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Abstract. Ageing infrastructure is a global concern, and current structural health monitoring 

practices are coming under review. With a view to streamline the visual bridge inspection process, 

we assess the classification performance of two Deep Neural Networks, VGG16 and MobileNet, on 

a challenging dataset of over 70,000 unprocessed bridge inspection images of three defect 

categories: corrosion, crack, and spalling. Grad-CAM “heatmap” visualisations on VGG16 

predictions provide a coarse localisation of the defect region and some insight into the functioning 

of the network. Similar performance is attained on MobileNet, for applications where speed or 

computational cost is a consideration. We conclude that with further optimisation this approach 

could have an application in automated defect tagging. 

1. Introduction 

Civil engineering infrastructure asset owners such as Highways England and Network Rail in 

the UK require asset condition information for several purposes: planning maintenance 

interventions, assessments of load capacity, exploring trends, leaving audit trails and measuring 

contracted services (Bennetts et al., 2018). Current practice in bridge inspection produces data 

with significant uncertainty, and the metrics used in defect description are not optimal for life-

cycle analysis of deterioration and cost. 

The primary source of bridge condition data are visual bridge inspections (Bennetts et al., 

2016). Since these are numerous, costly, and may require disruption to the transport network, 

it is imperative that the data collected be of high quality and suitable for analysis to obtain the 

information required. As the value of data is increasingly recognised, data collection and 

recording processes are coming under review to enable meaningful condition information to be 

derived and represented, and to then be adequately exchanged between all parties involved. 

For the purposes of this paper, only visible defects will be considered, mainly: cracks, corrosion 

and spalling. The current practice for monitoring defects which have no visible signs (such as 

chloride migration, carbonation, alkali-silica reaction) is to carry out appropriate intrusive 

testing. This is planned and managed separately from visual inspections and is beyond the scope 

of this paper. 

2. Background: Computer Vision and Deep Neural Networks for Bridge Inspections 

Koch et al. (2015) reviewed Computer Vision based defect detection and condition assessment 

of concrete and asphalt infrastructure. It was concluded that at the time it was not possible to 

detect, measure, assess and document defects to provide an integrated and comprehensive 

approach for inspections. More recently, Azimi et al. (2020) have reviewed deep learning 

approaches in structural health monitoring more generally. Among the challenges identified in 

the literature to date, the following two emerge as the most pertinent:  

• the lack of standardisation in identifying relevant defect parameters to comprehensively 

represent defect information, and 
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• the absence of publicly available large datasets to leverage supervised learning methods 

for the robust detection and classification of several infrastructure defect types. 

This paper is intended to respond to both above issues, with a long-term view towards an 

automated end-to-end digital bridge inspection process, and eventual digital twinning of 

infrastructure assets. 

Liang (2019) provide a successful precedent for use of VGG16 (Simonyan and Zisserman, 

2015) initialised on ImageNet (Russakovsky et al., 2015) for bridge damage classification. 

Class Activation Mapping (Selvaraju, 2017) has been applied to VGG16 initialised on 

ImageNet by Perez et al. (2019) to classify and locate building defects. In this paper, we adopt 

a similar approach to treat images of bridge defects. 

3. Methodology 

3.1 Image Data 

A sample of over 200,000 images of bridge defects was obtained from Highways England for 

the work presented in this paper. In contrast to many publications to date, the number of images 

stated here refers to distinct photographs of bridge defects taken on site, which have not been 

cut up to generate multiple images from a single photograph. Neither have they been cropped 

to place the object of interest (the defect region in our case) in a prominent position within the 

image, which would require manual processing of a similar level of labour intensity as bounding 

box annotations. 

The scenes have complex backgrounds and both object position and scale vary (see Figure 2 in 

Section 5). This, along with other inconsistencies (in lighting and weather conditions, camera, 

angle, resolution, shadows, background and foreground noise, surface markings, weather-

induced surface wetness, irrelevant surface alterations such as small holes or stains) makes this 

dataset an important step towards developing a benchmark dataset for Computer Vision 

methods applied to bridge defects. 

For any neural network architecture to be usable in real on-site conditions, it must be robust 

against the noise and variations (as described above) in the images it receives for making 

predictions. For those who seek to add value to the Civil Engineering industry, therefore, it is 

imperative to seek methods which move away from the clean laboratory image data and towards 

accommodating the real complex noisy image data encountered by bridge inspectors on site. 

To the best of the authors’ knowledge, this is the first time a dataset of this size and complexity 

has been examined. Inevitably, even an optimally designed methodology will require such a 

volume of data which is sufficient to overcome the noise. Given the complexity of the features 

which are sought to be learned, we expect dataset sizes to grow beyond what can be reasonably 

hand-crafted, even for the simplest case of image-level labels only. To pave the way for 

handling such datasets, the approach presented in this paper is focused on removing as much 

human input from data pre-processing as possible.  

3.2 Data Set 

The dataset consists of 200,852 photographs, tagged with one of a total of 161 possible defect 

types. Direct classification on the 161 labels is both undesirable and unlikely to succeed, as the 

classes are heavily imbalanced and, in many cases, represent overlapping concepts. Therefore 
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we decided to create supergroups comprising several classes and selected three of them as a 

first attempt at an already challenging classification problem (Table 1). 

Table 1: 3-class supergroup dataset to train VGG16 and MobileNet classifiers. No data augmentation. 

Defect class Number of images Data volume, GB 

Corrosion 23,474 4.1 

Crack 26,775 5.2 

Spalling 19,837 3.3 

Total 70 086 12.6 

The chosen supergroups represent defect types that ultimately are of highest interest in industry: 

corrosion, crack and spalling. For the remaining classes (excluding corrosion, crack and 

spalling), Figure 1 gives an indication of the numbers of images per class, for those classes 

which contain 1,000 or more images. 

 

Figure 1: Number of images of other defect types 

3.3 Neural Network Architecture 

The VGG16 (Simonyan and Zisserman, 2015) was used following the example of previous 

applications of this architecture to building and bridge defects. In the spirit of searching for the 

simplest solution which produces predictions of sufficient complexity and accuracy, we also 

used MobileNet (Howard et al., 2017). The complexity and performance indicators of VGG16 

and MobileNet are compared in Table 2, where the top-1 and top-5 accuracy refer to the model's 

performance on the benchmark ImageNet (Russakovsky, 2015) validation dataset (not on the 

dataset presented in this paper). Depth refers to the topological depth of the network, and 

includes activation layers, batch normalisation layers etc. 

Table 2: Comparison of complexity and performance of VGG16 and MobileNet. 

Architecture Size, MB Top-1 Accuracy Top-5 Accuracy Parameters Depth 

VGG16 528 0.713 0.901 138,357,544 23 

MobileNet 16 0.704 0.895 4,253,864 88 
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3.4 Localisation 

Selvaraju et al. (2017) observe that convolutional layers naturally retain spatial information 

which is lost in fully-connected layers, so the last convolutional layers are expected to have the 

best compromise between high-level semantics and detailed spatial information. Their 

approach, Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any 

target concept (say “corrosion” in a bridge defect classifier) flowing into the final convolutional 

layer to produce a coarse localisation map highlighting the important regions in the image for 

predicting the concept. 

As will be seen in Section 5, this coarse localisation map can provide clues as to the functioning 

of the trained neural network, allowing us to peek into the model which is traditionally 

considered “black box”. Furthermore, Selvaraju et al. (2017) provide successful examples of 

Grad-CAM being used as seed for weakly supervised segmentation, an approach which the 

authors intend to apply to bridge defect images in later work. 

4. Implementation 

Implementation in Python 3.7 using Keras high-level neural network library, which is in turn 

built on TensorFlow 2.3.0 machine learning library, using a CUDA1 10.1 backend and 

CUDNN2 7. During network training, the dataset was randomly split into 80% training and 20% 

validation subsets. 

4.1 VGG16 

The VGG16 was trained using the standard approach of first training the classifier head only, 

and consequently unfreezing all layers (initialised with ImageNet weights). The classifier head 

consisted of four layers, namely, flatten, dense, dropout, dense, comprising 3,232,161 trainable 

parameters. 

Firstly, we used the full dataset of 200,852 images belonging to 161 classes as per the original 

defect type image labels. As expected, this yielded low accuracy (Table 3). Secondly, the 

dominant classes were grouped into a three-class (corrosion, crack, spalling) dataset, transfer 

learned for 5 epochs, and fine-tuned for 10 epochs (Figure 2). The latter achieves a considerable 

validation accuracy of 0.81. Section 5 provides a discussion of possible sources of errors. 

Table 3: VGG16 training and accuracy. 

Training mode Dataset Epochs Validation accuracy 

Transfer learning Raw, 161 classes 20 0.23 

Fine tuning Raw, 161 classes 10 0.31 

Transfer learning Selective, 3 classes 5 0.71 

Fine tuning Selective, 3 classes 10 0.81 

 

 

1 https://developer.nvidia.com/cuda-toolkit 

2 https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn_765/cudnn-release-notes/index.html 

https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn_765/cudnn-release-notes/index.html
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                               (a)                                                                        (b)                                        

Figure 2: VGG16 learning curves for the 3-class dataset (train loss in blue and validation loss in 

orange). (a) transfer learning for 5 epochs; (b) fine-tuning for 10 epochs 

In Table 4 True Positives (along the diagonal in blue) indicate the numbers of correct 

predictions for each of the three classes, corrosion, crack, and spalling. False Positives (upper 

right in orange) tell us, for example, that 391 images whose true classification is “crack” were 

predicted to be “corrosion”. An example of False Negatives (lower left in pink): 226 whose true 

classification is “corrosion” and whose predicted classification was “crack”. 

Table 4: VGG16 confusion matrix. 

True class: corrosion crack spalling 

Prediction:    

corrosion 4199 391 648 

crack 226 4387 787 

spalling 269 577 2532 

Accuracy (the total number of correct predictions divided by the total number of predictions 

made) alone can be an overly optimistic indicator of network performance. Table 5 provides a 

summary of more robust machine learning classification metrics. It is desirable to attain high 

precision, while low recall is acceptable, in applications where it is not important to identify all 

positive instances, but it is important that when an instance is identified as positive, this is with 

high certainty. High recall, on the other hand, corresponds to capturing the maximum number 

of true positives, and false positives are well tolerated (low precision). Ideally we would like 

both precision and recall to be high, and the F1 score combines both into a single metric. 

Weighted average can be very different from macro average if the network is simply guessing 

by predicting the majority class(es). In our case, all values are similar to the accuracy score, 

confirming that this is a valid indicator of performance. “Support” is simply the number of 

images of a given class which were used for validation. 
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Table 5: VGG16 classification metrics.  

 Precision Recall F1 score Support 

corrosion 0.80 0.89 0.85 4,694 

crack 0.81 0.82 0.82 5,355 

spalling 0.75 0.64 0.69 3,967 

accuracy   0.79 14,016 

macro average 0.79 0.78 0.78 14,016 

weighted average 0.79 0.79 0.79 14,016 

4.2 MobileNet 

MobileNet was designed as an attempt to reduce the intensive computational burden of earlier 

deep network architectures. It comprises a large number of narrow layers, and can be tuned to 

achieve a compromise between predictive performance and speed. Its name stems from its 

intended use on mobile devices, on which it is often important to create a fast prediction without 

heavy power consumption. 

Where VGG16 provides an indication of the ultimate potential of a state-of-the-art neural 

network for the purpose of bridge defect classification, MobileNet gives a realistic prospect of 

what could be achievable in an eventual deployed application on a portable mobile device. For 

the purpose of transfer learning, we remove the top fully-connected layer and replace it with a 

simple network initialised with random weights (average pooling followed by four dense layers, 

comprising 164,611 trainable parameters). 

Figure 3 shows the train and validation loss at each epoch. Tables 6 and 7 show the performance 

statistics after 15 epochs (5 for transfer learning). The performance in almost every metric is 

below that of VGG. However this is attained using considerably less computing power. 

 

                                (a)                                                                        (b) 

Figure 3: MobileNet learning curves for the 3-class dataset, during transfer learning (a) and during 

fine-tuning (b). 
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Therefore, while we focus primarily on VGG, we consider that smaller architectures such as 

MobileNet have high potential, particularly for problems in which latency or power 

consumption are limiting factors. 

Table 6: MobileNet confusion matrix. 

True class: corrosion crack spalling 

Prediction:    

corrosion 3718 315 411 

crack 446 4406 1215 

spalling 511 446 2313 

Table 7: MobileNet classification metrics. 

 Precision Recall F1 score Support 

corrosion 0.84 0.80 0.82 4,675 

crack 0.73 0.83 0.83 5,315 

spalling 0.68 0.59 0.63 3,939 

accuracy   0.75 13,929 

macro average 0.75 0.74 0.74 13,929 

weighted average 0.75 0.75 0.75 13,929 

5. Results 

While classification accuracy and other metrics stated in Section 4 give some positive indication 

of the neural network performance, a more informative discussion of results lies in close 

inspection of classification predictions and their associated Grad-CAM visualisations. All 

examples given here have been drawn from the validation subset of the VGG16 transfer learned 

for 5 epochs and fine-tuned for 10 epochs on the 3-class dataset. 

Unlike semantic segmentation, which requires a class label for every pixel in every image for 

training, classification requires only one label for the entire image. By extracting features 

common to images belonging to the same class, the trained network can not only make class 

predictions for a given image, but also give some indication of which pixels are more or less 

pertinent to that prediction. In Figure 4(a) the image is correctly classified as belonging to the 

“corrosion” class, and the main corroded region is correctly located. This remains true for 

scenes with complex backgrounds, such as Figure 4(b), where the network largely ignores the 

irrelevant buildings, trees, fences etc. 

Many images in the dataset contain signs of multiple defects, presenting a challenge for 

prediction accuracy assessment. Grad-CAM visualisations in Figure 5 illustrate that while 

multiple defect features may be correctly identified, the image has a single “correct” class 

against which to score the prediction. 
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Original Image Prediction Original Image Prediction 

 

 

 

 

(a) (b) 

Figure 4: VGG16 trained on corrosion, crack, and spalling classes. Grad-CAM visualisations reveal 

those regions of the image which have been the most pertinent for the classification process. 

Original Image Top prediction Second prediction 

 

Ground truth: corrosion 

 

Prediction 1: corrosion 

Probability: 1.000 

 

Prediction 2: crack 

Probability: 0.000 

Figure 5: VGG16 trained on corrosion, crack, and spalling classes. Signs of multiple defects on the 

same image are correctly located. 

We gain further insight into the inner workings of the network by observing the examples given 

in Figure 6. The top row contains examples of correctly predicted image classes, however the 

heatmaps clearly show that the classifier relied on component features (namely the geometry 

of the bolt and the steel connection) rather than the defect features (such as the colour and 

texture typical of corrosion) to make its prediction. This can easily happen where there is 

positive correlation between a component type and a defect type (for example, if the dataset 

contains many images of corroded bolts, the network will tend to classify any image containing 

any bolt as “corrosion” without any signs of corrosion itself). This type of error can be 

overcome by balancing the dataset (for example, by including images of non-corroded bolts). 

Another likely source of errors is poor correspondence between the image scene and the ground 

truth label. Taking the examples along the bottom row of Figure 5, we see that the network is 

correctly identifying the crack and spalling features and hence predicting “crack” and 

“spalling”. However this prediction will be scored as erroneous during validation since the 

ground truth labels are “corrosion” in both cases. This situation may arise when the inspector 

is not able to gain better access to the defect and has to take the photograph from an unsuitable 

position, or when the ground truth classification is given according to the underlying causes 

rather than the visual cues (as per the bottom right example in Figure 6). Moreover, the ground 

truth classification may sometimes be simply incorrect, for example, due to human error. 
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Original Image Prediction Original Image Prediction 

 

 

 

 

 

 

 

 

Figure 6: VGG16 trained on corrosion, crack, and spalling classes. Top row: images are correctly 

classified using incorrect features. Bottom row: defect features are correctly identified, however the 

predictions are scored as “incorrect” due to poor ground truth labels. 

6. Conclusions and Future Work 

In this paper we presented an application of deep learning to bridge defect image classification 

using big data acquired from bridge inspections in the UK over the past 20 years. Established 

machine learning metrics were used for rigorous performance assessment. The achieved 

accuracy is significant, however further optimisation of network architecture and training 

methodology remain possible. 

Finally, we provide a reference comparison to a smaller neural network (MobileNet), 

demonstrating that similar performance it attainable, where speed or computational cost is a 

consideration. 

The following improvements are recommended:  

• Where a strong positive correlation between a structural component type and defect type 

exists, include non-defect (normal) component images in the dataset to prevent 

classification by component features rather than defect features.  
• Create partially annotated datasets to guide the feature-learning process.  
• Set aside a test dataset of images which the neural network sees neither during training 

nor during validation to enable complete network performance assessment.  
• Guard against overfitting, for example with regularisation, or dropout.  

Another meaningful supergroup could be created of other, smaller, defect classes with strong 

visual cues (for example, graffiti, vegetation, water-related staining). Since these classes 

contain relatively few images (around 1,000 per class) compared to the dominant classes of 

corrosion, crack and spalling, isolating them would create a more balanced dataset. 

We conclude that this would be a valid approach in the larger framework of automating selected 

tasks in the visual bridge inspection process, and could be used as a means of automatic defect 
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tagging and coarse localisation in a 2D images, which could in turn be extended to a 3D 

environment. 
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