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Abstract—In this paper, a new approach for the design of the 

droop coefficient in the droop control of power converters using 

the artificial neural network (ANN) is proposed. In the first 

instance, a detailed more electric aircraft (MEA) electrical 

power system (EPS) circuit model is simulated in a loop using 

different combinations of the converters droop coefficients 

within a design space. The inaccurate output DC currents 

sharing of the converters due to the influence of the unequal 

cable resistance are then obtained from each of the simulations. 

The data generated is then used to train the NN to be a dedicated 

surrogate model of the detailed MEA EPS simulation. Thus, for 

any user-defined desired current sharing among the converters 

that are within the design space, the proposed NN can provide 

the optimal droop coefficients. This NN approach has been 

verified through simulations to ensure accurate current sharing 

between the converters as desired. Hence, can be used in the 

design of the droop coefficient to enhance the performance of 

the conventional droop control method.  
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Cable resistance, More electric aircraft, Data generation 

I. INTRODUCTION 

More electric aircraft (MEA) is regarded as one of the 
major trends for future aircraft. One of the promising and 
potential DC electrical power system (EPS) architecture for 
the MEA application is as shown in Fig. 1 [1, 2]. It consists of 
three parallel-connected generators, i.e., a low-pressure 
generator (LPG), a high-pressure Generator (HPG) and an 
auxiliary power unit, a common HVDC bus that is powered 
by the three parallel-connected generators and through which 
power is distributed in the system and loads. The LPG and the 
HPG are the main generators and are assumed to be permanent 
magnet synchronous generators (PMSGs)). The main 
generators obtain power from the aircraft engine through LP 
and HP shafts respectively as shown in Fig. 1. The APU 
provides power to the aircraft in an emergency. Pulse-width 
modulated active front-end controlled rectifier unit (AFE 
CRU) are employed to control and regulate the output voltage 
of the three variable frequency generators as shown in Fig. 1. 
The loads are made up of resistive and constant power loads 
(CPLs). The MEA EPS can be regarded as a typical DC 
microgrid operating in the islanding mode. 

The need to have the sources work together in a 
coordinated manner and share the load power demand 
accurately according to their respective power capacity 
especially under heavy load condition cannot be 
overemphasized. This is to ensure that the sources are not 
overloaded, thermally stressed and saturated [3]. Also, 
accurate load sharing among the sources could decrease the 

DC bus voltage drop and improve the power quality of the 
MEA EPS. 
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Fig. 1: A typical multi-source DC-grid in the MEA 

Load sharing among the sources can be realized using the 
droop control method. However, the influence of unequal 
cable resistance on accurate load sharing is one of the 
limitations of the conventional droop control method. The 
error in load sharing becomes alarming when there is a huge 
variation between the corresponding subsystems cable 
resistances (i.e. huge variation in cable lengths) [3]. Generally, 
when high droop coefficients are set for the converters, this 
helps to achieve better load sharing performance but results in 
poor regulation of the DC bus voltage, particularly under 
heavy load condition. Conversely, when the droop coefficient 
set for the converters are small, the regulation of the DC bus 
voltage is enhanced while the load sharing accuracy is 
degraded [4]. Hence, there is a trade-off between the voltage 
regulation and accurate load sharing in the droop controlled 
DC microgrid. It can therefore be said that the choice of the 
droop coefficient plays a vital role in ensuring improve load 
sharing and DC bus voltage regulation in a system controlled 
using the droop control method.  

A unified compensation framework that utilizes the 
common load condition to compensate for the load sharing 
errors is proposed in [5]. However, it is difficult to select the 
compensation coefficient. In [4], an enhanced droop control 
method (referred to as the line drop compensator) for accurate 
load sharing and voltage regulation is proposed for isolated 
and interconnected DC microgrids. However, the realization 
of accurate load sharing is entirely dependent on the accurate 
measurement of the corresponding subsystem cable 
resistance. The estimation of the cable resistance is prone to 
errors due to its variation with temperature. Hence, this 
approach has a practical limitation. Furthermore, any error in 
the measurement of the cable resistance will lead to an error 
in load power sharing and poor DC bus voltage regulation. 
Besides, it is difficult in practice to know the value of the 
corresponding subsystems cable resistance and most of the 



 

 

methods used to estimate the cable resistance require the use 
of many resources, time-consuming and are based on the 
injection of perturbations to the EPS. This has the potential of 
degrading the power quality of the EPS and increase the cost 
[6]. 

The conventional procedure used in power electronics 
system (PES) design is usually time-consuming and involves 
many iterative steps. Furthermore, in some cases, it depends 
on the experience of an expert and intuition without adequate 
data for reference. In this regard, the artificial intelligence (AI) 
method is here employed as a surrogate model to serve as a 
replacement of the original PES to reduce the design time [7, 
8]. Therefore, this paper proposes a possible solution to the 
problem of inaccurate current sharing in the DC microgrid due 
to the influence of unequal line impedance by employing the 
artificial neural network (ANN) in the design of the droop 
coefficient in a fast and accurate manner for improved load 
sharing. By exploring all the combinations of the droop 
coefficients in the design space, the desired NN can be trained 
efficiently after data generation. Thereafter, the trained neural 
network is used to predict the optimal droop coefficients 
combination that will ensure an accurate/desired current 
sharing as defined by the user. Also, this approach has the 
advantage of not knowing the corresponding subsystem cable 
resistance. Since the method is implemented offline, it does 
not impose an additional computation burden on the system.  

The rest of the paper is structured as follows. In section II 
the system architecture and its control model using the 
conventional voltage-mode droop control scheme are 
introduced. Section III discusses the proposed NN-based 
droop coefficient design approach for improved load sharing. 
The validation of the design approach is provided in Section 
IV. Section V concludes the paper. 

II. SYSTEM ARCHITECTURE 

A potential parallel-connected multi-source DC grid for 
the future MEA EPS architecture is shown in Fig. 2. This 
topology is made up of three sources (G1-3), three converters 
(AR1-3) and a CPL. The generators are assumed to be PMSGs. 
The main DC bus of the MEA EPS is 270 V and includes a 
capacitor bank Cb. 
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Fig. 2: A Potential Multi-source DC-grid for Future MEA EPS 

 
The two-level voltage source converter (VSC) in Fig. 2 is 

controlled using the voltage-mode droop control scheme for 
current sharing among the converters in the MEA EPS as 
shown in Fig. 3. Only one source (i.e. PMSG) is shown in Fig. 
3 to conserve space. 
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Fig. 3. Voltage-mode droop control scheme of a PMSG fed by an active 
rectifier (AR) in the MEA EPS 

A. Analysis of the Conventional Droop Control Method 

In the voltage-mode droop control scheme, the measured 
branch output DC current is used to generate the reference 
voltage, and this is expressed in (1). 
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where i =1,2,3 is the number of subsystems, Vdc
* is the rated 

DC bus voltage (270 V), Vdci
* is the calculated reference 

voltage for each subsystem converter and Idci is the output 
current of each converter in the system, kdi is the droop 
coefficient. The current sharing ratio among the sources (we 
are considering three sources) in steady-state is as expressed 
in (2), provided the effect of cable impedance on load sharing 
is ignored. 
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where kdi are the coefficients of the droop gain. The droop 
coefficients are usually selected to be proportional to the 
generators ratings to ensure an accurate current sharing, 
based on the assumption that the same nominal voltage Vdc

* 
is applied to each of the droop characteristics. 

When the voltage drop on the cable (in Fig. 3) is 
considered and the voltage control dynamics are neglected, the 
steady-state DC bus voltage can be expressed as in (3). 
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where Vb is the main DC voltage, Ri is the resistance of the 
individual cable connecting the ith source to the load. Hence, 
the current sharing among the sources, assuming they are 
supplying together can be expressed as in (4). 
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It can be deduced from (4) that the cable resistance and 
droop gain will have an impact on the power sharing ratio of 
the sources in steady states. By increasing the droop gain or 
cable resistance, the power output of the sources will be 
decreased. Furthermore, when the droop gain and cable 
resistance are similar, the accuracy of the power sharing 
among the sources will be degraded due to the existence of the 
cable resistance. 



 

 

To achieve accurate load sharing, these two approaches 
are usually employed. The first approach is to increase the 
droop coefficient much higher than the cable resistance 
(kdi≫Ri) such that the influence of the cable resistance on 
accurate load sharing becomes negligible. However, this will 
leads to poor voltage regulation and may affect the system’s 
stability [5] and power quality [9]. Also, in low-voltage DC 
microgrids including the MEA EPS, the cable resistance 
cannot be simply ignored [4, 5]. This is because the line 
impedance in the low voltage DC microgrid is predominantly 
resistive [10]. Moreover, the maximum droop gain that can be 
set is bounded by the maximum allowable DC bus voltage 
deviation and the full load current of the power converter [4] 
as expressed in (5).  

 �
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�+
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where the power converter’s full load current is represented 

as iF, kdmax is the maximum allowable droop gain and ∆Vbmax 
is the maximum allowable deviation of the DC bus voltage. 
The second approach has to do with the compensation or 
modification of the droop gain according to the 
corresponding subsystem cable resistance as proposed in [4, 
11] and referred to as the line drop compensator in [4]. In [4], 
the effective droop gain modification is realized through the 
addition of a compensation term to each of the subsystem 
(locally) using an active signal as shown in Fig. 4. This 
control method works in the same way as a virtual negative 
resistance to cancel the effect of the unequal cable resistance 
on accurate current sharing through compensation. Further 
details about the line drop compensator method can be found 
in [4]. However, since the method will be used to validate the 
proposed NN-based droop coefficient design, a brief 
mathematical analysis of the method will be provided. 

B. Line Drop Compensator Method 

When the influence of cable resistance is considered, this 
causes the effective droop gain to increase from kdi in (2) to 
kdi+Ri in (4), hence, leading to poor regulation of the DC bus 
voltage. On the other hand, accurate load sharing is not 
realized due to the unequal cable resistances connecting the 
parallel-connected DC sources to the load. The unequal cable 
impedance can be attributed to the difference in the relative 
distance (geographic location) between the DC sources and 
the load in the microgrid. Therefore, when the compensation 
term is added, and the voltage control dynamics are neglected, 
the new steady-state DC bus voltage is expressed in (6). 
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where Rcompi is the gain of the feedback proportional 
controller for the ith controller as shown in Fig. 4. Therefore, 
from (6), the new or modified droop gain due to the 
compensation term (RcompiIdci) and the new current sharing 
ratio for the voltage-mode droop control method is as 
expressed in (7) and (8) respectively. 
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where kdinew is the modified (new) droop gain due to the 
introduction of the compensation term. Fig. 4 shows the 
control block diagram of the implementation of the line drop 
compensator in the MEA EPS for the voltage-mode droop 
control scheme.  

From (9), it can be observed that the gain of the 
proportional controller in each subsystem must be set equal to 
the estimated cable resistance of the corresponding subsystem 
to achieve accurate load sharing. Since accurate load sharing 
is dependent on accurate estimation of the cable resistance, an 
error in the cable resistance estimation will lead to an error in 
load sharing [2]. To find a solution to this problem, an 
intelligent approach that requires no knowledge of the 
corresponding subsystem cable resistance is proposed and 
because results can be obtained accurately and very fast. 
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Fig. 4. Voltage-mode Line Drop Compensation Droop Control Scheme of a 

PMSG fed by an Active Rectifier in the MEA EPS 

III. PROPOSED ANN-BASED DROOP COEFFICIENT DESIGN 

APPROACH 

A. The methodology of the Proposed Approach 

Three steps are involved in the design of the droop 
coefficient for improved current sharing. A flow chart 
showing the design steps to be followed in the NN-based 
droop coefficient design approach is shown in Fig. 5. 

Simulate the detailed MEA EPS model for N
i
 

combinations of kdi and extract Idci. Idci = F(kdi)

Development of the ANN (define the network type, 

number of layers and neurons, training algorithm). 

Adjust these parameters for better training.

Train the ANN based on the Input and Target data, 

then check the training performance. kdi = F(Idci)

Validation 

Successfull?

Verify the predicted optimal 

droop coefficient in simulation.

Idcidesired = F(kdipredicted)

NO

YES

Define the desired current sharing and use the 

trained ANN to predict the optimal droop 

coefficient. kdipredicted  = F(Idcidesired)

Define the range and sampling step of 

the parameter kdi [N].

Data Generation

ANN Training

Prediction  
Fig. 5: Flowchart for the design of the Droop Coefficient using the ANN 

approach 

The first step involves the collection of data from a 
detailed simulation of the MEA EPS model shown in Fig. 3 
for every combination of the design parameter. The data 



 

 

obtained is then used to train the NN to become a surrogate 
model of the MEA EPS model in the second step. After 
training, based on a user-defined desired current sharing, the 
optimal design parameter (in this paper, the droop coefficient) 
that will yield the desired current sharing can be predicted by 
the trained NN in a fast and accurate manner. It is noteworthy 
to mention that the data generation and training of the NN 
steps need to be carried out only once for the detailed system 
model parameters. 

B. Procedure for Data Generation 

The detailed MEA EPS system control model which is 
used as the case study in this paper (shown in Fig. 3) was 
developed using the MATLAB SIMULINK©. The 
simulations are carried out using three sources (G1-3) as shown 
in Fig. 2. A CPL of 40 kW was applied to the MEA EPS at 
0.04 s during data generation. The simulation was set to run 
for 0.06 s. The MEA EPS and equivalent DC cable parameters 
used in the simulation are as shown in TABLE I and II 
respectively.  

TABLE I.  ELECTRICAL POWER SYSTEM PARAMETERS 

Parameter Symbol Value 

Rated Voltage of main DC Bus 	
�
∗  270 V 

Local Shunt Capacitor 7� 1.2 mF 

Main DC bus capacitor 7� 0.6 mF 
Converter 1 Droop gain �
� 1/4.250 
Converter 2 Droop gain �
� 1/4.250 

Converter 3 Droop gain �
� 1/4.250 

TABLE II.  EQUIVALENT DC CABLES PARAMETERS 

 Resistance (��)-
(0.6 mΩ/m) 

Inductance (8�) 
-(0.2 µH /m) 

Length (m) 

Cable 1 3 mΩ 1 µH 5  

Cable 2 30 mΩ 10 µH 50 

Cable 3 15 mΩ 5 µH 25 

The sweeping range and sampling step of the droop 
coefficient (kd1, kd2, kd3) used in the simulation are presented 
in TABLE III. The sweep range is selected based on the 
converters conventional droop gain settings for the desired 
current sharing ratio (1:1:1) shown in TABLE I. The droop 
coefficient sweep range is selected to cover ±10% of the 
conventional droop coefficients to ensure a feasible design 
space with high fidelity. 

TABLE III.  DESIGN OF THE SWEEP VALUES 

Variable Range Sampling 
Step 

Number of 
Samples 

�
� [1/3.825 1/4.675] 0.085 11 x 11 x 
11 = 1331 �
� [1/3.825 1/4.675] 0.085 

�
� [1/3.825 1/4.675] 0.085 

It can be observed from TABLE III that 11 settings for 
each of the design variable were tested, thereby making a total 
of 1331 combinations of the droop coefficient. Multiple 
simulations are carried out for every combination of the droop 
coefficients kdi (kd1, kd2, kd3) and the output DC current Idci (Idc1, 
Idc2, Idc3) of the converters are obtained and recorded from each 
of the simulations. It is important to mention that the output 
DC currents of the converters are not in the desired sharing 
ratio (1:1:1) due to the influence of the cable resistance. The 
multiple simulations were carried out in a loop and the process 
was automated with the aid of MATLAB codes developed and 
run from a MATLAB script file. Furthermore, the simulations 
were carried out on a standard personal computer with a quad-
core processor. The simulations result were obtained within 

around 4 hours. The data generated from the simulations are 
used as the input-target sample data used to train the NN. At 
this data generation step, the relationship between the droop 
coefficients and the output DC currents from the converters 
can be represented as in (10). 

 : = ;1(�) ↔ (�
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where kd1, kd2, and kd3 are the droop coefficients combinations 
within the design space used for the multiple simulations and 
Idc1, Idc2, and Idc3 are the output of the converter DC currents 
obtained from each of the simulations.  

C. Structure and Training of the ANN 

In this paper, the feedforward neural network (FFNN) 
structure is selected to train the NN due to the static 
relationship between the input and output data [12]. Users do 
not need to specify the functional relationship between the 
model inputs-outputs because the powerful FFNN will learn it 
automatically by using only several internal training 
parameters (i.e. weights and bias). A detailed description of 
the FFNN can be found in [13]. A very important factor in the 
training of the neural network is the selection of the optimal 
number of neurons. The neurons present in each layer process 
the information they received from the layer before them. In 
this paper, the algorithm used in training the NN (Levenberg-
Marquardt method) and the training process are implemented 
in MATLAB’s Neural Network Toolbox. 

The NN structure is made up of three layers with 3 neurons 
in the input layer, 11 neurons in the hidden layer and 3 neurons 
in the output layer as shown in Fig. 6. At this training stage, 
the relationship between the droop coefficients and the output 
DC current shared among the converters is represented as in 
(11). 
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Fig. 6: Structure of the three-layer FFNN which serves as a surrogate model 

of the MEA EPS model shown in Fig. 3. The internal weights and bias 
terms are not included for simplicity. 

 

It is important to mention that the choice of the number of 
neurons used in the hidden layer(s) to train the NN has a 
significant impact on the performance of the NN (overfitting 
or underfitting). As a rule of thumb, it is recommended that 
one starts with a relatively small number of neurons and then 
increase it gradually based on the observed training error [7]. 
This is a trial-and-error process and can be carried out very 
fast since the training can be completed within a few seconds 
[14, 15]. In this paper and for the three sources MEA EPS used 
as a case study, the 11 neurons selected in the hidden layer of 
the FFNN structure used for training provides a very good 
match between the droop coefficient combinations used as 



 

 

input to the detailed simulation model and the NN model 
prediction as shown in Fig. 7. Furthermore, the root mean 
squared error (RMSE) is used to validate the performance of 
the NN training. The RMSE is the absolute difference between 
the output of the trained ANN and the targeted data used in 
training. The closer the RMSE value to zero, the better the 
training of the NN (its predictive capability). TABLE IV 
shows the calculated RMSE. Therefore, this shows that the 
neural network is well trained. 

TABLE IV.  NN PREDICTION ERROR OF THE TRAINING DATA 

Parameters kd1 kd2 kd3 

RMSE 0.031939 0.031005 0.033269 

 

Fig. 7. Comparison between the droop coefficient combinations used as input 
to the detailed MEA EPS model and the NN model prediction 

The NN was trained with the output DC currents of the 
converters recorded from each of the multiple simulations as 
inputs and the droop coefficient combinations as the target 
outputs. After training, the trained NN can be used to predict 
the optimal droop coefficient combination that will yield the 
desired accurate current sharing. The predicted optimal droop 
coefficient combination can then be used to share the load 
power demand among the generators as desired (defined by 
the user) using the conventional droop control method.  

Therefore, after training, the relationship between the 
predicted optimal droop coefficients and the user-defined 
desired output DC current sharing is represented in (12). 
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IV. APPLICATION AND VALIDATION OF PROPOSED THE 

DESIGN APPROACH IN THE MEA EPS 

Before applying the neural network in the MEA EPS for 
the prediction of the optimal droop coefficient, there is a need 
to first quantify a desired current sharing. This can be easily 
realized following the steps in the flow chart in Fig. 8. The 
general idea is first to find the feasible design space (3D 
intersection) of Idc1, Idc2, and Idc3, then chose the centre value 
as the Idci

desired. 

The following desired output DC current sharing were 
obtained from the quantification process in Fig. 8, Idc1 = 51.82 
(A), Idc2 = 51.82 (A) and Idc3 = 51.82 (A) and the predicted 
droop coefficient combinations by the NN that will yield the 
desired current sharing are kd1

pred = 1/4.1357, kd2
pred = 1/4.6540 

and kd3
pred = 1/4.3495. This has been validated through 

simulation. However, since the line drop compensator will be 

used to validate the proposed method, the current sharing (i.e 
Idc1 = 51.71 (A), Idc2 = 51.71 (A) and Idc3 = 51.71 (A) presented 
in TABLE V) obtained from the line drop compensator is used 
as input to the trained NN.  

Plot the Current Sharing Distribution 

Find the minimum and maximum values of Idci.

(Idc1min, Idc2min, Idc3min), (Idc1max, Idc2max, Idc3max)

Find the minimum of the maximum values of Idci.

 min(Idc1max, Idc2max, Idc3max)

Find the maximum of the minimum values of Idci.

max(Idc1min, Idc2min, Idc3min)

Idcidesired = mean(max(Idc1min, Idc2min, Idc3min), 

min(Idc1max, Idc2max, Idc3max)). Adjust Idcidesired  if 

necessary.

End

Use as Input to the trained ANN to predict the 

droop coefficient.

kdipredicted  = F(Idcidesired)

Ranges 

Intersection 

Idcdesired

Current Distribution

Verify the predicted droop coefficient in 

simulation.

Idcidesired = F(kdipredicted)

Good match 

Idcdesired ? 

Verification

 

Fig. 8: Quantifying the Desired Current Sharing 

The trained NN is then used to predict the optimal droop 
coefficients combination that will ensure these desired output 
DC currents sharing among the converters. The predicted 
optimal droop coefficients by the NN are kd1

pred = 1/4.3099, 
kd2

pred = 1/4.8705 and kd3
pred = 1/4.5387. The compensated 

droop coefficients obtained using the line drop compensator 
are kd1

new = 1/4.3049, kd2
new = 1/4.8711 and kd3

new = 1/4.5394. 
The approximate values of these droop coefficients are as 
presented in TABLE V. Thus, for any user-defined current 
sharing that is within the feasible designed space of the droop 
coefficients used in training the NN, the NN can predict the 
optimal droop coefficients that will yield the desired current 
sharing.  

The performance of the proposed NN-based droop 
coefficient design approach is compared to the line drop 
compensator droop control method in [4] and the conventional 
droop control method through simulation in MATLAB 
SIMULINK. The simulation parameters for the comparison 
are the same as those shown in  TABLE I and TABLE II. A 
CPL of 20 kW was applied to the detailed MEA EPS 
simulation model at 0.04 s and increased by steps of +10 kW 
at 0.05 s, and 0.054 s during the simulation. The simulation 
results obtained for the current/power sharing between the 
three generators using the three methods are as summarized in 
TABLE V. Fig. 9 (a), (b) and (c) also show the simulation 
results for the output DC currents sharing when the three 
methods are implemented. Fig. 9 (d) shows the comparison of 
the DC bus voltage regulation when the three methods are 
implemented. 

It can be seen from TABLE V that the current sharing ratio 
among the three converters in steady-state using the 
conventional droop control methods is 1:0.898:0.952. The 
inaccurate current sharing in the conventional droop control 
methods is due to the influence of the cable resistance. On the 
other hand, the line drop compensation droop control method 
and the proposed NN-based droop coefficient design approach 
can achieve the desired sharing ratio of 1:1:1 as shown in 
TABLE V. The little error in the proposed method could be 
attributed to the choice of the number of neurons in the hidden 
layer. The proposed method has a better performance when 
compared to the conventional droop control method; 



 

 

moreover, it is also able to achieve accurate current sharing 
without knowing the corresponding subsystem cable 
resistance, unlike the line drop compensator droop control 
method. This priority of NN is the main motivation of this 
study, which can quickly find the desired droop coefficients 
for load sharing based on the sample data collected from a 
simulation loop, i.e. with no need for detailed information and 
substantial derivations.  

TABLE V.  SUMMARY OF SIMULATION RESULTS AT 0.054 S 

Conve
ntional 
 

kd1 kd2 kd3 Idc1 Idc2 Idc3 

1/4.25 1/4.25 1/4.25 54.61 49.05 51.99 

Line 
Drop  

kd1
new kd2

new kd3
new

 Idc1
new Idc2

new Idc3
new 

1/4.30 1/4.87 1/4.54 51.71 51.71 51.71 

ANN kd1
pred kd2

pred kd3
pred

 Idc1 Idc2 Idc3 

1/4.30 1/4.87 1/4.54 51.74 51.70 51.70 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

                              
Fig. 9: Simulation Results for Desired Current Sharing Ratio (1:1:1) (a) 

Conventional Droop Control Method (b) Line Drop Compensation Droop 
Control Method and (c) Proposed ANN-based Design Approach (d) DC 

bus voltage regulation 
 

Furthermore, in the three methods, the DC bus voltage 
decreases as the load current increases. When a constant 
power load of 40 kW was applied to the system at 0.054 s, the 
main DC bus voltage dropped to 257 V (Vbconv) and 257.8 V 
(VLineDrop and VbANN) from its initial value of 270 V due to the 
increase in the load current for all the three methods, as shown 
in Fig. 9 (d). However, both the line drop compensation droop 
control method and the proposed NN-based droop coefficient 
design approach can improve the DC bus voltage regulation 
due to the compensation of the cable impedance. 

V. CONCLUSION 

A new artificial neural network-based approach in the 
design of the droop coefficient for improved load sharing in 
the droop control of power converters is presented. After 
training, the NN can be used to predict the optimum droop 
coefficients combinations for any user-defined converter 
output DC currents sharing within the design space in a fast 
and accurate manner. The approach can be applied to the DC 
microgrid for improved load sharing irrespective of the 
variation in the geographic location of the sources (cable 
lengths) from the load. In the case study, the proposed NN 
approach is validated in simulation. Based on that, it is 

discussed and compared to the other two commonly used 
methods at the end.  
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