext/#DAiSS ). We performed

he same contrast (scene versus counting, 4–8 Hz, 0–3000 ms) at the

ource level (grid spacing 5 mm) using an LCMV beamformer with

utomated Minka truncation ( Minka, 2000 ) to produce volumetric

hole-brain images (Supplementray Fig. S2). Minka truncation com-

utes the model evidence under the Laplace approximation for a given

ata covariance and matrix selects the rank that maximises the model

vidence. This approach is conceptually very similar to the use of

ariational free energy in SPM to optimise covariance components in

ource reconstruction ( Friston et al., 2008 ; Lopez et al., 2014 ). We used

he multivariate implementation of the LCMV beamformer in DAISS to

erform this univariate test. This returns a classical F statistic (which

e report here) in the univariate case. In order to look for MEG sensors

aking the greatest impact at the hippocampus, we systematically

emoved one MEG sensor at a time from the analysis and calculated

he mean F statistic within this structure. Channels that have a positive

mpact on the hippocampal source reconstruction should give rise to a

reater drop in the F-statistic (or variance explained in this structure)

hen removed. 
Finally, we used a Dynamic Imaging of Coherent sources (DICs)

eamformer with the mouth sensor (excluded from the source recon-

truction) as the reference signal in order to create mouth-brain coher-

nce images during the scene imagination condition (Coherence in the

ounting condition is provided in supplementary Fig. S3). Covariance

nd coherence windows were 0–3000 ms post cue onset, bandwidth

as 4–8 Hz and the grid spacing was 5 mm. We note that a number

f other studies in the area of episodic and spatial memory observe

ower changes in the 1–4 Hz band ( Watrous et al., 2011 ; Lega et al.,

012 ; Pacheco Estefan et al., 2019 ) but we explicitly kept both the time

indow and frequency band the same as we have in our previous stud-

es ( Barry et al., 2019b ). However, we provide supplementary analysis

f this band in Fig. S1. The resulting images were then smoothed to

5 mm. In order to establish a significance threshold, we shuffled the

outh sensor trial data (with respect to the temporal channel data) and

roduced 100 (smoothed) coherence null images. Taking the maximum

rom each image established a null distribution which resulted in a co-

erence threshold corresponding to p < 0.01 (whole-volume corrected).

. Results 

.1. Fields due to hippocampal generators 

We first explored the sensitivity of all possible extra-cranial record-

ng positions to sources on the hippocampal envelope. The SPM-

xtracted scalp mesh covered the external scalp contours and was a

losed-form, approximately elliptical, structure. The mesh passed be-

ow the occiput, travelled through the base of the spine and, following

he roof of the mouth, emerged onto the scalp surface once again at the

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/ext/\043DAiSS
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Fig. 2. Exploring the lead-field pattern due to hippocampal sources. A. Sagittal section from the MRI brain scan of the participant showing the SPM-extracted scalp 

mesh (red) and its path along the roof of the mouth. The location of mouth sensor is shown by white cross-hairs. B. The average field magnitude due to hippocampi 

on a shell displaced 6.5 mm from the scalp surface. Note the extrema at the temporal lobes and the roof of the mouth. C. The lines joining all field extrema for all 

hippocampal current elements. Note the clear pattern, with each hippocampal source giving rise to maximal (and opposing) field changes on one temporal lobe and 

the roof of the mouth. D The hippocampal to scalp distance is plotted on the scalp surface. 
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pproximate level of the nasion ( Fig. 2 A). Based on sequentially posi-

ioning dipolar sources along this hippocampal model, we calculated the

eld magnitude at points on a shell displaced 6.5 mm from (and normal

o) the scalp surface as an estimate of measurable OPM signal ( Fig. 2 B).

ote that the base of the shell approximately corresponds to the roof of

he mouth. 

It is clear from Fig. 2 B that the hippocampal generators gave rise to

 large field magnitude on the temporal lobes, but also at the roof of the

outh. It is instructive to examine the lines joining positive and nega-

ive field extrema due to each hippocampal dipolar source. In Fig. 2 C

ach hippocampal lead field maximum and minimum is in turn con-

ected with a line. It is striking that the hippocampi generated fields

hat had extrema on the left and right temporal lobes (for left and right

ippocampi respectively) also have additional (anti-correlated) compan-

on extrema at the roof of the mouth. In Fig. 2 D the distances from the

ippocampus to roof of the mouth and scalp are shown. 

.2. Empirical recordings 

Based on the simulations described above, we proceeded to test the

easibility of taking measurements from within the mouth cavity while

he participant performed the hippocampal-dependant scene imagina-

ion task ( Barry et al., 2019b ). 
Fig. 3 shows the sensor level data. Panels A-C show that the mouth

ensor recordings are qualitatively similar to the temporal lobe channels

uggesting that we have access to neuronal (rather than tongue or other

rtefactual) recordings. 

Fig. 4 A shows the channel-level t-statistical power changes between

cene imagination and counting conditions based on our prior hypoth-

sis (4–8 Hz, 0–3000 ms ( Barry et al., 2019a ). Note that the largest ab-

olute t-statistic ( t = 3.08, df = 134, p < 0.0025) occurred at the mouth

ensor. The fact that this sensor, out of 21 sensors in total, showed the

argest change is unlikely to have occurred by chance ( p < 0.0476). This

uggests that, not only is the mouth sensor picking up useful signal, but

his signal is strongly modulated by a stimulus we know engages the

ippocampus. 

We then constructed a beamformer image of the contrast between

cene imagination and counting (again over a 3 s window in the 4–8 Hz

and). In order to identify channels key to explaining experimental vari-

nce within the hippocampus, we re-ran the beamformer reconstruction,

ut each time omitted one of the measurement sensors. Channels which

ere key to explaining experimental variance should give rise to lower

-statistic when omitted. Fig. 4 B shows that the sensor that had the

reatest impact on the amount of experimental variance explained was

 channel on the left temporal lobe (channel 4). The impact of the mouth

ensor on this analysis was modest (~10%). The fact that we observed
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Fig. 3. Initial sensor level validation. Panels A and B show time-frequency spectrograms (1–8 Hz, − 1 − 3 s) of the t-statistical difference between scene and counting 

conditions for representative left, right temporal channels. Panel C shows the same contrast at the mouth sensor. The magnitude of the change in signal between 

conditions was approximately 30–60 fT. 

Fig. 4. Channel-specific tests at sensor and source level. The mouth sensor, left, and right temporal lobe channels are depicted as a pink circle, blue triangles and 

red squares respectively. A. Sensor-level two-sample tests on the theta power difference between scene imagination and counting trials. The largest task modulation 

(largest absolute t-statistic) is at the mouth sensor. Multiple comparisons are controlled for using FDR ( q < 0.05) across sensors. B. F-statistic (relative power change) 

within the hippocampi when each measurement channel is excluded. The dotted line (baseline) indicates the F-statistic (power change) when using all channels. 

Removal of channels critical to the analysis should lead to a drop in power. Here we find that although the mouth sensor is important it is not as essential as some 

of the temporal lobe channels. 

Fig. 5. Mouth sensor coherence (4–8 Hz) with the Beamformer reconstructed time series during the ‘Scene’ condition. Images are thresholded at FWE ( p < 0.05). 

In the 4–8 Hz band the global coherence peak was found in the hippocampus (coherence = 0.1527, x = 36.00 y = − 24.00 z = − 8.00). The AAL anatomical location 

of the hippocampi is shown in blue. Only two peaks are significant, the largest in the right hippocampus (on which the images are centred). The secondary peak 

(36.00 − 16.00 54.0) is at the border of primary motor cortex and BA6. Right, Superior and Anterior are indicated by R, S and A in the figure. 
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aximal experimental modulation at the mouth sensor, but that it made

 small contribution to the source imaging, suggested to us that the lead-

elds for that sensor might be in error (see discussion). To further probe

hether or not the signal from the mouth sensor was coming from the

ippocampus we used DICs. This allowed us to identify which brain re-

ions were most coherent with the mouth sensor. The advantage of this

nalysis is that it does not require an explicit sensitivity profile (or lead

eld), for the mouth sensor. 
Fig. 5 shows the DICs image of coherence between the mouth sensor

nd the beamformer source locations throughout the brain. We found

he greatest coherence between the mouth sensor and source time-series

ithin the beamformer image to be located in the right hippocampus

this was the global image maximum). Only one other peak survived

he whole volume statistical correction ( p < 0.01) and this bordered

rimary motor and Brodmann Area 6. 



T.M. Tierney, A. Levy, D.N. Barry et al. NeuroImage 225 (2021) 117443 

4

 

c  

l  

P  

h  

h  

b  

p

 

w  

fi  

a  

(  

t  

p  

f  

e  

s  

g  

e  

s  

c  

m  

i  

n  

s

 

e  

p  

2  

i  

e  

i  

f  

I  

a  

s

 

p  

r  

t  

s  

d  

r  

1  

(  

t  

a  

2  

m  

m

 

e  

f  

t  

T  

a  

t  

u  

c  

o  

o  

H  

fi  

f  

t  

I  

n  

t  

t  

s  

i  

(  

r

 

m  

t  

t  

h  

h  

s

C

 

d  

m  

c  

l  

i  

R  

v  

o  

m  

m  

w

D

 

i  

i  

m  

s  

s  

o  

a

A

 

G  

c  

W  

t  

S  

c  

S

S

 

t

R

A  

 

B  
. Discussion 

We showed through simulation and empirical recordings that the in-

lusion of a mouth sensor could supplement and extend the growing

iterature on MEG measurements of the hippocampus ( Pu et al., 2018 ;

izzo et al., 2019 ; Ruzich et al., 2019 ). The simulation predicted an en-

anced sensitivity to hippocampal generators within the mouth and we

ave provided the first demonstration of a mouth sensor’s selectivity,

oth spectrally ( Fig. 4 A) and spatially ( Fig. 5 ), to the human hippocam-

us. 

We were initially surprised by the insights from the simulation study

hich clearly identified the roof of the mouth as the site of magnetic

eld extrema due to sources at the hippocampal surface. However, there

re clear parallels here with the use of sphenoidal electrodes in EEG

 Jones, 1951 ; Pampiglione and Kerridge, 1956 ) to access the base of

he brain. Our simulation also suggested that each hippocampus should

roduce a unilateral temporal lobe extremum in conjunction with that

ound in the mouth. Reassuringly, recent simultaneous intracerebral

lectrophysiological and MEG recordings ( Pizzo et al., 2019 ) have led to

imilar observations, with the invasively recorded hippocampal source

iving rise to a strong, yet unilateral, temporal lobe signal. One inter-

sting implication of the lead field modelling presented in the current

tudy is the possibility of lead field cancellation in the mouth. If the

urrents generated in both hippocampi are positively correlated (and

irror symmetric) then some field cancellation will occur. Conversely,

f both hippocampi are negatively correlated then an increase in sig-

al would be observed in the mouth. In either case, additional mouth

ensor(s) should help resolve the underlying physiology. 

The hippocampus is the target of the majority of adult epilepsy surg-

ries ( Margerison and Corsellis, 1966 ; Walker, 2015 ) and is heavily im-

licated in the progression of several forms of dementia ( Huijbers et al.,

015 ; Buzsáki, 2015 ). This vulnerable brain structure is, therefore, an

mportant focus for any non-invasive clinical imaging system. How-

ver, the main sensitivity benefit of OPMs over SQUID MEG systems

s cortically focussed, with idealised sensitivity gains falling from five-

old cortically to two-fold for deeper structures ( Boto et al., 2016 ;

ivanainen et al., 2017 ). Our findings show that mouth-based sensor

rrays for MEG could potentially further enhance sensitivity to deep

tructures like the hippocampus. 

Clinically, the ability to estimate electrical activity from the hip-

ocampus non-invasively using mouth-based arrays would pose a much

educed risk compared to the surgical implantation of electrodes within

he hippocampus, which is currently best-practice in cases when the

ource of the seizure focus is uncertain. Eliminating the need for this ad-

itional operation could significantly shorten the pathway to surgery to

emove the aberrant seizure-inducing tissue. This study employed Gen

 Quspin sensors and we only made use of measurements from one axis

axial to the sensor body). At present, the set-up needed to use an in-

raoral OPM sensor is cumbersome and uncomfortable; however, OPMs

re continuing to decrease in size ( Alem et al., 2014 ; Osborne et al.,

018 ). We hope that with improved sensor technology (and possibly by

easuring a field from two orthogonal directions simultaneously) small

outh-based arrays might be possible in future. 

Here we found that although the mouth sensor explained the most

xperimental variance ( Fig. 4 A) it was not the most important sensor

or the source level analysis ( Fig. 4 B). A possible explanation for this is

hat the lead-fields for the mouth sensor may have been sub-optimal.

he sensor position and orientation were estimated by visual inspection

nd could be in error by around 1 cm. Furthermore, it was not possible

o orient the sensitive axis of the sensor in the mouth at the same angle

sed in the simulations (approximately 30° offset). In future studies, this

ould be improved by utilizing the additional measurement orientation

ffered by many OPMs (axial as well as tangential to the sensor body) to

btain better sampling of brain signals recorded using intraoral sensors.

owever, this is not the only potential source of of error in the lead-

eld modelling. We utilised the Nolte single shell model (2003) for our
orward model as a compromise between accuracy and simplicity but

his method has not been used before to model a sensor in the mouth.

t is possible that the surrounding tissues (soft, hard pallet, sphenoid si-

us) do not represent piecewise homogenous conductors necessitating

hat their conductivity should be explicitly modelled. The smoothness of

he mouth surface could also affect the spatial frequency content of the

ignal with rougher surfaces necessitating the use of higher order spher-

cal harmonics to be effectively modelled by the single shell method

 Nolte, 2003 ). Clearly, more work in this area is required if the intrao-

al sensors are to be fully leveraged in source reconstruction. 

In conclusion, we have demonstrated the feasibility of acquiring

eaningful data using a scalp-array of OPM sensors augmented by an in-

raoral sensor. This intraoral sensor provides higher signal to noise than

he temporal lobe sensors and is most coherent with the signal in the

ippocampus. These results illustrate the potential that this approach

olds for interrogating deep structures like the hippocampus in basic

cience and clinical studies. 
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