Supporting Information

High yield and packing density activated carbon by one-step molecular level activation of hydrophilic pomelo peel for supercapacitors

Yisen Li,1,= Zishu Sun,1,= Lu Zhang,1,= Yongshun Zou,1 Niumeng Yao,2 Wen Lei,1 Tingting Jiang,1 Yao Chen,1,2 George Zheng Chen1,3,4,*

1 The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
2 Library, Wuhan University of Science and Technology, Wuhan, 430081, China
3 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG2 7RD, United Kingdom
4 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo China, Ningbo 315100, China

=Y. Li, Z. Sun and L. Zhang contributed equally.
*Electrochemical Society Member.
Email: y.chen@wust.edu.cn (Y. Chen)
Figure S1. IR spectrum of pomelo peel.

Figure S2. GCD curve of commercial Ni(OH)$_2$ at 1 A g$^{-1}$. 
Figure S3. XPS spectrum of CAC-1.

Figure S4. GCD curve of CAC-1 at 1 A g\(^{-1}\).
Figure S5. GCD curves of CAC-1, CAC-1a and CAC-1b at 1 A g$^{-1}$.

Figure S6. Digital photo of CAC-1 electrode with PTFE binder.
Figure S7. Cyclic performance of CAC-1 supercapacitor with thin electrodes at 2.5 and 1 A g$^{-1}$.

Figure S8. CVs of CAC-1 supercapacitor with thick electrodes in KOH electrolyte.
Figure S9. CVs of CAC-1 in EMIMBF$_4$ in three-electrode cell at 10 mV s$^{-1}$.

Figure S10. CVs of CAC-1 supercapacitor with thick electrodes in EMIMBF$_4$ with cell voltage of 3.5 V.
Figure S11. GCD curves of CAC-1 supercapacitor with thick electrodes in EMIMBF$_4$ with cell voltage of 3.5 V.

Figure S12. Cyclic performance of CAC-1 supercapacitor with thin electrodes in EMIMBF$_4$ at 1 A g$^{-1}$ with cell voltage of 3.5 V.
Figure S13. CVs of CAC-1 supercapacitor with thick electrodes in EMIMBF$_4$ with cell voltage of 3 V.