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a b s t r a c t

We present a semi-analytical method for computing the reflection and transmission
coefficients at joints connecting an arbitrary number of semi-infinite orthotropic plates
based on the line-junction approximation. We use a wave approach and describe
reflection, transmission and mode conversion between eigenmodes of the vibro-acoustic
equations for orthotropic plates. A detailed derivation is presented here for the first time
for an arbitrary number of plates meeting at the junction and without restrictions on
the orientation of the principal material axes both with respect to the junction and
with respect to the orientation in different plates. The approach is discussed for two
specific example configurations, namely an L- and a T-shaped orthotropic plate junction.
Furthermore, the scattering coefficients for a rib-stiffened orthotropic plate are derived,
and the occurrence of resonance phenomena is discussed.
©2021 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The study of structure-borne sound propagation through plate junctions is of great importance in architectural
coustics, as well as for modelling the noise and vibration performance of mechanical structures used in transport sectors
uch as in the aerospace and automotive industries. Structural vibrations at low frequencies are in general modelled using
eterministic schemes (e.g. the Finite Element (FE) analysis) thus capturing the full phase and amplitude information of the
ave field on the structural ensemble. On the other hand, at higher frequencies, deterministic methods become inefficient
nd approximations based on ray- and wave-based methods or statistical approaches are favoured. For the latter type of
ethods, detailed information about the reflection and transmission behaviour at plate junctions is required and routinely
sed. Flow-balance equations such as the Statistical Energy Analysis (SEA) [1] or diffusion methods such as the Energy
low Analysis [2] only need averaged coupling parameters, also called coupling loss factors in the context of SEA. Ray-
r wave-based methods such as the Dynamical Energy Analysis (DEA) [3–5] require the full wave scattering coefficients
etaining the dependence on the angle of incidence at the plate junction.

This information is usually obtained by working in the infinite junction approximation, i.e., determining the reflection
nd transmission coefficients by solving the wave problem for an incident plane wave assuming that the plates extend
o infinity along the junction. Most of the research focused on isotropic plates so far, such as early work done by Cremer
t al. [6] considering the structure-borne sound transmission of a flexural wave for right-angled joints of thin plates.
ater, Craven and Gibbs [7,8] and Wöhle et al. [9,10] included the in-plane wave modes in their analyses together with
onsidering up to four plates joined together. Langley and Heron [11] computed scattering coefficients for structural
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unctions connecting an arbitrary number of thin, isotropic plates along a rigid beam. A simplified treatment using a line-
unction approximation is also described in [11], that is, boundary conditions and force-balance equations are considered
long a 1D line at the centre of the junction only. Mees and Vermeir [12] analysed the bending wave transmission loss
n the system of plates connected by a hinge or by an elastic interlayer. McCollum and Cuschieri [13] studied the flexural
ehaviour of right-angled thick finite plates using a mobility power flow approach. They also considered both in-plane
nd out-of-plane wave scattering in right-angled thick semi-infinite plates [14]. Langley investigated wave reflection
nd transmission coefficients for structural junctions between curved panels and beams [15]. The occurrence of negative
roup velocity phenomenon in cylindrical structures has been outlined in this work. More recent works focused on wave
cattering at plate junctions using hybrid FE and Wave Finite Element (WFE) [16] approaches [17–19].
Beyond the case of wave propagation in isotropic materials, Bosmans et al. [20] studied the scattering properties of

rthotropic plate junctions with principal material axes aligned with the plate coordinates, that is, so-called specially
rthotropic plates. However, no details on the derivation are given, and results are presented only for the particular case
f bending wave transmission loss in right-angled plates, so-called L-junctions. It is not clear, whether the approach
erived in [20] is limited to specially orthotropic plates or can be extended to an arbitrary number of plates meeting at
he junction with different orientation of the principal material axes. Moreover, for a DEA treatment, detailed information
n reflection/transmission behaviour of all propagating modes at complex junctions is needed. This includes information
bout the angle-of-incidence dependence of scattering coefficients and mode conversion factors.
We give here for the first time a detailed derivation of reflection and transmission matrices for waves travelling in

tructural junctions connecting two or more (thin) orthotropic plates at arbitrary angles and without any restrictions on
he orientation of principal material axes both with respect to the orientation of the junction and with respect to the
rientation in different plates. We discuss the method for two different junction configurations and demonstrate how
he method can be used to obtain the angle-of-incidence and frequency dependence of scattering coefficients in a rib-
tiffened orthotropic plate. In all calculations, we give the scattering coefficients containing the full angle-of-incidence
nd frequency dependence. The method has already been used to validate a WFE treatment of connected plates made of
ayered composite media in [21].

The manuscript is organised as follows: in Section 2, the equations for obtaining the scattering coefficients are derived
n the line-junction approximation. First, the governing equations of motion for orthotropic plates are presented, and
ispersion relations and group velocities for in-plane and out-of-plane waves are given. The importance of modifications
o Snell’s law for orthotropic plates is discussed using an example configuration. The wave dynamic stiffness matrix is
hen introduced, which relates displacements and forces at the junction. The individual dynamic stiffness matrices for
lates are then assembled into a global equation via the application of continuity and equilibrium conditions at the
unction. In Section 3, numerical case studies for two and three coupled orthotropic plates are presented. The problem
f an orthotropic plate with a stiffener (of finite length) is considered as a special case; further details are presented in
ppendix B. Finally, concluding remarks are given in Section 4.

. Energy scattering coefficients for ensembles of orthotropic plates — derivation

.1. Governing equations of motion

Consider N semi-infinite thin orthotropic plates connected along a lossless junction as shown in Fig. 1. The shared
dge of the plates is aligned with the yg axis of the global coordinate system (xg , yg , zg ). The position of the jth plate is

described by the rotation angle ψj relative to the xg axis. The position, displacements and tractions on the jth plate are
efined with respect to the local coordinate system (xj, yj, zj), where the local and global y axis are identical, see Fig. 2.
ote that the positive direction of xj axis always points away from the junction. We consider orthotropic plates with
rbitrary principal axes, that is, the axes are not necessarily aligned with their local coordinate system.
Following Kirchhoff–Love plate theory [22,23], the governing equations of motion for the jth plate can be expressed

n terms of displacements uj, vj, wj as

Q11
∂2u
∂x2

+ 2Q16
∂2u
∂x∂y

+ Q66
∂2u
∂y2

+ Q16
∂2v

∂x2
+ (Q12 + Q66)

∂2v

∂x∂y
+ Q26

∂2v

∂y2
= ρ

∂2u
∂t2

,

Q22
∂2v

∂y2
+ 2Q26

∂2v

∂x∂y
+ Q66

∂2v

∂x2
+ Q16

∂2u
∂x2

+ (Q12 + Q66)
∂2u
∂x∂y

+ Q26
∂2u
∂y2

= ρ
∂2v

∂t2
,

D11
∂4w

∂x4
+ 4D16

∂3w

∂x3∂y
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ 4D26

∂3w

∂x∂y3
+ D22

∂4w

∂y4
= −ρh

∂2w

∂t2
,

(1)

here the Qmn’s denote the plane stress-reduced stiffness coefficients from the constitutive relations for an orthotropic
late with Dmn = Qmn h3/12, the bending stiffnesses, ρ the material density and h the thickness. Eq. (1) are written
ere for the general case with principal axes not necessarily aligned with the (x, y) coordinate axes. Details about the
elations between the Qmn’s in Eq. (1) and the more familiar coefficients for specially orthotropic plates together with the
elations to material constants can be found in Appendix A. We omit the plate index j in Eq. (1) and whenever we talk
bout a specific plate for ease of notation; we emphasise here that all quantities, including the material parameters, are
2
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Fig. 1. The set up of N plates joined together at a common interface along the y axis.

Fig. 2. Local coordinate system, displacements and tractions on the common edge ‘‘e’’ of the jth plate.

late dependent. The equations of motion for in-plane and out-of-plane motion in the plate are uncoupled and so are the
elations between in-plane displacements uj , vj to in-plane tractions Nj , Tj and out-of-plane displacement wj and rotation
θj to transversal traction Sj and bending moment Mj at a junction or edge ‘‘e’’ of that plate j, see Fig. 2. In what follows,
we will use the sub-index ‘‘e’’, whenever we want to stress that a quantity is taken at the edge of a plate j, that is, at
j = 0, following the notation in [11]. The elastic tractions can be written in the form [23]

N = Q11h
∂u
∂x

+ Q12h
∂v

∂y
+ Q16 h

(
∂u
∂y

+
∂v

∂x

)
T = Q16h

∂u
∂x

+ Q26h
∂v

∂y
+ Q66 h

(
∂u
∂y

+
∂v

∂x

)
S = −D11

∂3w

∂x3
− 4D16

∂3w

∂x2∂y
− (D12 + 4D66)

∂3w

∂x∂y2
− 2D26

∂3w

∂y3

M = D11
∂2w

∂x2
+ D12

∂2w

∂y2
+ 2D16

∂2w

∂x∂y
,

(2)

where we again omit the j dependence. Note that S is the Kirchhoff shear force [23,24], which includes the contribution
of the twisting moment −

∂V
∂y together with the transversal shear traction. The twisting moment V is defined as

V = D16
∂2w

∂x2
+ D26

∂2w

∂y2
+ 2D66

∂2w

∂x∂y
. (3)

It is also noted that in accordance with the plate theory used in this study, the angle of rotation θ is approximated as ∂w .

∂x

3
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.2. Dispersion relations, the group velocity and Snell’s law

Before discussing reflection and transmission coefficients for incoming waves at a specific angle of incidence, it is
orth considering the relations between the angle of incoming and outgoing waves at an interface, that is, the relation
quivalent to Snell’s law for orthotropic plates.

.2.1. Relations between incoming and outgoing waves at junctions for orthotropic plates
Since the directions of the group and phase velocities do not necessarily coincide in non-isotropic media [25],

ormulating the relations between the angles of incoming and outgoing waves at interfaces between plates with different
aterial properties and thus the generalisation of Snell’s law is less straightforward. The connection between group and
hase velocities is provided by the dispersion relation, which needs to be studied in some detail. Given that energy is
ransported along the group velocity vectors, the relation between incoming and outgoing group velocity directions is
ssential for energy methods based on ray-tracing principals such as SEA or DEA.
Consider a plane wave of the form e−ikxx−ikyy+iωt travelling across the plate, where kx and ky are the x and y components

f the wave vector k, and ω is the angular frequency. Substituting this plane wave solution into the 4th order bending
quation (1) yields the characteristic equation for bending waves

D11 k4x + 4D16 k3x ky + 2(D12 + 2D66) k2x k
2
y + 4D26 kx k3y + D22 k4y − ρhω2

= 0. (4)

Following the same procedure using the first two equations in (1), the characteristic equation for in-plane waves can be
expressed as(

Q11 k2x + 2Q16 kxky + Q66 k2y − ρω2) (Q66 k2x + 2Q26 kxky + Q22 k2y − ρω2)
−

−
(
Q16 k2x + (Q12 + Q66) kxky + Q26 k2y

)2
= 0.

(5)

For fixed ω, the solutions to Eqs. (4) and (5) give rise to a closed curve in (kx, ky) space describing the wave vector curves
for bending, shear and longitudinal waves. We note that only real solution (kx, ky) describe propagating waves.

We are interested in the dynamic response of a plate j to an incident plane wave of the form eikxx−ikyy+iωt travelling
owards the junction on plate j′. Compatibility conditions at the junction yield the response of the plate j in the form
−iµx−ikyy+iωt , that is, ky and ω are common to all plates on the edge ‘‘e’’. The x component of the wave vector, here denoted
, is then computed from the dispersion relations in Eqs. (4) and (5). For the out-of-plane motion, one obtains four
olutions of Eq. (4) which come in pairs of roots µ±. One pair is either real or complex corresponding to propagating
r attenuating bending waves, respectively. We denote this pair as µ±

B1
where the superscripts " + " and " − " represent

utgoing and incoming waves. The other pair of roots denoted µ±

B2
is always complex; the corresponding bending waves

re thus attenuating.
Similarly, the dispersion relations (5) can be solved for the unknown µ yielding a characteristic equation with four

oots µ±

L,S that represent real or complex incoming and outgoing quasi-longitudinal and quasi-shear waves, here denoted
as L and S, respectively. Valid plate responses, that is, outgoing waves with µ+

X , X = B1, B2, L and S either oscillate with
a positive energy flux along the x axis or attenuate exponentially with increasing x, see Section 2.3.1 for more details.
In the example to follow below, we will only consider the propagating branches and explain the relation between the
directions of incoming and outgoing waves, which follows from the continuity condition ky = const .

For this, we also need the group velocity vector cg , which gives the direction of the wave energy flow [26]. The standard
definition cg = ∂ω/∂k is not convenient for our purposes here, since the dependence of the angular frequency ω on the
wave vector k is only implicitly given through the dispersion relations (4) and (5). Instead, one can use(

cgx, cgy
)

= −
1
∂Ω

∂ω

(
∂Ω

∂kx
,
∂Ω

∂ky

)
(6)

o find the components of the group velocities cgx and cgy [26] for different modes. Here, Ω = Ω
(
kx, ky, ω

)
is the left

and side of either the dispersion relations (4) or (5).

.2.2. Snell’s law for orthotropic plates — an example
We will discuss some of the peculiarities of the interplay between incoming and outgoing wave directions at interfaces

etween orthotropic plates by looking at a specific example. We consider here two identical orthotropic plates meeting
t an angle ψ as shown in Fig. 1, but with principal material axes rotated against each other. The actual value of ψ is not
ssential for the discussion in this section; it will be set to ψ = 90◦ when reconsidering this example in Section 3.1. The
aterial characteristics of the plates are given as: h = 0.005m, Ex = 121GPa , Ey = 8.6GPa , Gxy = 4.7GPa , νxy = 0.27

and ρ = 1490 kg/m3; for the relations connecting these material parameters to the stiffness coefficients in Eq. (1), see
Appendix A. We work at a frequency of 3000 Hz here, a frequency value consistent with the thin plate assumptions for
the parameters chosen. The orientation of the principal material axes of the two plates with respect to the interface and
with respect to each other is important; here, we chose the angle of rotation of the material axes in each plate to be
45◦ with respect to the local coordinate system as defined in Fig. 2, see also Fig. 6 for the ψ = 90◦ example discussed
4
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Fig. 3. Bending wave vector curve in a 45◦ rotated orthotropic plate at a frequency 3000 Hz (left) and a schematic representation of incoming/outgoing
waves at the junction of two identical plates (right). Blue dots represent wave numbers related to outgoing waves while red squares correspond to
incoming waves. Wave number components kmax

B and k∗
y equal to 62.96m−1 and 29.34m−1 , respectively.

in Section 3.1. The left-hand side of Fig. 3 shows the bending wave vector curve at a frequency 3000 Hz obtained from
Eq. (4) in the local coordinate system displaying the 45◦ rotation. Note that the wave vector curve is the same for both
plates in their local coordinate system. The range of ky values which allow for propagating bending waves at 3000 Hz is
between (−kmax

B , kmax
B ). We emphasise again that the angle ψ between the two plates can take arbitrary values here; for

the sake of clarity, we have drawn the local coordinates of the plates, (xi, y) with i = 1 or 2, in the same plane on the
ight-hand side of Fig. 3 and in Fig. 4 below.

As we are interested in the energy flow across interfaces, the relevant angles of incidence, reflection and transmission
re those obtained from the group velocity vectors, Eq. (6); they point along the gradient vectors to the wave vector curves
denoted by the angles α±

j in Fig. 3). Here, blue symbols correspond to velocity vectors with a positive x component
escribing waves transporting energy away from the junction, and red symbols describe incoming energy fluxes. The
ontinuity condition ky = const now connects incoming with outgoing group velocity directions on the wave vector curve,
hat is, red squares (incoming) with blue dots (outgoing). This leads to a peculiar effect here: in the range k∗

y < |ky| < kmax
B ,

ropagating waves, for example with angles of incidence α−

1,3, are transmitted or reflected keeping their direction of
travel in the y direction, see the right side of Fig. 3. This is what one usually finds at refracting interfaces. However, for
−k∗

y < ky < k∗
y , a wave, for example with incident angle α−

2 , is scattered reversing its direction in the y-direction, see α+

2
in Fig. 3. This gives rise to negative refraction for these values of ky. The phenomenon is displayed in more detail in Fig. 4
representing group velocity rays transmitting from one plate to another; the region in blue shows the negative refraction
phenomenon.

Furthermore, note that the group velocity vector α−

3 points in the opposite x direction compared to the corresponding
wave vector, see Fig. 3. This implies that the individual wavefronts travel away from junction whereas the wave energy
travels towards it. Similar behaviour can be encountered for wave vectors in the upper part of the dispersion curve; for
specific values of ky > k∗

y the outgoing wavefronts travel towards the junction whereas the wave energy propagates away
from it.

Interesting features can also be seen for in-plane wave vector curves, as shown in Fig. 5. The shape of the longitudinal
wave vector curve is similar to that of the bending wave. Therefore it also exhibits negative refraction and opposition of
phase and group velocity vector directions for specific fixed values of ky. The shear wave vector curve shows additional
features due to its peculiar form, which we cannot discuss here in all details. We just mention that there exists a set
of values of ky (labelled k∗

S2
in Fig. 5), for which there are two pairs of incoming and outgoing shear waves for each ky.

Finally, propagating longitudinal and shear waves can only exist for ky values in the range (−kmax
L , kmax

L ) and (−kmax
S , kmax

S ),
espectively. Beyond these intervals, the corresponding propagating waves become attenuating. We will come back to this
xample in Section 3.1.

.3. Derivation of the dynamic stiffness matrix

Next, we are interested in the local dynamic stiffness matrix for the plate j. This matrix relates boundary forces to
oundary displacements produced by the waves emerging from a junction in the form e−iµx−ikyy+iωt . As discussed in

ection 2.2.1, ky and ω are common to all plates meeting at an edge ‘‘e’’ and the x components of the wave vectors, µ,

5
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Fig. 4. Group velocity ray picture for bending waves at junction of two identical 45◦ rotated orthotropic plates at a frequency 3000 Hz. Blue lines
ighlight the region of incoming rays, which represents the negative refractive index phenomenon. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Longitudinal and shear wave vector curves in a 45◦ rotated orthotropic plate at a frequency 3000 Hz. Dots represent wave numbers related
to outgoing waves while squares — incoming waves. Wave number components k∗

L and k∗

S equal to 6m−1 and 9.3m−1 , respectively — the critical
alues for longitudinal and shear waves.

re obtained from the dispersion relations (4) and (5) with solutions forming real or complex pairs µ±

X with X = B1, B2, L
or S.

2.3.1. Energy flow and the response of the plate
The bending wave energy flow in the x direction can be generally written as [27]

JB =
1
2
Re
(
iω
[
w θ ∂w

∂y

]∗⎡⎣S +
∂V
∂y

M
V

⎤⎦) , (7)

where ∗ denotes complex conjugation and θ =
∂w
∂x as mentioned in Section 2.1. Now, introducing w = e−iµBx−ikyy+iωt into

q. (7) yields

J±B1,2 =
1
2
Re
(
iω
[
1 −iµ±

B1,2
−iky

]∗
⎡⎢⎢⎣S±

1,2 +
∂V±

1,2
∂y

M±

1,2

V±

1,2

⎤⎥⎥⎦) . (8)

urthermore, S±

1,2, M
±

1,2 and V±

1,2 are given by Eqs. (2) and (3) with ∂
∂x and ∂

∂y replaced by −iµ±

B1,2
and −iky, respectively.

As mentioned in Section 2.2.1, propagating incoming or outgoing waves are those with real wave number components
µ±

B1
giving rise to an energy flux to or away from the junction, that is, J±B1 < 0 or J±B1 > 0, respectively. If the µ±

B1,2
are

omplex with Re
(
µ±

)
̸= 0, then the outgoing or incoming waves oscillate while decaying or increasing exponentially
B1,2

6
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Fig. 6. Schematic of an L-junction. The angle ψ2 here is set to 90◦ . Red and blue lines represent the fibre direction of the plates. The local angles
of orientations φ1 and φ2 are both set to 45◦ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

along the x axis. This leads to energy transport as well, that is, the energy flux J±B1,2 ̸= 0. This phenomenon is caused by
the fact that the direction of the decaying/increasing wave is not aligned with the x direction [28,29]. Consequently, a
wave shape projection along the x axis can appear to be oscillating, (see for example Fig. 8 in [28]).

Once the appropriate bending wave number roots µ+

B1,2
are defined, the out-of-plane response of the plate can be

xpressed as

w+
= α+

B1
e−iµ+

B1
x−ikyy+iωt

+ α+

B2
e−iµ+

B2
x−ikyy+iωt

, (9)

where the constants α+

B1
and α+

B2
are amplitudes of the outgoing bending waves.

For the in-plane motion, the response of the plate takes the form

u = Φue−iµx−ikyy+iωt ,

v = Φve−iµx−ikyy+iωt .
(10)

he dispersion relations (5) can be solved for the unknown µ yielding a characteristic equation with four roots µ±

L,S that
epresent incoming and outgoing quasi-longitudinal and quasi-shear waves, here denoted again as L and S, respectively.
imilar to the out-of-plane case, a valid outgoing solution produces a positive energy flow in the x direction if the
orrespondent wave is propagating, or it is associated with complex-valued µ+

L,S with Im(µ+

L,S) < 0, that is, the
orrespondent wave is exponentially attenuating as x → ∞. Note that purely imaginary solutions of Eq. (5) µ+

L,S , which
are present in specially orthotropic plates, produce no energy flow since the corresponding waves are evanescent.

The energy flow in the x direction of in-plane waves can be generally written as

J =
1
2
Re
(
iω
[
u v

]∗ [N
T

])
. (11)

ntroducing Eqs. (10) into Eq. (11) yields the energy flow expressions for the longitudinal and shear wave modes, that is,

J±L =
1
2
Re
(
iω
[
1 Φ±

L

]∗[N±

L

T±

L

])
, J±S =

1
2
Re
(
iω
[
Φ±

S 1
]∗ [N±

S

T±

S

])
, (12)

ith

Φ±

L =
Q16 µ

±
2

L + ky µ±

L (Q12 + Q66)+ Q26k2y

−Q66 µ
±

2

L − 2Q26 ky µ±

L − Q22k2y + ρω2
, Φ±

S =
Q16 µ

±
2

S + ky µ±

S (Q12 + Q66)+ Q26k2y

−Q11 µ
±

2

S − 2Q16 ky µ±

S − Q66k2y + ρω2
, (13)

here
[
1 Φ±

L

]T and
[
Φ±

S 1
]T are the eigenvectors in the Φu,Φv basis corresponding to the wave numbers µ±

L and
µ±

S for incoming and outgoing modes. N±

L,S and T±

L,S are given by substituting ∂
∂x and ∂

∂y by −iµ±

L,S and −iky in Eqs. (2),
espectively.

The in-plane response of the plate can be written as[
u+

+

]
= α+

L

[
1
+

]
e−iµ+

L x−ikyy+iωt
+ α+

S

[
Φ+

S

]
e−iµ+

S x−ikyy+iωt , (14)

v ΦL 1

7
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here α+

L and α+

S are the amplitudes of outgoing quasi-longitudinal and quasi-shear waves. This particular choice of
igenvectors ensures the correct representation of the displacement field in the case of ky = 0 and Q16 = Q26 = 0, that
s, when the incident plane wave vector is directed normal to the junction and the plate is specially orthotropic. Then

+

L = Φ+

S = 0, and the response of the plate can be expressed as

u+
= α+

L e−iµ̃+

L x+iωt

v+
= α+

S e−iµ̃+

S x+iωt .
(15)

he values µ̃+

L =
√
ρω2/Q11 and µ̃+

S =
√
ρω2/Q66 agree then with the wave numbers of purely longitudinal and shear

waves, respectively, and the in-plane response of the plate consists of purely longitudinal and shear displacements in the
x and y directions.

2.3.2. The dynamic stiffness matrix
As described in Section 2.3, we are interested in the local dynamic stiffness matrix of the semi-infinite plate j that

relates boundary forces with boundary displacements produced by plane waves of the form e−iµx−ikyy+iωt . Using Eq. (9),
one can define the out-of-plane displacement w+ and rotation θ + at the common intersection ‘‘e’’ at x = 0 in terms of
the amplitudes α+

B1
and α+

B2
, that is,[

w+
e

θ +
e

]
=

[
1 1

−iµ+

B1
−iµ+

B2

] [
α+

B1

α+

B2

]
e−ikyy+iωt . (16)

he elastic tractions involving the out-of-plane displacement can be written in terms of the same amplitudes α+

B1
and α+

B2
y inserting Eq. (9) in Eqs. (2), that is,

S+

e =

2∑
m=1

(
D11 iµ+3

Bm − 4D16 µ
+2
Bm iky − (D12 + 4D66) iµ+

Bmk
2
y − 2D26 ik3y

)
α+

Bme
−ikyy+iωt ,

M+

e =

2∑
m=1

(
−D11 µ

+2
Bm − D12 k2y − 2D16 µ

+

Bm ky
)
α+

Bme
−ikyy+iωt .

(17)

inally, combining Eq. (16) with Eqs. (17) yields a relation between the elastic tractions S+
e , M+

e and the edge displacement
+
e and rotation θ +

e at x = 0, that is,[
S+
e

M+
e

]
=

[
−D11 iµ+

B1
µ+

B2

(
µ+

B1
+µ+

B2

)
+4D16 µ

+

B1
µ+

B2
iky−2D26 ik3y D11 µ

+

B1
µ+

B2
− D12k2y

−D11

(
µ+2

B1
+µ+2

B2
+µ+

B1
µ+

B2

)
+4D16

(
µ+

B1
+µ+

B2

)
ky+(D12+4D66) k2y −D11i

(
µ+

B1
+µ+

B2

)
−2D16iky

]T[
w+

e

θ +
e

]
.

(18)

q. (18) describes the part of the dynamic stiffness matrix for out-of-plane displacement w+
e and rotation θ +

e .
Next, we consider the corresponding part for in-plane motion. The in-plane displacements u+

e and v+
e at the shared

dge are given as[
u+
e

v+
e

]
=

[
1 Φ+

S

Φ+

L 1

][
α+

L

α+

S

]
e−ikyy+iωt . (19)

ow, inserting Eq. (14) into Eqs. (2) yields a relation between the in-plane tractions and the amplitudes of the outgoing
n-plane waves, that is,[

N+
e

T+
e

]
=−ih

[
Q11µ

+

L +Q12Φ
+

L ky+Q16

(
Φ+

L µ
+

L +ky
)

Q11Φ
+

S µ
+

S +Q12ky+Q16

(
µ+

S +Φ+

S ky
)

Q16µ
+

L +Q26Φ
+

L ky+Q66

(
Φ+

L µ
+

L +ky
)

Q16Φ
+

S µ
+

S +Q26ky+Q66

(
µ+

S +Φ+

S ky
)][α+

L

α+

S

]
e−ikyy+iωt . (20)

liminating α+

L and α+

S in Eq. (20) using Eq. (19) gives[
N+
e

T+
e

]
=−ih

[
cQ11

(
µ+

L −Φ+

L Φ
+

S µ
+

S

)
+Q16

(
cΦ+

L

(
µ+

L −µ+

S

)
+ky

)
cQ16

(
µ+

S −Φ+

L Φ
+

S µ
+

L

)
+cQ11Φ

+

S

(
µ+

S −µ+

L

)
+Q12ky

cQ16
(
µ+

L −Φ+

L Φ
+

S µ
+

S

)
+Q66

(
cΦ+

L

(
µ+

L −µ+

S

)
+ky

)
cQ66

(
µ+

S −Φ+

L Φ
+

S µ
+

L

)
+cQ16Φ

+

S

(
µ+

S −µ+

L

)
+Q26ky

][
u+
e
v+
e

]
,

(21)

here c =
1

1 −Φ+

L Φ
+

S

. The matrix in Eq. (21) is the part of the dynamic stiffness matrix related to in-plane motion.

We now define the elastic tractions and displacements at the junction edge as F = (Ne, Te, Se,Me)
T and U =

(ue, ve, we, θe)
T and write

F+
= K+U+ (22)
j j j

8
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or the relation between the displacements of an outgoing wave at the edge of plate j and the associate forces, where
he 4 × 4 dynamic stiffness matrix K+

j is a block matrix defined through Eqs. (18) and (21). An associated stiffness
atrix K−

j relating displacements of the incoming waves U−

j with forces F−

j can be obtained from K+

j by changing the
orresponding wave number components µ+ by µ− in the sub-matrices related to in-plane and out-of-plane motion. In
hat follows, it will also be important to consider the relation between displacements and mode amplitudes. We denote
±

=
(
α±

L , α
±

S , α
±

B1
, α±

B2

)T as the vector of amplitudes of incoming or outgoing modes, and write

U±

j = H±

j A±

j (23)

n the edge of plate j, where H±

j is the block-diagonal matrix obtained from Eqs. (16) and (19). Here, H−

j is obtained from
+

j by changing the wave number components µ+ by µ−. In the next step, we will derive the global dynamic stiffness
atrices of each plate junction and associated scattering matrices using force equilibrium conditions and continuity
onditions at the junction.

.4. Reflection and transmission at plate junctions

Assuming no external forces are applied at the junction, one can write the force equilibrium and continuity conditions
t an edge shared between N plates as

N∑
j=1

Rj Fj = 0, (24)

Uj = RT
j U for all j = 1, . . . ,N, (25)

here Fj = F+

j +F−

j and Uj = U+

j +U−

j is the total force and displacement at the edge of plate j. U denotes the displacement
ommon to all plates (continuity) and Rj is the rotation matrix from the local coordinate system

(
xj, yj, zj

)
to the global

oordinate system
(
xg, yg, zg

)
, that is,

Rj =

⎡⎢⎢⎣
cosψj 0 − sinψj 0

0 1 0 0
sinψj 0 cosψj 0

0 0 0 1

⎤⎥⎥⎦ . (26)

ewriting Eq. (24) using Eq. (22), we obtain
N∑
j=1

Rj K+

j U+

j = −

N∑
j=1

Rj K−

j U−

j (27)

⇒

N∑
j=1

Rj K+

j Uj =

N∑
j=1

Rj
(
K+

j − K−

j

)
U−

j . (28)

sing Eq. (25), we can now deduce the common displacement vector U as a function of the incoming waves, that is,

U =

⎛⎝ N∑
j=1

Rj K+

j RT
j

⎞⎠−1
N∑

n=1

Rn
(
K+

n − K−

n

)
U−

n . (29)

nserting Eq. (29) into the N matrix Eqs. (25), one obtains for m = 1, . . . ,N

U+

m = RT
m

⎛⎝ N∑
j=1

Rj K+

j RT
j

⎞⎠−1 (
N∑

n=1

Rn
(
K+

n − K−

n

)
U−

n

)
− U−

m , (30)

nd writing this in terms of the mode amplitudes using Eq. (23), we obtain

A+

m =
(
H+

m

)−1 RT
m

⎛⎝ N∑
j=1

Rj K+

j RT
j

⎞⎠−1 (
N∑

n=1

Rn
(
K+

n − K−

n

)
H−

n A−

n

)
−
(
H+

m

)−1 H−

mA−

m. (31)

Eq. (31) gives relations between incoming and outgoing wave mode amplitudes and can be interpreted as defining the
atrix elements of a 4N × 4N scattering matrix S. We are in general interested in the energy scattering coefficients, that

nm
( )
s, the ratio between outgoing and incident energy fluxes. Writing the matrix elements of S in the form sij ω, ky for an

9
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Fig. 7. Energy scattering coefficients of an L-joint for various incident waves as a function of wave number component ky at a frequency 3000 Hz.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ncoming wave of type i in plate n and a reflected or transmitted wave of type j in plate m (at angular frequency ω and
ave number component ky), we obtain for the associated energy fluxes

tnmij
(
ω, ky

)
=

⎧⎪⎨⎪⎩
J+j,m
J−i,n

|snmij |
2 if wave j is propagating.

0 otherwise.
(32)

Here, J−i,n (J+j,m) is the incoming (outgoing) energy flux of type i (j) on plate n (m) given by either Eq. (12) for in-plane
odes or Eq. (8) for out-of-plane motion. It is noted here that the sum of energy scattering coefficients over the outgoing
odes equals one, that is,

N∑
m=1

∑
j

tnmij = 1 (33)

ue to energy conservation. We will use this relation as a check in the examples below.

. Computational results

In the following, we will consider some particular examples in more detail, consisting of orthotropic plates joined
ogether in the form of L and T junctions. Only the scattering coefficients for the propagating waves will be shown, and
e denote the bending waves as B (instead of B1) for simplicity. The evanescent contributions are of course considered

n full in the actual computations.
10
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Fig. 8. Energy scattering coefficients of an L-joint for an incident bending wave as a function of frequency for a wave number component ky = 5m−1 .

3.1. Two orthotropic plates joined at a right angle

We first go back to the example considered in Section 2.2.2, that is, two identical orthotropic plates with principal
material axes rotated by 45◦ with respect to the local coordinate systems, that is, φ1 = φ2 = 45◦ in Fig. 6. We fix the inter-
plate angle to ψ = 90◦, that is, the plate configuration has the form of an L-junction. Fig. 7 shows the energy scattering
coefficients for this L-junction for incident bending, shear or longitudinal modes as a function of the wave number
component ky at 3000 Hz. Note, that reflection and transmission coefficients of bending, shear and longitudinal waves
without mode conversion (having the form t ijXX with X = B, L, S and i, j = 1, 2) are symmetric around ky = 0 whereas
coefficients describing scattering between different modes, that is, t ijXX ′ with X ̸= X ′ are non-symmetric. The phenomenon
of mode conversion is observed only between certain critical values: for an incoming bending mode, these are the ky
values between ±9.3m−1 for reflected or transmitted shear waves and ±6m−1 for longitudinal waves. Furthermore, for
7m−1

≤ |ky| ≤ 7.8m−1, mode conversion to the second shear wave (labelled S2) can occur. For example, the incoming
shear wave power P with ky ∼ 7.2m−1 is reflected back with 0.6P , converted to the second shear wave with 0.1P and
reflected/transmitted as a bending wave, both with 0.1P , see Fig. 7(b). These critical values of ky can be determined from
the dispersion relations (4) and (5) and correspond to the wave numbers kmax

L , kmax
S and k∗

S2
shown in Fig. 5.

Note that the energy scattering coefficients sum up to one according to Eq. (33) which is used here as a check of
consistency of the results (dashed blue line in Fig. 7(a), not shown in the other sub-figures). If the wave number component
ky is fixed, and the frequency is varied instead, one can find critical frequencies at which mode conversion phenomena
start to occur. For example, in the case of an incident bending wave with ky = 5m−1, outgoing shear waves become
propagating at f ≥ 1601 Hz, whereas outgoing longitudinal waves become propagating for f ≥ 2453 Hz, see Fig. 8. Mode
conversion from incident bending wave to the second shear wave S2 occurs in the frequency range f ∈ [1956, 2133] Hz.

3.2. Stiffened orthotropic plates

In this example, we consider an orthotropic plate with a stiffener, that is, an infinite orthotropic plate together with
an orthotropic plate of finite length fixed at 90◦, see Fig. 9. The intersection (or common edge) has thus the form of a
T-junction with angles ψ1 = 0◦, ψ2 = 180◦ and ψ3 = 90◦. All material properties of the plates are the same as in the
case of the L-junction. The local angles of orientation of principal material axes are φ1 = 45◦, φ2 = −45◦ and φ3 = 45◦,
where φ2 is given a value of −45◦ to ensure that plates 1 and 2 form a uniform ground plate. The length of the third
plate is denoted as l, and the ground plate is assumed to be infinite in both x directions. We are interested, how the
nergy flux generated by an incident wave in the ground plate is partitioned between reflected and transmitted outgoing
nergy fluxes again in the ground plate. Since the third plate is of finite length, waves being transmitted into the stiffener
eflect at the free boundary and become incident on the junction again leading to further reflection, transmission and
ode conversion. This leads to resonance effects. Our description in terms of local scattering matrices relating incoming

o outgoing modes at junctions as derived in Section 2 provides an ideal framework to handle such multi-reflection and
ransmission phenomena. Details of the derivation are referred to Appendix B.

In Fig. 10, we display the energy scattering coefficients as a function of the wave number component ky for a stiffener
f length l = 30 cm with an incident bending wave at frequency 3000 Hz. Critical angles for longitudinal and shear
aves remain the same as discussed in the previous section and only bending waves can propagate for |ky| > 9.3m−1.

One observes resonant behaviour of the reflected and transmitted energy flux coefficients t11BB and t12BB at certain ky values,
which can be related to the resonance condition (B.10). At resonance, an incoming wave is either totally transmitted or
reflected, see Fig. 10.
11
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Fig. 9. Schematic of the stiffened plate. The angles ψ2 and ψ3 here are set to 180◦ and 90◦ , respectively. Red, blue and green lines represent the
ibre direction of the plates. The local angles of orientations φ1 and φ3 are both set to 45◦ , whereas φ2 is equal to −45◦ . (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Energy scattering coefficients of a stiffened plate for an incident bending wave as a function of wave number component ky at a frequency
3000 Hz.

A similar phenomenon can be observed for the case of fixed wave number component ky and varying frequency. Fig. 11
resents the frequency dependency of the energy scattering coefficients for ky = 0, that is, for the case of normal incidence
f the wave vector k. Several things are noted here. Firstly, at ky = 0 mode conversion is possible at all frequencies and
ignificant coupling between modes is present near resonance frequencies, such as 2600 Hz and 3900 Hz. Secondly, at
esonance frequencies, especially in the band [100−2000] Hz, bending waves behave similarly as in the case of varying ky,
hat is, waves are mainly reflected or transmitted except for some coupling to shear and longitudinal waves. The energy
cattering coefficients sum up to one in the absence of damping as expected.

. Conclusion

The paper describes in all generality, how to compute energy scattering coefficients of structural junctions made up of
hin orthotropic plates in the line junction approximation. Expressions quantifying transmission and reflection coefficients
s a function of the frequency and the wave number component ky have been derived. Interesting phenomena such as

negative refraction and negative group velocity have been observed and analysed. The scattering coefficients have been
computed explicitly for examples consisting of two and three orthotropic plates joined together in an L and T geometry.
12
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Fig. 11. Energy scattering coefficients of a stiffened plate for an incident bending wave as a function of frequency at a wave number component
ky = 0.

The special case of a stiffened orthotropic plate has been considered. The method gives for the first time a detailed recipe
for computing scattering coefficients for the generic case of an arbitrary number of orthotropic plates connected at a
junction without restrictions on the angles at which the plate meet or the orientation of the principal axis of individual
plates. This information is of importance for energy flow methods such as SEA or DEA. A detailed comparison with a
numerically exact computation going beyond the line junction approximation based on the Wave Finite Element Method
has been partly presented in [21].
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ppendix A. Plane stress-reduced stiffnesses

The plane stress-reduced stiffnesses Qij of a generally orthotropic plate in Eqs. (1) can be related to the stiffness
oefficients Q̄ij of the same plate described in a local coordinate system aligned with the principal material coordinate
xes as follows:

Q11 = Q̄11 cos4φ + 2
(
Q̄12 + 2Q̄66

)
sin2φ cos2φ + Q̄22 sin4φ,

Q12 =
(
Q̄11 + Q̄22 − 4Q̄66

)
sin2φ cos2φ + Q̄12

(
sin4φ + cos4φ

)
,

Q22 = Q̄11 sin4φ + 2
(
Q̄12 + 2Q̄66

)
sin2φ cos2φ + Q̄22 sin4φ,

Q16 =
(
Q̄11 − Q̄12 − 2Q̄66

)
sinφ cos3φ +

(
Q̄12 − Q̄22 + 2Q̄66

)
sin3φ cosφ,

Q26 =
(
Q̄11 − Q̄12 − 2Q̄66

)
sin3φ cosφ +

(
Q̄12 − Q̄22 + 2Q̄66

)
sinφ cos3φ,(

¯ ¯ ¯ ¯
) 2 2 ¯

( 4 4 )
(A.1)
Q66 = Q11 + Q22 − 2Q12 − 2Q66 sin φ cos φ + Q66 sin φ + cos φ .

13
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Fig. B1. A schematic view of a stiffened plate in the xz plane. Here, a−

ij represent the amplitudes of incoming waves, and a+

ij , the amplitudes of
utgoing waves.

Fig. B2. Energy scattering coefficients of a T-joint for an incident bending wave as a function of wave number component ky at a frequency 3000 Hz.

ere, φ is the angle of rotation of the principal material coordinate system with respect to the local coordinate system of
he plate. Furthermore, Q̄ij can be expressed in terms of the material constants as follows:

Q̄11 =
Ex

1 − νxyνyx
, Q̄22 =

Ey
1 − νxyνyx

, Q̄12 = νxyQ̄22, Q̄66 = Gxy, νyx = νxy
Ey
Ex
. (A.2)

ote, that for φ = πn/2, n ∈ Z, the plane stress-reduced stiffnesses Q16 and Q26 are equal to zero, the corresponding
lates are called specially orthotropic.

Appendix B. Stiffened plate

We give here the details for computing the scattering coefficients for a plate with a stiffener attached, as shown in
Fig. 9. We are interested in the reflection and transmission coefficients between points 1 and 2 in Fig. B1 taking into
account that the excitation can also enter the stiffener at point 4 and being reflected at the free end at point 3. In order
to compute the energy scattering coefficients in Eq. (32) relating plate one and two, one needs to compute the associate
scattering matrix seff from the scattering matrix at junction 4, but including waves travelling into the stiffener and being
reflected at the end of the stiffener at 3. Fig. B2 presents the energy scattering coefficients for an incoming bending wave
at junction 4 in the case of semi-infinite T-plate, that is, without including the contribution of waves that being reflected
at point 3.
14
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Following the treatment in [30] extended to the elastodynamic case in [31], we now introduce the amplitudes of
incoming and outgoing waves at each of the plate segments shown in Fig. B1, that is,

a±

ij =

⎡⎢⎢⎢⎣
a±

L

a±

S

a±

B1

a±

B2

⎤⎥⎥⎥⎦
ij

i, j ∈ (1, 2, 3, 4) , (B.1)

here the subscript ij is related to a wave travelling from i to j as shown in Fig. B1. Following this notation, we write the
wo scattering matrices at the junction 4 and free edge 3 obtained from Eq. (31) as⎡⎢⎣a+

41

a+

42

a+

43

⎤⎥⎦ = S(4)

⎡⎢⎣a−

14

a−

24

a−

34

⎤⎥⎦ =

⎡⎣ρ11 τ21 τ31

τ12 ρ22 τ32

τ13 τ23 ρ33

⎤⎦
⎡⎢⎣a−

14

a−

24

a−

34

⎤⎥⎦ , a+

34 = S(3)a−

43 = ρ̃33a−

43 , (B.2)

here the sub-matrices in (B.2) contain the scattering coefficients snmij from plate n to m of mode type i to j in the form

ρnn =

⎡⎢⎢⎢⎣
s nn
LL s nn

LS s nn
B1L

s nn
B2L

s nn
LS s nn

SS s nn
B1S

s nn
B2S

s nn
LB1

s nn
SB1

s nn
B1B1

s nn
B2B1

s nn
LB2

s nn
SB2

s nn
B1B2

s nn
B2B2

⎤⎥⎥⎥⎦ , τnm =

⎡⎢⎢⎢⎣
s nm
LL s nm

LS s nm
B1L

s nm
B2L

s nm
LS s nm

SS s nm
B1S

s nm
B2S

s nm
LB1

s nm
SB1

s nm
B1B1

s nm
B2B1

s nm
LB2

s nm
SB2

s nm
B1B2

s nm
B2B2

⎤⎥⎥⎥⎦ . (B.3)

Note that ρ̃33 denotes the reflection matrix at node 3 and is different from ρ33 corresponding to reflection of waves on
node 4 incoming from plate 3. The amplitudes a+

43 of outgoing waves are related to the amplitudes a−

43 of the incoming
waves, that is,

a−

43 = P a+

43 , P = diag
(
e−iµ+ l

)
, (B.4)

where µ+
=
[
µ+

L µ+

S µ+

B1
µ+

B2

]T
and diag

(
e−iµ+ l

)
represents the diagonal matrix with exp(−iµ+l) on its diagonal

see [30,31]). The same applies for the pair of amplitudes of outgoing and incoming waves a+

34 and a−

34, that is,

a−

34 = P̃ a+

34 , P̃ = diag
(
e−iµ̃+ l

)
. (B.5)

ote that µ̃+ are computed in the local coordinate system of semi-infinite plate with the free edge. Its principal material
xes must be rotated to −φ3 to ensure that waves with amplitudes a−

43(34) and a+

43(34) have the same angle of propagation.
This entails µ̃+

̸=µ+ for φ3 ̸= 0◦ or ±90◦, and consequently, P̃ ̸= P for such cases. Now, by eliminating a+

43 and a−

34 in
B.2), one can derive the effective scattering matrix which links amplitudes of outgoing waves a+

41 and a+

42 with incoming
aves a−

14 and a−

24. Considering, for example, the third row of the matrix equation in (B.2), that is,

a+

43 = τ13a−

14 + τ23a−

24 + ρ33a−

34. (B.6)

y using (B.4), (B.5) and the second equation in (B.2), one obtains

a−

34 = P̃ ρ̃33P a+

43, (B.7)

hich combined with (B.6) and (B.7) yields the following matrix equation for a−

34:(
I − P̃ ρ̃33P ρ33

)
a−

34 = P̃ ρ̃33P
(
τ13a−

14 + τ23a−

24

)
. (B.8)

inally, the effective scattering matrix seff is obtained as

seff =

⎡⎢⎣ρ11 + τ31

(
I − P̃ ρ̃33P ρ33

)−1
P̃ ρ̃33P τ13 τ21 + τ31

(
I − P̃ ρ̃33P ρ33

)−1
P̃ ρ̃33P τ23

τ12 + τ32

(
I − P̃ ρ̃33P ρ33

)−1
P̃ ρ̃33P τ13 ρ22 + τ32

(
I − P̃ ρ̃33P ρ33

)−1
P̃ ρ̃33P τ23

⎤⎥⎦ . (B.9)

he effective energy scattering coefficients tnmij , n,m ∈ {1, 2} can be computed from seff using Eq. (32). Note that P̃ ρ̃33P ρ33
is sub-unitary due to the sub-unitarity of ρ33, and seff in (B.9) is thus not singular.

A resonance condition can be formulated, that is, resonances are attained at wave numbers ky and frequencies ω values
giving rise to local minima of⏐⏐⏐det(I − P̃ ρ̃33P ρ33

)⏐⏐⏐ . (B.10)
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