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Abstract. The use of multi-agent systems (MAS) as a distributed con-
trol method for shop-floor manufacturing control applications has been
extensively researched. MAS provides new implementation solutions for
smart manufacturing requirements such as the high dynamism and flex-
ibility required in modern manufacturing applications. MAS in smart
manufacturing is becoming increasingly important to achieve increased
automation of machines and other components. Emerging technologies
like artificial intelligence, cloud-based infrastructures, and cloud com-
puting can also provide systems with intelligent, autonomous, and more
scalable solutions. In the current work, a decision-making framework
is proposed based on the combination of MAS cloud computing, agent
technology, and machine learning. The framework is demonstrated in
a quality control use case with vision inspection and agent-based con-
trol. The experiment utilizes a cloud-based machine learning pipeline for
part classification and agent technology for routing. The results show
the applicability of the framework in real-world scenarios bridging cloud
service-oriented architecture with agent technology for production sys-
tems.

Keywords: Cloud Computing · Multi-Agent · Machine Learning · Pro-
duction Systems.

1 Introduction

The increasing demand for small batch sizes and customized products, combined
with a high level of market fluctuations, is requiring manufacturing industries
to change their traditional production methods. In some areas, fixed lines with
centralized control are being replaced by autonomous modules with distributed
and decentralized control, with the goal of increasing their level of agility and
flexibility, but uptake is slow.
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To achieve this transition, several manufacturing paradigms have been sug-
gested and have successfully showcased applications that enable adaptable and
re-configurable manufacturing solutions. Examples of these emerging paradigms
are the Evolvable Production Systems (EPS) [1], Bionic Manufacturing Systems
[2], Holonic Manufacturing Systems (HMS) [3], and Reconfigurable Manufac-
turing Systems (RMS) [4]. Each takes a different approach to move traditional
mass production towards an era of embedded system intelligence capable of mass
customization and high product personalization.

Emerging technologies such as artificial intelligence, multi-agent technologies,
service-based infrastructures, and cloud computing [5] are supporting the imple-
mentation of these new paradigms and enabling the necessary infrastructure to
develop new levels of interoperability, integration, and seamless data exchange.
These are critical requirements for the transition to the fourth industrial revo-
lution where high levels of digitization of resources are expected.

However, these technological enablers are recent developments, and one of the
common challenges is the lack of methodologies that showcase their implemen-
tation and integration in real scenarios, leaving such works in very theoretical
and abstract terms.

This article proposes a multi-agent framework capable of reconfiguring and
monitoring manufacturing operations in response to data from a cloud-based
analysis pipeline. The framework was defined to be generic and useful for vari-
ous environments, and here is instantiated in a specific use case based on prod-
uct testing. A multi-agent infrastructure runs distributed on the shop floor and
grants intelligence to products, which can hence communicate their required op-
erations with transport elements and machines. The introduction of a monitor-
ing entity allows the system to be constantly checking for faults. A cloud-based
machine learning platform provides intelligence “as a service” that allows the
product agents to store, train and predict machine learning models that support
decision making and feedback.

This paper is organized as follows; Section two introduces the background of
the related technology for this paper. Section three details the decision-making
framework based on a cloud platform. Section four is about experimentation and
deployment. Section five explains final conclusions and future works.

2 Background

Machine learning (ML) allows the software to learn over time from data and make
decisions and predictions that improve over time. ML is being used to improve
decision-making, improve operations and customer experiences in a wide range
of sectors.

Many real-world problems have high complexity and unknown underlying
models which makes them excellent candidates for the application of ML. ML
can be applied to various areas of computing to design and programming explicit
algorithms with high-performance output, such as in the manufacturing industry,



Cloud Based Decision Making for Multi-Agent Production Systems 3

robotics [6], e-commerce, medical applications [7], scientific visualization [8] and
fault diagnosis [9].

Cloud technologies applied to manufacturing enable the conversion of man-
ufacturing resources and capabilities into entities capable of being virtualized,
combined, and enhanced [10] established the cloud concept in detail and pre-
sented a system that was service-oriented and interoperable. The system revolved
around the customer/cloud user and enterprise user.

Cloud technologies often enable on-demand use of resources that follow a
deployed-as-you-need model so that resources may be used with common inter-
faces. The cloud services can be mainly divided into Platform-as-a-service(PaaS),
Infrastructure as a service(IaaS), Software as a service(SaaS). PaaS cloud-based
solutions offer connectivity of a user’s applications to the application resources,
web services, or storage infrastructure of a cloud. IaaS, the major component in a
PaaS solution, is a platform where services provided by other platform providers.
While Software as a service(SaaS) is an application software delivery model. In
the SaaS delivery model, the application software is delivered via the Internet
to end-users over an Internet Protocol (IP) connection.

Distributed artificial intelligence (DAI) has attracted research interest be-
cause it can solve complex computing problems by breaking them into simpler
tasks. DAI algorithms can be divided into three categories: parallel AI, dis-
tributed problem solving (DPS), and multi-agent systems (MAS)[11]. Parallel
AI involves the development of parallel algorithms, languages, and architectures
to improve the efficiency of classic AI algorithms by taking advantage of task
parallelism. DPS involves dividing a task into several subtasks, and each subtask
is assigned to one of a group of cooperating nodes (called computing entities).
Computing entities have shared knowledge or resources and predefined commu-
nications with other entities, which limits their flexibility [12].

MAS divides the components of the system into autonomous and ‘selfish’ soft-
ware agents, each aiming to achieve its own goals by collaborating with other
agents. MAS supports complex applications where many components with con-
flicting objectives need to interact by breaking them into independent simpler
entities. They require distributed and parallel data [13].

Agent technology is recognised as a powerful tool for the 21st century manu-
facturing system. Researches are on-going for utilising agent technology in man-
ufacturing enterprises, production process planning and scheduling, workshop
control, and re-configurable manufacturing systems [14].

The applications of agents in manufacturing industry have seen wider accep-
tance, such as: process and manufacturing control[15–18], manufacturing simula-
tion and execution[19–21], reconfiguration and self-adaptation in manufacturing
[22, 3, 23]. Monitoring, quality control, and diagnostics in manufacturing[24–27]
can be greatly benefited by agent integration coupled with other technologies.

Machine vision and image processing techniques utilised in manufacturing
applications are used for integrated inspections to detect defects and improve
product quality in the process [28]. In many cases, traditional machine learn-
ing has made great progress and produced reliable results [29], but different
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prepossessing methods are required, including structure-based, statistical-based,
filter-based, and model-based techniques. To enhance performance for quality
control these techniques can be combined with expert knowledge to extract rep-
resentative features [30, 31] that influence quality. Most of the previous research
about manufacturing quality monitoring with agent application does not relate
with cloud computing technologies and machine learning. This work addresses
that area.

3 Decision Making Framework

The framework for cloud-based decision-making in manufacturing is divided into
two components, the multi-agent system, and the cloud computing services. A
Graphical representation of the framework is given in Figure 1.

Fig. 1: Framework for MAS and cloud-intelligence integration

3.1 Multi-Agent System (MAS) Component

The framework requires a set of agents with defined responsibilities that are each
instantiated when required. The agents developed in PROSA [32] and PRIME
[25] projects served as an inspiration for the development of this component.
Some agents may each have a physical asset associated with it and provides an
interface to the virtualized ”skills” performed by the physical asset. The list of
agents and their functionalities are given in Table 1.
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Table 1: Agent types and their functionalities

Agent Type Functionalities

Deployment
Agents (DAs)

Launches and kills the agents according to the task being performed.
Keeps track of the list of agents being deployed.

Product
Agents (PAs)

Represents each product on which tasks are being performed
(one agent per product).
Requests skills from other agents to be performed on the product.
Updates the product properties (e.g. faulty or not) as task progresses.
The agent is removed when the product is finished.

Transport
Agents (TAs)

Performs the skills of moving the product from one place to another.
Performs skills monitoring the development of bottlenecks in the system.
Examples include conveyors, pick & place robots, AGVs.

Monitoring
Agents (MAs)

Collects data from other agents and provides information.
Utilizes the cloud computing platform for decision making.
Skills being performed includes quality prediction, prognostics.

Resource
Agents (RAs)

Represents a resource on the shop floor.
Provides the skills provided by the resource.
Extracts data from the resource it is abstracting.

Fig. 2: Sequence diagram for the framework

The sequence diagram (Figure 2) shows the interaction between products,
transportation assets, monitoring elements, and resources. It assumes that the
agents have been already launched. This means that their skills and services
have been already identified by the Deployment Agents (therefore, DAs are not
included in the sequence diagram).
Product Agents (PA) guides the sequence of the process creating a prod-
uct by requesting the skills from other agents to be performed on the physical
product instance. This request of skills could vary depending on the product
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properties and the skills required to create the product.
Transport Agents (TA) execute the skills requested by the PA to move the
product to the required resources and to inform the current position of the
product to PA. The TA also considers the buffers and potential bottlenecks that
might arise before executing its skills.
Resource Agents (RA) represent shop-floor resources (such as machining
centers, robots, sensors, cameras). RAs can provide their availability, task sta-
tus info, and resource information as per request.
Monitoring Agents (MA) doesn’t have a physical entity associated with it
but utilizes the skills provided by RAs if required (e.g. image capturing skills
from a camera RA). The MA offers the cloud computing functionality as skills
if required for quality prediction and prognostics. For example, PA requests MA
to perform a skill of quality prediction of the product associated with it. MA
if required, requests RA to perform its skill (e.g. take a photo of the product).
MA then uses a cloud platform for decision-making and informs PA about the
quality of the product.

3.2 Cloud Computing Component

Cloud computing is used to enhance the capability of the multi-agent framework
by bridging it with service-oriented architecture. The MA looks for certain events
that act as a trigger for it to execute its functionality (requesting RAs and
informing PA). Each of the services housed in the cloud can be instantiated
by means of event trigger functions. The agent and the cloud platform rely on
a gateway to realize their functionality. The event trigger functions are used
by the MA to activate the capture of images and send them to cloud storage.
This population of images in cloud storage triggers additional functionality and
decision-making by the ML pipeline. The insight generated by the ML pipeline,
based on the captured images in the cloud platform, is sent to the MA which
then uses it to execute an operation. MA either triggers TAs or RAs which
are responsible for transportation and production skills respectively. The agent
interaction with cloud computing platform along with details on cloud service
deployment is elaborated in more detail in the experimentation and deployment
section.

The algorithm for ML processing used for image detection and classification
is Neural Architecture Search (NAS) where a dataset and task (image detection
and classification) is provided. This is used to find the design of machine learning
model, that performs best among all other models for a given task as the model
is trained under the provided dataset. NAS uses search strategy to find best
model from all possible models that maximises performance (figure 3).

The three constituent of NAS include search space, search strategy and per-
formance estimation. Search space defines the neural architecture selection ba-
sis like chain or multi-branch network, micro/macro-search or cell-search [33].
Search strategy and performance estimation employ multiple methods selected
on the search space selected previously [33] such as random search, reinforcement
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Fig. 3: NAS algorithm for determination of image detection and classification ML Model

learning, and evolutionary algorithms. The model derived from this approach
can be used directly for the purpose. Google Cloud Platform (GCP) based its
AutoML service on a novel architecture NASNET that uses NAS for image clas-
sification. NASNET redesigns the search space so best layer could be found and
stacked multiple times in flexible manner for final network. This network was
used to perform search strategy on image datasets and best learned architecture
was selected for image detection and classification. More detail on the work can
be found in the work done by Google Research Team [34].

4 Experimentation and Deployment

The experiment carried out in this work includes the implementation of cloud-
based decision-making and the multi-agent-based simulation of the proposed
shop floor. The demonstrator used as a basis for this experiment is shown in
(Figure 4) and includes conveyors, three drilling stations, and one camera mod-
ule. At this point, the Factory I/O environment was used specifically to demon-
strate a use case of a plant layout and to provide an objective vision of the
implementation of the proposed framework.

Once a product’s order has been launched into the system, the component
moves forward through the first conveyor until the camera module is reached.
Immediately, it takes a picture of the component and compares it with an ML
cloud-based classifier. The part is labelled and routed as per decision. A con-
veyor is used to direct the component to the rework/reject station in case that
the part is defective. In other cases, it looks for the other production resource
stations where the part could be routed. This routing is decided on the condition
of station busyness. The part is routed to a less busy station and the station
executes its function or skill and the process is finalized.

The experimental setup includes services employed in a cloud environment,
agent resources, and deployed physical resources. The camera module connected
to Raspberry Pi acting as a gateway device to the Cloud-Based Machine Learning
Pipeline. The functionality employed by cloud-based services is of visual quality
inspection for defect-free production and process routing.

4.1 Cloud-based decision making

Cloud-based machine learning (ML) model is trained on images and deployed
for analysis on an end-point (Figure 6). As more and more classifications take
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Fig. 4: Shop-floor demonstrator environment in Factory IO

place the model is improved. The classified images are sent to the pipeline for
training with every iteration. The cloud-based deployment of quality inspection
for mechanical components are used as the basis for agent-based decision-making.
The images for classification are taken from a public dataset [35], and are trained
to a high level of confidence.

Images ingested from the gateway device obtained by the camera module
are stored in the storage housed by the cloud platform. This event of image
storage acts as an event trigger that executes a script sending the stored image
at the machine learning service endpoint.The endpoint houses the model that
is determined by using NASNET, trained for the task and on the dataset in
GCP.At this endpoint, the image is labelled as per the classification obtained by
the trained, tested, and validated model. The label assigned to the image falls
within the category of ’ok’, ’defect’, and ’uncertain’.

The labelled image is written to the message topic (MQTT publish/subscribe
service) . This message topic triggers another event that moves the labelled image
to the predicted cloud storage offering separate storage services for the categories.
The labelled images are moved into each respective service as per category. The
uncertain image requires human intervention. An Application Protocol Interface
(API) is incorporated that takes the uncertain image and inquires the accurate
(ok) or defective status from the human operator. The image is then classified
as per human input.
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Fig. 5: Cloud Based Machine Learning Pipeline for Part Detection

4.2 Multi-agent based simulation

The agent-based framework presented in previous section is implemented and
supported by the cloud-based platform.

Agent programming is implemented with the JADE (Java Agent Develop-
ment Environment) platform. The agents deployed in JADE use cloud based
classification input generated by vision model trained on the dataset, as input
leading to further actions as per the proposed framework discussed above. All
of the actors in the production environment are controlled by means of agents.

In the current use case, the agent execution and simulation is performed after
the deployment of six agents: PA , MA, TA1, TA2, TA3 and RA. TA3 and RA
represent the set of stations and their required transportation respectively. To
account for similarity in resource skill and identical negotiation steps, TA3 and
RA were not deployed individually rather resources 1, 2 and 3 are represented by
agent RA and conveyors by the agent TA3. The simulation is performed within
two variants, based on cloud based decision process, set by the MA if the part
is defective (variant 1) or accurate (ok) (variant 2). The simulation process can
be seen in Figure 7. Figure 7(a) presents the sequential model generated when
a part is defective. In this case the TA2 is activated routing the product to a
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Fig. 6: ML Pipeline Deployment. (a) Precision vs Recall against identified part labels.
Precision is measurement of positive label assignment (ratio between the True Positives
and all the Positives) and recall is the measure of model correctly identifying True
Positives. (b) Maximum confidence at Threshold = 0.5. (c) Dataset size (total and test
images). (d) Confusion Matrix representing True and Predicted Labels. (e) Accepted
(OK) part. (f) Defective Part.

storage place for defective parts. Finally, in Figure 7(b) the sequential model
generated starts a negotiation process with RA followed by TA3 with the aim
of performing the respective job.

5 Conclusion and Future Work

The research presents an elaborate framework on the application of cloud and
agent technologies on quality control by vision inspection and agent-based con-
trol in a production system. The approach developed is suitable to achieve a
quality testing-driven production that compliments the ’no-faults-forwards’ ap-
proach in manufacturing. It reduces the risk of accepting defective parts and
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Fig. 7: Sequential diagram for (a) accurate parts (b) defective parts

rejecting good parts (Type 1 and 2 errors). This approach benefits in reducing
costs as well as maintaining quality standards. Future work for this approach
involves expanding the Machine Learning models on the cloud, developing in-
ferences from structured data along vision models. This will enable integration
with data generated on n shop floor for better control in production applications.
The current-use case considers diverting of parts to less busy stations; however, a
methodology to define an optimal routing resource has to be developed in future
works. The multi-agent system capability will be enhanced to enable routing to
stations having different processing capabilities. Deploying the test-driven pro-
duction approach to multiple physical use-cases will also be a part of future
activities.

Currently, the approach is constrained by the size of the data set i.e. a large
number of pictures are required by the system to train the model for accurate
prediction, which is a limitation of the service. A limitation however is a gap in
proper integration of cloud services with agent technology for effective coordi-
nation and control. Future works will be looking into different ways the limita-
tion can be overcome while keeping data set size to minimum and developing
mechanism for effective service deployment and integration. Other mechanisms
for deploying the cloud-based testing control will be implemented and compared
with the multi-agent approach. Another limitation observed in the research is re-
lated to interoperability, common ontology, semantics, and protocols across the
whole production line. Multiple APIs need to be deployed for communication
between cloud pipeline, gateway device, agent system, and production system
devices. A solution to this problem will be discussed in future works. Finally, fu-
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ture developments will include the creation of the necessary interfaces to link the
simulated environment in Factory I/O with JADE and with the cloud based ML
infrastructure. This will clearly showcase the advantages of the framework and
will be a step ahead towards its implementation in an industrial environment.

6 Acknowledgement

This work is carried out under DiManD Innovative Training Network (ITN)
project funded by the European Union through the Marie Sktodowska-Curie
Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement
number no. 814078.

References

1. Onori, M., Barata, J.: Evolvable production systems: New domains within mecha-
tronic production equipment. In: 2010 IEEE International Symposium on Indus-
trial Electronics. pp. 2653–2657. IEEE (2010)

2. Tharumarajah, A.: Comparison of the bionic, fractal and holonic manufactur-
ing system concepts. International Journal of Computer Integrated Manufacturing
9(3), 217–226 (1996)

3. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference ar-
chitecture for holonic manufacturing systems: Prosa. Computers in industry 37(3),
255–274 (1998)

4. Bi, Z.M., Lang, S.Y., Shen, W., Wang, L.: Reconfigurable manufacturing systems:
the state of the art. International journal of production research 46(4), 967–992
(2008)

5. Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-
physical systems technologies: Prototype implementations and challenges. Com-
puters in industry 81, 11–25 (2016)

6. Wang, L., Du, Z., Dong, W., Shen, Y., Zhao, G.: Hierarchical human machine in-
teraction learning for a lower extremity augmentation device. International Journal
of Social Robotics 11(1), 123–139 (2019)

7. Wu, D., Zhang, Y., Ourak, M., Niu, K., Dankelman, J., Vander Poorten, E.B.:
Hysteresis modeling of robotic catheters based on long short-term memory network
for improved environment reconstruction. IEEE Robotics and Automation Letters
pp. 1–1 (2021)

8. Torayev, A., Schultz, T.: Interactive classification of multi-shell diffusion mri with
features from a dual-branch cnn autoencoder. In: EG Workshop on Visual Com-
puting for Biology and Medicine (2020)

9. Tang, T., Hu, T., Chen, M., Lin, R., Chen, G.: A deep convolutional neural net-
work approach with information fusion for bearing fault diagnosis under different
working conditions. Proceedings of the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science p. 0954406220902181 (2020)

10. Vincent Wang, X., Xu, X.W.: An interoperable solution for Cloud manufacturing.
Robotics and Computer-Integrated Manufacturing 29(4), 232–247 (2013)

11. Wooldridge, M.: An introduction to multiagent systems. John wiley & sons (2009)
12. Bond, A.H., Gasser, L.: Readings in distributed artificial intelligence. Morgan Kauf-

mann (2014)



Cloud Based Decision Making for Multi-Agent Production Systems 13

13. Botti, V., Omicini, A., Mariani, S., Julian, V.: Multi-agent systems. MDPI-
Multidisciplinary Digital Publishing Institute (2019)

14. Adeyeri, M.K., Mpofu, K., Olukorede, T.A.: Integration of agent technology into
manufacturing enterprise: A review and platform for industry 4.0. In: 2015 Interna-
tional Conference on Industrial Engineering and Operations Management (IEOM).
pp. 1–10. IEEE (2015)

15. Li, Z., Jiang, X., Yao, S., Li, D.: Research on collaborative control method of man-
ufacturing process based on distributed multi-agent cooperation. In: 2018 11th In-
ternational Symposium on Computational Intelligence and Design (ISCID). vol. 2,
pp. 41–46. IEEE (2018)

16. Li, D., Jiang, X., Wei, X.: Research on manufacturing process control based on
multi-agent-system. In: 2018 IEEE 4th Information Technology and Mechatronics
Engineering Conference (ITOEC). pp. 1306–1309. IEEE (2018)
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