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We demonstrate that there are theories that exhibit spontaneous scalarization in the strong gravity regime
while having general relativity with a constant scalar as a cosmological attractor. We identify the minimal
model that has this property and discuss its extensions.
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At the time of writing, there are 13 confirmed detections
of compact object mergers via their gravitational wave
emission [1–3]. This number is expected to rise to the
hundreds in the coming years and this will allow us to probe
the structure of neutron stars and black holes to unprec-
edented accuracy. We can then confront the predictions of
general relativity (GR) with observation and test the theory
itself in the strong gravity regime. However, one might
ask this: is it reasonable to expect significant deviations
from GR in the strong field regime, considering that the
theory has been tested to extremely high precision in the
weak field?
Spontaneous scalarization is perhaps the most direct

manifestation of new physics that stays dormant in the
weak field regime and yet leads to large deviation from GR
in the strong field regime. The first model that exhibits the
spontaneous scalarization phenomenon was proposed by
Damour and Esposito-Farèse (DEF) in [4]. Here, a direct
coupling between a scalar field ϕ and the Ricci scalar, R (or
equivalently the matter in a different conformal frame),
generates at linear level an effective mass for ϕ. As the
compactness of an objects increases, this effective mass can
become negative and trigger a tachyonic instability. The
scalar field then grows until nonlinear effects kick in and
quench the instability, thereby leading to a “scalarized”
object: a neutron star that is dressed with a scalar con-
figuration and, hence, has different structure than its GR
counterpart.1 Since the effective mass is proportional to R
in the DEF model, no instability can be triggered around
black holes that are a solution of GR.2 In fact, the DEF
model is covered by no-hair theorems [9–11].

A coupling between the scalar and the Gauss-Bonnet
invariant G≡ R2 − RμνRμν þ RμνρσRμνρσ has been known
to evade no-hair theorems and lead to scalar hair [12–21].
Recently, it has been shown that, in models that fashion
such a coupling but also admit GR solutions with constant
ϕ, black hole and neutron star scalarization can occur
[19,20]. Hence, scalarization is not specific to neutron stars
or to the DEF model. Further investigations have demon-
strated that the properties of the scalarized object are
sensitive to nonlinear interactions [22–24]. The onset of
scalarization is instead controlled only by interaction terms
that contribute to linear perturbations around a GR back-
ground, as scalarization commences as a linear tachyonic
instability.
Schematically, linearizing around a GR solution and

neglecting backreaction, one has

□effϕ
ð1Þ −m2

eff ½αi;ϕð0Þ; gð0Þμν �ϕð1Þ þ NL ¼ 0; ð1Þ

where gð0Þμν is the GR background with ϕð0Þ ¼ constant, ϕð1Þ

is the linear scalar perturbation, αi collectively denotes the
coupling constants of the theory, and NL stand for nonlinear
interactions that can be neglected at linear order.□eff is the

d’Alembertian of either gð0Þμν or some effective metric and
m2

eff can be seen as an effectivemass squared, whose value is
controlled by the coupling constant but also the background.
Hence, when the coupling constants and the background
satisfy certain conditions, m2

eff can become sufficiently
negative and the scalar undergoes a tachyonic instability,
as mentioned earlier in the context of the DEF model. The
nonlinear terms cease to be negligible, quench the instability
and determine its end point. One can follow this reasoning
and pin down the most general set of terms that will
contribute to □eff and m2

eff and thereby to the onset of the
instability in scalar-tensor theories [25]. The mechanism

1In the DEF model this is simply due to the backreaction of the
scalar and the effect this has on the star, but in principle one could
have additional couplings to matter that alter the microphysics
within the star as well [5,6].

2A subtle exception are black holes that have matter configu-
rations in their vicinity [7,8].
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could be generalized to nongravitational couplings [26] and
other fields [27,28].
Spontaneous scalarization models rely on the fact that

m2
eff depends on curvature. This allows for objects char-

acterized by high curvature to scalarize, while objects
characterized by low curvature will be described by GR
solutions with ϕ ¼ ϕð0Þ. There is a thorny subtlety though:
if one treats these objects as isolated and hence asymp-
totically flat, as usual, then one can always assume that
ϕ ¼ ϕð0Þ asymptotically. However, in a more realistic setup
the value of ϕ far away from the object is actually
determined by cosmological considerations. As it turns
out, when the coupling constant of the DEF model is such
that scalarization can occur for neutron stars, GR solutions
with ϕ ¼ ϕð0Þ are not attractors in late time cosmology
[29], see also [30] for a more recent detailed analysis.
Similarly, models that exhibit black hole scalarization due
to a coupling between the scalar and the Gauss-Bonnet
invariant also exhibit exponential growth of the scalar
during cosmological constant domination [31]. Hence,
without severely fine-tuning initial conditions in cosmol-
ogy, localized matter configurations in the late Universe
could not be described by GR with ϕ ¼ ϕð0Þ and scalari-
zation models would be effectively ruled out.
The aim of this paper is to instead point out that

(generalized) scalar-tensor theories that have GR as a
cosmological attractor and still exhibit scalarization at
large curvatures actually exist. We will first demonstrate
this by means of a simple (perhaps the simplest) example
and argue intuitively why this is expected. We will then
proceed to discuss the cosmology of such models a bit
more thoroughly, discuss how generic our results are and
explain how they would change in more general classes of
scalarization models.
Let us consider the following action,

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 4X − 2βϕ2Rþ 2λL2ϕ2G�; ð2Þ

where X ¼ −ð∂ϕÞ2=2 is the kinetic term of the scalar field,
β, λ are coupling constants, and L is an additional length
scale that one needs to choose. We assume that the metric is
minimally coupled to matter. The corresponding scalar
equation of motion is

□ϕþ ðλL2G − βRÞϕ ¼ 0: ð3Þ

The couplings with R and G generate an effective mass for
the scalar field,

m2
eff ¼ βR − λL2G: ð4Þ

We are interested in models that exhibit spontaneous
scalarization around compact objects so we need to demand
that m2

eff becomes negative at high curvature in order to

trigger a tachyonic instability. For the time being our goal is
to just demonstrate that this simple model can exhibit
spontaneous scalarization for some type of compact objects
and still have GR as a cosmological attractor. So, we restrict
attention to spherical black holes. Our GR solution will
then be the Schwarzschild solution, for which we have
R ¼ 0 and G ¼ 12r2s=r6. As mentioned earlier, G is then
sign definite and the condition for having a negative m2

eff
becomes λ > 0 [20]. For scalarization to be relevant to
astrophysical black holes we need to choose L to be of the
order of the characteristic length scale of the compact
object, so we choose L ∼ 10 km.3 Finally, we stress that,
for GR solutions to be admissible in the model under
consideration, one should have ϕ ¼ ϕð0Þ ¼ 0. Hence, this
is the asymptotic value that ϕ would need to take for
unscalarized configurations.
Next, we turn our attention to studying this theory on

cosmological scales. Assuming a flat Friedman-Lemaître-
Robertson-Walker metric, the equation of motion for ϕ is

ϕ̈þ 3H _ϕþm2
effðtÞϕ ¼ 0; ð5Þ

where m2
effðtÞ is given by Eq. (4) and depends on the

cosmological background. To get the evolution of the scale
factor aðtÞ we study the tt component of the modified
Einstein equations

Gtt ¼ κðρϕ þ ρaÞ; ð6Þ

where ρa denotes the energy densities of the various
conventional components of the cosmic fluid and ρϕ is
an effective energy density associated with the scalar field,
given by

ρϕ ¼ κ−1½ _ϕ2 þ 6βH2ϕ2 þ 12Hϕ _ϕðβ − 4λL2H2Þ�: ð7Þ

The cosmic fluid is well approximated by a barotropic fluid
whose pressure is given by pa ¼ waρa, with the index
a ¼ r;m; de and wa ¼ 1=3;−1, 0 for radiation domination
(RD), matter domination (MD), and dark energy domina-
tion, respectively.
We do not require ϕ to play any role in late Universe

cosmology, so we will assume that it is subdominant with
respect to ρa. This assumption helps avoid the gravitational
wave constrains on dark energy theories (see [32–36]),
as discussed in detail in [31]. Under the condition ρϕ ≪ ρa
Eq. (6) simplifies to the usual Friedmann equation,
H2 ≈ κρa=3. This, together with the continuity equation,
_ρa þ 3Hρað1þ waÞ ¼ 0 allows us to simplify the expres-
sions for the curvature terms

3As mentioned above, the scalar charge of a scalarized objects
is sensitive to nonlinear interactions [19,20] and not controlled
solely by L. Hence, known constraints on models that exhibit hair
but do not exhibit scalarization are not applicable here.
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R ¼ 6ð2H2 þ _HÞ ¼ κρað1 − 3waÞ; ð8Þ

G ¼ 24H2ðH2 þ _HÞ ¼ −
4

3
ðκρaÞ2ð1þ 3waÞ; ð9Þ

and hence the expression for the effective mass.
Let us now return to (5) and consider the behavior of the

scalar in different cosmological eras. Table I summarizes
the signs of the Ricci scalar, R, and the Gauss-Bonnet
invariant, G, during each era. Note that these, together with
the signs of the coupling constants β and λ, control the sign
of the effective mass. It is also worth emphasizing that R
and G have different dimensions and hence different scaling
with time, with G being clearly dominant at earlier times.
During RD, R effectively vanishes and, hence, the mass

of the scalar field is entirely controlled by the G term, with
m2

eff ≃ −λL2G ≈ 24λH4L2 ∝ 1=t4, since H ∝ 1=t. At very
early times m2

eff will dominate over the friction term in
Eq. (5). However, m2

eff decays much faster than the Hubble
friction and the latter will rapidly take over and drive ϕ to a
constant. The time that ϕ takes to freeze is approximatively
given by the time at which the potential is comparable with
the Hubble friction. After this point, it only takes a few
Hubble times for _ϕ to effectively vanish. More concretely,
meff ≲H ⇒ HðzÞ × L≲ 1, which happens very early,
around the redshift z ≈ 1011 for our choice of L. As a
result, the scalar field is already frozen to a constant
solution well before MD.
At the onset of MD, ϕ starts evolving again. This is

because R no longer vanishes on cosmological scales and
thus it provides a non-negligible contribution to m2

eff . The
contribution of the G term in m2

eff has actually become
largely subdominant to that of the R term of their different
scaling. During MD, H ≪ L−1.
As has been pointed out in [25], action (2) with λ ¼ 0 is

related by a simple field redefinition to a linearized version
of the DEF model. In fact, we have defined β such that
8β ¼ βDEF in the appropriate limit. Nonlinearities are not
important in our regime. As a result, one expects that once
the G term in our theory has become negligible, cosmo-
logical evolution will match that of the DEF model.
Interestingly, the latter actually exhibits our desired cos-
mological behavior for β > 0 [29]: GR is a cosmological
attractor! Hence, the scalar field will naturally be driven to
ϕ ¼ 0. The transition to dark energy domination does not
change the dynamics of the scalar qualitatively and GR
with ϕ ¼ 0 continues to be the attractor.

All of the above can be verified by studying the scalar
dynamics quantitatively. In this regard it is better to express
Eq. (5) in terms of the redshift, in which case it takes the
following form:

ϕ00
ðaÞ þ faϕ0

ðaÞ þ qaϕðaÞ ¼ 0; ð10Þ

where a prime denotes differentiation with respect to z, with

faðzÞ ¼
H0ðzÞ
HðzÞ −

2

zþ 1
; ð11Þ

qaðzÞ ¼
12λL2HðzÞ2ð1þ 3waÞ − 3βð3wa − 1Þ

ðzþ 1Þ2 : ð12Þ

We begin our numerical analysis at zi ¼ 1010, just before
big bang nucleosynthesis (BBN). To set the initial con-
ditions for the scalar field and its derivative, we assume that
ϕ is just coupled with the thermal bath. Therefore a natural
initial value is ϕi ≃HðziÞ=κ ≪ 1. The initial value ϕ0

i can
be, instead, derived from _ϕin: we expect _ϕi ≃HðziÞϕi ⇒
ϕ0
i ≃ ϕi=zi, which is, again, much smaller than unity. These

two conditions ensure that ρϕðziÞ ≪ ρrðziÞ and are hence
consistent with the assumption that ϕ is cosmologically
subdominant. We stress that ϕ ∼ 1 would imply Planckian
energy scales in our units and hence initial conditions with
ϕi ≪ 1 do not constitute fine tuning.
Figure 1 shows the evolution of the scalar and of the ratio

ρϕ=ρa for z < zi. ρϕ remains subdominant as expected and
the plots confirm the qualitative behavior described pre-
viously. In particular, ϕ remains constant throughout, with
the exception of transitions between cosmological eras.
The value ϕ takes at late times does depend crucially on

β. For β ¼ 0, ϕ effectively remains frozen to the value it has
in the early RD era. Unless this value is set to be extremely
close to zero by fine-tuning initial data, any local configu-
ration in the late Universe will have to be scalarized
because cosmological asymptotics will be incompatible
with having unscalarized configurations. As discussed in
the introduction, this would clash with weak field con-
straints. For β > 0 instead, ϕ → 0 during MD and GR with
ϕ ¼ 0 becomes a cosmological attractor. To approach
this attractor fast enough, β should be of order unity so
that the oscillations seen in Fig. 1 at the onset of MD are
nearly critically damped. These oscillations correspond to
changes on the effective Newton’s constant that will, in
principle, affect the formation of large scale structures.
However, the time scale of the oscillations is very large,
of order of the Hubble rate and the effective Newton’s
constant is Geff ¼ G=ð1 − 2βϕ2Þ, with ϕ < ϕi ≪ 1. In
summary, cosmic evolution is expected to be almost
identical to GR for late times.
Figure 2 shows the evolution of ρϕ and ϕ for z > zi and

the very early epochs before recombination. As anticipated

TABLE I. Signs of the Ricci scalar and the Gauss-Bonnet
invariant during different cosmological eras.

Radiation Matter Dark energy

G <0 <0 >0
R 0 >0 >0
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in our qualitative analysis, for z ≫ 1011, the significant
contribution of the G term to the effective mass results in a
sinusoidal behavior. The oscillation is damped by Hubble
friction when we move forward in time. ρϕ also shows
oscillatory behavior and, moving to higher redshift, the
oscillations are amplified. Eventually, our approximation
that ϕ is subdominant ceases to be valid. It is worth
emphasizing that ρϕ does not need to remain positive, as it
is just an effective energy density.
All of the above referred to λ, β > 0. Next we discuss the

case β > 0, λ < 0. On astrophysical scales, λ < 0 leads to
spontaneous scalarization triggered by a tachyonic insta-
bility in the interior of neutron stars [20]. As the previous
analysis has already shown, on cosmological scales the λ
term has an impact only at very early times, before
z ≃ 1011. Indeed, numerical analysis confirms that flipping
the sign of λ makes no difference during BBN and at later
times. However, as seen from Table I, for λ < 0, the λG
contribution to m2

eff will be negative and will lead to
exponential growth of ϕ once one reaches sufficiently z
for the mass contribution to dominate over Hubble friction.
As shown in Fig. 3, ρϕ=ρa grows exponentially fast and
reaches 1 a lot earlier than when λ > 0.
Note that, since scalarization relies on curvature cou-

plings, it is rather intuitive that the terms that trigger it will
become relevant in the very early Universe. The coupling
with the Gauss-Bonnet invariant is the dominant one at

large curvatures and its coupling constant is dimensionful.
As such, it controls the curvature scale at which departure
from standard cosmology would appear. This would
happen when the universe is of the size of a few kilometers,
well before BBN, for values of the coupling that are
compatible with compact object scalarization. At earlier
times, departures from standard cosmology would be
significant as our results show and as has been pointed
out in the literature [37]. However, it is quite a stretch to
consider these models as good effective field theories,
and hence take their predictions seriously, all the way to
energy scales where the universe is the size of kilometers.
Instead, it seems sensible to try to embed them in a suitable
UV completion with suitable inflationary cosmology. We
stress that we have included in action (2) only the minimal
sets of operators that contribute to the onset of scalarization
and can, at the same time, have GR as a cosmological
attractor.
Finally, we consider β < 0. For λ ¼ 0, one expects to

recover the results of Refs. [30]. In fact, for any value of λ
one will have a tachyonic instability on cosmological scales
at late times. This instability will be very slow, so it is not
particularly threatening in its own right. However, without
an attractor mechanism at late times, severe tuning of initial
conditions would be needed to have GR configurations
locally (see β ¼ 0 case) and the instability would only
make things worse.

FIG. 1. Top panel: effective energy density of the scalar ρϕ over the energy density of the cosmic fluid ρa as a function of redshift.
Bottom panel: evolution of the scalar field ϕ in units of its a reference value ϕi, fixed at z ¼ 1010.

FIG. 2. Same as Fig. 1 but for very high redshifts.
FIG. 3. Same as Fig. 2 but for λ ¼ −1.
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To conclude, we have demonstrated, using a specific
model as an example, that the phenomenon of spontaneous
scalarization around compact objects is compatible with
having an attractor mechanism to GR on cosmological
scales. In fact, our result show that fairly simple scalariza-
tion models can track GR cosmology over a vast range of
redshift and all the way back to BBN. The key feature that
leads to the desired behavior is that the scalar can couple in
two different ways to curvature—through the Gauss-
Bonnet invariant and through the Ricci scalar—with one
coupling triggering scalarization locally and the other
providing a late time attractor cosmologically.
The action we have considered is rather minimal, as it

only includes terms that contribute to linearized perturba-
tions aroundGR solutionswith constant scalar. It is perfectly
sufficient to discuss the onset of scalarization and whether

GR is cosmological attractor. However, the properties of
scalarized solutionswill be controlled by the nonlinear (self)
interactions of the scalar that one can add to our action
[23–25]. Hence, there is actually a wide variety of scalari-
zationmodels with the desired cosmological behavior at late
time and different properties for compact objects. We leave
the study of more elaborate models and the properties of
compact objects in such models for future work.
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