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Abstract. The understanding of how spatio-temporal patterns of neural activity may arise in the cortex of4
the brain has advanced with the development and analysis of neural field models. To replicate this5
success for sub-cortical tissues, such as the thalamus, requires an extension to include relevant ionic6
currents that can further shape firing response. Here we advocate for one such approach that can7
accommodate slow currents. By way of illustration we focus on incorporating a T-type calcium8
current into the standard neural field framework. Direct numerical simulations are used to show9
that the resulting tissue model has many of the properties seen in more biophysically detailed model10
studies, and most importantly the generation of oscillations, waves, and patterns that arise from11
rebound firing. To explore the emergence of such solutions we focus on one- and two-dimensional12
spatial models and show that exact solutions describing homogeneous oscillations can be constructed13
in the limit that the firing rate nonlinearity is a Heaviside function. A linear stability analysis, using14
techniques from non-smooth dynamical systems, is used to determine the points at which bifurcations15
from synchrony can occur. Furthermore, we construct periodic travelling waves and investigate their16
stability with the use of an appropriate Evans function. The stable branches of the dispersion curve17
for periodic travelling waves are found to be in excellent agreement with simulations initiated from18
an unstable branch of the synchronous solution.19

Key words. Neural field, pattern formation, non-smooth dynamical systems, synchrony, periodic travelling20
waves, Evans function.21
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1. Introduction. There are a zoo of ionic currents that can shape the firing response of23

a single neuron seen in electrophysiological studies, and in particular patch-clamp recordings24

[16]. From a modelling perspective these currents are commonly described using extensions of25

the Hodgkin-Huxley model to include further gating variables for the opening and closing of26

ion channels [13]. The high dimensionality of the resulting point model favours analysis using27

perturbation methods, such as geometric singular perturbation theory [18, 30], and is often28

complemented by numerical bifurcation analysis [24]. This approach does not extend well to29

treating very large networks of synaptically coupled neurons relevant to understanding large30

scale spatio-temporal rhythms seen in brain tissue. Here, mean field type reductions are often31

favoured that ignore or wash out the detailed ionic mechanisms that can sculpt firing patterns.32

This is the basis for many continuum neural field models of cortex where it is typically assumed33

that the firing rate of a population of neurons is a sigmoidal function solely of synaptic activity,34
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and see [7, 4] for an overview of this approach. When this sigmoid is taken sufficiently steep so35

as to be replaced by a Heaviside function, then a plethora of mathematical results for localised36

patterns and waves can be generated, as illustrated in [1, 23, 8, 11]. However, by ignoring any37

possible dependence of firing rate mechanisms on intrinsic ionic currents the standard neural38

field approach cannot be expected to reproduce all biological firing behaviours. A case in point39

is so-called rebound firing, whereby neuronal response to release of hyperpolarising inhibition40

can result in a burst of action potentials [10]. An example of this behaviour can be found in41

thalamo-cortical relay cells that possess T-type Ca2+ channels. When Ca2+ enters the neuron42

through these channels a large voltage depolarisation known as the low-threshold Ca2+ spike43

(LTS) can occur. Conventional action potentials mediated by fast Na+ and K+ currents can44

ride on the crest of an LTS resulting in a burst response (i.e., a tight cluster of several voltage45

spikes). A minimal model of this process comes in the form of a four dimensional ordinary46

differential equation model developed by Wang [29], and its bursting properties have been47

dissected using a fast-slow analysis by Guckenheimer et al. [12]. Numerical simulations of this48

type of spiking model in spatially structured networks with interactions mediated entirely by49

inhibitory synapses demonstrate the possibility of wave progagation [25]. After some model50

reduction (that essentially tracks the LTS, though not the voltage spikes in a burst) these51

waves can be analysed, at least to some extent, using singular perturbation methods [31].52

However, this approach does not easily allow for the determination of solution stability or53

bifurcation. Thus, it is of interest to look for strategies that allow for the successes of the54

neural field approach to incorporate some of the important biology from single cell modelling,55

so as to better understand the dynamics of sub-cortical structures, and in particular the56

thalamus. This is especially important given that this organ is the sensory gateway to the57

cortex [26], and is famed for its role in the generation of thalamo-cortical rhythms [28].58

The approach we advocate for here augments the standard neural field approach with59

the use of a firing rate that is a function of some underlying voltage model. This voltage60

model does not attempt to describe spikes per se, merely the envelopes upon which they61

ride, as is the case for the LTS. This approach has previously been developed in [5] for62

capturing the dynamics of an integrate-and-fire model with a slow T-type Ca2+ current [27],63

yet generalises to include other slow ionic currents [6]. The use of the voltage model means64

that the neural field can include a representation of the gating variables for intrinsic (non-65

spiking) ionic currents. Moreover, in the Heaviside limit many of the mathematical techniques66

for treating standard neural fields can be utilised albeit with one caveat. This being that the67

gating variables be described by a piecewise-linear or piecewise constant nonlinear dynamical68

system. Although a seemingly stringent choice this is reasonable when recognising that many69

of the sigmoidal activation/inactivation curves for gating variables can be approximated this70

way. The simplest choice is to adopt a switch-like perspective, and this is what we pursue here71

by considering activation/in-activation curves to be Heaviside functions. However, this means72

that the dynamics is non-smooth, and one must be careful not to abuse methodologies that73

are valid only for smooth systems. We avoid this potential pitfall by making extensive use of74

saltation operators when treating the stability of network solutions. Crucially, we show how75

the standard derivation of saltation operators, which was originally performed for ordinary76

differential equations [22], can be extended to capture non-local interactions as used in the77

present study. We focus on spatially continuous purely inhibitory neural field models that78
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Time = 5400 ms

Figure 1: Membrane voltage v in mV on a two-dimensional domain of size 0.38 × 0.38 cm
with periodic boundary conditions shown at a fixed time point. Simulations were performed
with 1024 × 1024 spatial grid points. Parameter values as in Table 1. See Additional movie
1a and the higher temporal resolution Additional movie 1b in the Supplementary Material for
further illustration.

support patterned states via rebound. The inclusion of rebound currents can lead to complex79

spatio-temporal patterns as illustrated in Figure 1 and Additional movies 1a and 1b in the80

Supplementary Material. Starting from a bump of elevated synaptic activity in the centre of81

the domain, patterns emerge where spatially separated and distinct parts of the domain fire82

in synchrony. Intriguingly, the patterns generated by the IT current here are qualitatively83

similar to those in [3], which originate from an Ih current. This suggests that generic rebound84

currents may be capable of producing non-trivial patterns. While we focus on the existence85

and linear stability of synchronous oscillations and travelling waves, by way of example, we86

stress that the approach presented here is more broadly applicable.87

In section 2, we introduce a generalised continuum neural field model and describe how it88

can incorporate a slow T-type calcium current. To illustrate the pattern forming properties89

of the model we show numerical simulations for a planar realisation of a purely inhibitory90

network. For sufficiently slow synaptic interactions we see synchronised activity and the91

formation of spatially structured travelling waves. In contrast to patterns seen in standard92

neural field models with short range excitation and long range inhibition, these do not arise93

through a Turing instability and instead depend heavily upon a rebound mechanism. We94

consider the construction and stability of the synchronous solution in section 3, making use of95
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tools from non-smooth dynamical systems. This is used to make predictions about parameter96

regimes for the destabilisation of homogeneous oscillations that can give way to inhomogeneous97

patterned states. Next, in section 4 we turn our attention to periodic travelling waves in one98

spatial dimension and the construction of dispersion curves (speed vs. period). Wave stability99

is determined with the calculation of an appropriate Evans function in section 5, and direct100

numerical simulation suggests that unstable waves lie in the basin of attraction of stable101

periodic travelling waves. Finally, in section 6 we discuss natural extensions to the work in102

this paper.103

2. The model. Neural field modelling has been a mainstay for helping to understand104

cortical activity since its introduction in the 1970s, and see [7] for a recent review of the105

theory and its many applications. In this continuum approach non-local spatial interactions106

are mediated by a connectivity kernel that allows firing rate activity to be transferred from107

one point in the tissue model to another. In their simplest form they are often written as108

integro-differential equations of the type109

(2.1) Qu = ψ, ψ = w ⊗ f.110

Here, u represents the level of synaptic activity and Q is a temporal differential operator that111

describes synaptic processing. The source term ψ is non-local, and is formed from the spatial112

convolution (⊗) of an anatomically motivated kernel function w and the nonlinear firing rate113

function f . The equations of motion (2.1) are typically closed by making the firing rate a114

(typically sigmoidal) function of u so that f = f(u). Although this has proven remarkably115

useful for modelling cortical tissue it cannot hope to model sub-cortical structures like the116

thalamus where intrinsic nonlinear ionic currents can dominate the firing rate response [9]. A117

minimal extension to cortical neural field modelling has been proposed in [5] to accommodate118

slow ionic currents. In this approach the equations of motion are closed in a way that couples119

to the intrinsic gating variables of the relevant ionic currents, which in our case is the slow120

T-type calcium current IT. This is achieved with the inclusion of a new variable that tracks121

the voltage envelope v upon which a burst of spikes can ride and closing the equations with122

the choice f = f(v). The dynamics for v preserves all the slow currents that would drive a123

single neuronal cell and drops those currents responsible for the detailed shape of the action124

potential (fast sodium and potassium currents). This approach has been shown to capture125

the qualitative burst and tonic response properties of thalamic networks built from spiking126

reticular and thalamo-cortical relay cells [15]. Given the mathematical simplicity of this127

modelling approach over other choices, such as biophysical cell based networks [25], this is the128

one we adopt here.129

In more detail consider a continuum description of thalamo-cortical relay cells defined on130

the infinite plane and introduce a voltage envelope variable v = v(r, t), r ∈ R2, t > 0, with131

dynamics132

(2.2) C
∂

∂t
v = IL + IT + Isyn.133

The left hand side of the current balance equation (2.2) is the capacitative current through134

a patch of neuronal membrane with capacitance C, whilst the right hand side describes the135
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three main (non-spiking) currents for leak (IL), T-type Ca2+ channels (IT), and synaptic input,136

respectively (Isyn). The leak current has a simple ohmic form IL = gL(vL−v) for some constant137

leak conductance gL and leak reversal potential vL, whilst the dynamics for IT is governed138

by a gating variable h with IT = gThm∞(v)(vT − v), with gT and vT representing constant139

conductance and reversal potential, respectively. The activation function m∞(v), describing140

a fast switching process with respect to a voltage threshold at v = vh < vL (negative with141

respect to rest), is given simply by m∞(v) = H(v− vh), where H is a Heaviside step function.142

The slower inactivation dynamics for h is governed by143

(2.3)
∂

∂t
h =

h∞(v)− h
τh(v)

.144

Here, h∞(v) = H(vh − v) and τh(v) = τ−h H(v − vh) + τ+
h H(vh − v) so that for v > vh, h145

decays to zero at a rate τ−h and otherwise grows exponentially to one at a rate τ+
h . Thus, if146

the voltage v is ever hyperpolarised below vh by a transient inhibitory synaptic current then147

h will increase though its effect will not be felt in the IT current until inhibition wears off and148

v increases back to rest by crossing through vh from below. Since vT is large and positive149

with respect to rest there is a jump in IT, which will then decay while v remains above vh,150

hence why it is referred to as a rebound current. The positive rebound current drives voltage151

activity up and can lead to an increase or a burst in firing. This is modelled with the simple152

choice f = f(v). In common with standard firing rate models we could take this to be a153

sigmoid, though for reasons of mathematical tractability we shall make the idealised choice154

(2.4) f(v) =
1

τR
H(v − vth).155

Here vth, with vh < vL < vth, is a firing threshold such that above this the tissue fires at a rate156

limited by the refractory time-scale τR and otherwise is quiescent. The model is completed157

with the choice of synaptic dynamics by setting Isyn = gsynu, with u as in (2.1). We stress here158

that gsyn is not a conductance per se, but is rather a signed, strength of interaction. We shall159

focus on a tissue model with inhibitory connections and an off-centre pattern of connectivity160

which has previously been shown to favour smoothly propagating waves in thalamic networks161

[25, 31]. The typical length scale for inhibitory connections in thalamic networks is of the162

order of 0.2mm [25]. We do this by setting163

(2.5) ψ(r, t) =

∫
Γ
w(|r− r′|)f ◦ v(r′, t)dr′,164

with w(r) = w0Ω(r) and165

(2.6) Ω(r) = Ω0 exp(−r/σ)(1− γ cos(ρr/σ)) , 0 < γ ≤ 1 .166

We set w0 = −1 throughout this study and choose Ω0 in such a way that the kernel Ω(r) is167

normalised, i.e.
∫

Γ Ω(|r|)dr = 1. This results in Ω0 = (ρ2 + 1)/(2σ(ρ2− γ + 1)) for Γ = R and168

Ω0 = (ρ2 + 1)2/(2πσ2(ρ4 + (γ + 2)ρ2 − γ + 1)) for Γ = R2. The length scale σ measures the169

spatial decay of thalamic connections, and γ and ρ determine the off-centre and oscillatory170
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Figure 2: Illustra-
tion of the radially
symmetric off-center
connectivity kernel
Ω(r) from (2.6) in
2D.

nature of the kernel, respectively. See Figure 2 for an illustration of the off-centre kernel171

shape. The finite rise and fall time of a post synaptic response is modelled using a second172

order differential operator:173

(2.7) Q =

(
1 +

1

α

∂

∂t

)2

,174

where α−1 is the time-to-peak. The Green’s function of the linear differential operator (2.7)175

is an α-function given by η(t) = α2te−αtH(t). Hence, we can also write the model (2.1) in the176

integral form177

(2.8) u(r, t) =

∫ ∞
0

η(s)ψ(r, t− s)ds.178

Given the large value of vT (of around 150mV with respect to rest) it is practical to make179

the approximation vT − v ' vT and absorb this factor with gT to obtain the reduction180

IT = gThH(v − vh). Note that gT is no longer a conductance as such, but is a scaled, signed181

strength of interaction, with units mV mS / cm2. We note that in the original formulation182

described in [5] that a simplification was made whereby v was replaced by its quasi-steady183

state value (obtained by setting the right hand side of (2.2) to zero). Here, we shall lift this184

restriction (which would require the membrane time-scale C/gL to be much shorter than τ±h185

and α−1, which is often not the case in neurobiology). For the following, it is convenient to186

rewrite the second-order equation (2.1) as two first order equations by introducing the new187

variable188

(2.9) r(r, t) =

(
1 +

1

α

∂

∂t

)
u(r, t) .189
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Time = 11400 ms Time = 13000 ms Time = 14600 ms

Figure 3: Membrane voltage v in mV on a two-dimensional domain of size 0.16 × 0.27 cm
with periodic boundary condition for three different time points. The white hexagon con-
nects the same six spots of large membrane depolarisation, illustrating a moving hexagonal
pattern. Simulations were performed with 512× 886 spatial grid points. Parameter values as
in Table 1 and α = 0.19 and gT = 20.3 mVmS/cm2. See Additional movies 2a and 2b in the
Supplementary Material for further illustration.

In addition to complex spatio-temporal patterns as illustrated in Figure 1, our model also190

supports travelling wave solutions. An example for this is depicted in Figure 3. It shows191

a wave of rigidly moving hexagons, as can be gleaned from the vertical translation of the192

white hexagon, which connects the same six spots of large membrane depolarisation. We refer193

the reader to Additional movie 2a in the Supplementary Material for further illustration and194

Additional movie 2b showing the translation of a unit hexagonal cell down the domain. While195

the travelling wave in Figure 3 emerges from a hexagonally patterned initial condition, we196

also found periodic travelling waves in 2D upon perturbation of a synchronous network state.197

These patterns do not arise via a Turing mechanism from a spatially homogeneous steady198

state. To understand this phenomenon, we will next construct the synchronous network state199

and determine its linear stability. For mathematical tractability, we will present our analysis in200

one spatial dimension, and will not further investigate 2D patterns. To ease the presentation,201

it is convenient to collect the four state variables into a vector z = z(x, t) = (v, u, r, h) with202

x ∈ R. For completeness, we here recapitulate the equations for the spatially extended non-203
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Parameter Value Description

gL 0.035 mS/cm2 Overall leak current conductance strengh
vL −65.0 mV Leak current reversal potential
gT 8.4 mVmS/cm2 Scaled strength of IT interaction
τ+ 100.0 ms IT saturation time constant
τ− 20.0 ms IT decay time constant
vth −35.0 mV Firing threshold
vh −70.0 mV Rebound threshold

α 0.1 ms−1 Synaptic time constant
C 1.0 µF/cm2 Membrane capacitance
τR 5.0 ms Firing strength scaling constant
gsyn 200.0 mVmS/cm2 Scaled strength of synaptic interaction
σ 0.02 cm Length scale of spatial connectivity
γ 1.0 Measure of off-centre connectivity
ρ 2.0 Measure of oscillatory nature in connectivity

Table 1: Standard parameter values. The upper half contains parameter values obtained from
fits with experimental data [27]. The remaining parameter values are specific to the present
study. Note that gT and gsyn are compound parameters measuring the strength of currents.
See text for details.

local model:204

C
∂

∂t
v = IL + IT + Isyn ,(2.10a)205

∂

∂t
u = α(r − u) ,(2.10b)206

∂

∂t
r = α (w ⊗ f(v)− r) ,(2.10c)207

∂

∂t
h =

h∞(v)− h
τh(v)

,(2.10d)208
209

where we used the spatial convolution operator ⊗ introduced in (2.1). Parameter values210

are provided in Table 1.211

3. The synchronous solution. Neural tissue often exhibits synchronous behaviour, and212

this is especially true within the circuitry of the thalamus with a robust post-inhibitory re-213

bound mechanism for the firing of thalamo-cortical relay neurons [17]. We therefore begin our214

analysis by constructing the synchronous solution z(x, t) = z(t) for all x. We find from (2.10)215
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that the dynamics of z(t) is governed by216

d

dt
v = gL(vL − v) + gThH(v − vh) + gsynu ,(3.1a)217

d

dt
u = α(r − u) ,(3.1b)218

d

dt
r = α (w0f(v)− r) ,(3.1c)219

d

dt
h =

h∞(v)− h
τh(v)

.(3.1d)220
221

Here, we used the fact that for the synchronous state, the argument of f in (2.10c) does222

not depend on space and w is normalised to w0 = −1. For later, it is convenient to express223

(3.1) as dz/dt = F (z). Since f , h∞, and τh are piecewise constant functions, the system224

(3.1) is piecewise linear with switching manifolds at v = vh and v = vth. We can therefore225

divide the phase space into three regions: (i) v < vh, (ii) vh < v < vth and (iii) v > vth.226

In each of these regions and hence between switching events, (3.1) can be solved explicitly.227

This is particularly straightforward since (3.1c) and (3.1d) decouple, and the solutions for r(t)228

and h(t) can be used as time-dependent input for (3.1a) and (3.1b), respectively. Figure 4229

shows the resultant synchronous orbit in the (v, h) plane. It is characterised by the times-230

of-flight ∆i, i = 1, . . . , 4, along the four distinct segments of the solution and an initial state231

z(0) = (vh, u0, r0, h0). The a priori seven unknowns — 4 times-of-flight and 3 unknown232

components of z(0) — are determined by demanding continuity, periodicity and a sequence233

of switching events. In other words, solutions in consecutively visited regions are patched234

together in a continuous manner, and so to find the seven unknowns discussed above, we235

impose the seven conditions v(T1) = vth, v(T2) = vth, v(T3) = vh, v(T ) = vh, u(0) = u(T ),236

r(0) = r(T ), and h(0) = h(T ), where Ti =
∑i

j=1 ∆i is the time of the ith switching event and237

T = T4 is the period of the synchronous solution.238

Now that we have constructed the synchronous solution, we proceed by determining its239

linear stability. Consider a perturbation δz(x, t) around the synchronous solution z(t). Since240

the model equations change discontinuously at the switching manifolds, perturbations are241

mapped through the switching manifolds via saltation matrices Ki ∈ R4×4, i = 1, . . . , 4, such242

that δz(x, T+
i ) = Kiδz(x, T

−
i ) where δz(x, T±i ) = limε↘0 δz(x, Ti ± ε). Because of the non-243

local character of the model, we determine the components of Ki via two separate approaches.244

For the rows of Ki that pertain to δv(x, T+
i ), δu(x, T+

i ) and δh(x, T+
i ), we employ standard245

approaches from non-smooth dynamical systems [22]. More precisely, the entries for δv, δu246

and δh correspond to the first, second and fourth row of247

(3.2) Ki = I4 −
(F−i − F

+
i )(∇g)T

(∇g) · F−i
,248

where In denotes the identity matrix in Rn×n and F±i = limε↘0 F (z(Ti±ε)) with F defined as249

after (3.1). The function g parameterises the switching manifolds and is either g(z) = v− vth250

or g(z) = v − vh, which results in ∇g = (1, 0, 0, 0)T in both cases. To populate the third row251
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Figure 4: Synchronous period-1 orbit in the (v, h) plane. Different colours (line styles) indicate
parts of the orbit between switching events. The dotted lines represent the switching manifolds
at vh and vth, respectively. Parameter values as in Table 1.

of Ki and hence the entries that determine δr(x, T+
i ), we start from252

(3.3)
∂

∂t
r(x, t) = α

(
−r(x, t) +

∫ ∞
−∞

w(|x− x′|)f ◦ v(x′, t)dx′
)
.253

Making the ansatz δz(x, t) = δZ(t)eikx and linearising around the synchronous state z(t)254

results in255

(3.4)
d

dt
δr(t) = α

(
−δr(t) + δv(t)f ′(v(t))

∫ ∞
−∞

w(|x|′)e−ikx′dx′
)
.256

Since f ′(v(t)) = δ(v(t)− vth)/τR, we immediately arrive at257

(3.5)
d

dt
δr(t) = α

(
−δr(t) +

δv(t)ŵ(k)

τR

2∑
i=1

δ(t− Ti)
|v̇(Ti)|

)
,258

where259

(3.6) ŵ(k) =

∫ ∞
−∞

w(|y|)e−ikydy,260

represents the Fourier transform of w(x) and the dot denotes differentiation with respect to261

time. In (3.5) we used the fact that for the sequence of switching events chosen above, the262

synchronous voltage v(t) crosses vth at times T1 and T2, respectively. Equation (3.5) shows263

that at the switching times T1 and T2, δr(t) changes discontinuously according to264

(3.7) δr(T+
i ) = δr(T−i ) +

αŵ(k)

τR |v̇(Ti)|
δv(T−i ) , i = 1, 2 .265
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(A) (B)

Figure 5: Real (solid lines) and imaginary (dashed lines) parts of the four eigenvalues of Ψ(k)
as a function of k in blue, orange, green and red. The dotted black line delineates the stability
boundary at |λ|= 1. Parameter values as in Table 1 and (b) gT = 12.6mVmS/cm2, γ = 0.65.

As (3.7) relates perturbations before the switching event at times T−i to the value of δr after266

the switching event at time T+
i , we can read off the components for the saltation matrices K1267

and K2 that pertain to δr. Because of the ansatz for δz(x, t) shown after (3.3), the saltation268

matrices do not depend on space. They correspond to the prefactors of δr(T−i ) and δv(T−i ),269

respectively. Note that at times T3 and T4 the dynamics of r(x, t) changes continuously.270

Hence, the third row of K3 and K4 is identical to that of I4. For convenience, we list all four271

saltation matrices in Appendix A.272

Between switching events, the dynamics of δZ(t) is governed by the linear system dδZ/dt =273

Jiz, where Ji ∈ R4×4, i = 1, . . . , 4, is piecewise constant as shown in Appendix A. Therefore,274

given an initial perturbation δZ(0), the perturbation after one period T equals δZ(T ) =275

Ψ(k)δZ(0) with276

(3.8) Ψ(k) = K4 exp(J4∆4)K3 exp(J3∆3)K2(k) exp(J2∆2)K1(k) exp(J1∆1) .277

We explicitly note the dependence on k to highlight that K1 and K2 are functions of the278

wavenumber k. Hence, the synchronous state is linearly stable if the eigenvalues of Ψ(k)279

(denoted λi, i = 1, . . . , 4) are contained within the unit disk for all k.280

In Figure 5, we plot the eigenvalues of Ψ(k) as a function of k for two different sets281

of parameter values. In Figure 5A one of the eigenvalues is larger than 1 for a subset of282

wavenumbers, indicating that the synchronous solution is linearly unstable in this parameter283

regime. This is confirmed by numerical simulations shown in Figure 6A, where we depict the284

spatio-temporal evolution of δv(x, t). Starting from a perturbed synchronous state with an285

unstable mode with wavenumber k = 106, we find that perturbations grow. For the second set286

of parameter values, we observe in Figure 5B that the eigenvalues remain inside the unit disc287

for all k. This is confirmed in Figure 6B via direct simulation, where an initial perturbation288

around the synchronous state decays.289

The propagator Ψ(k) depends on k only through the Fourier transform ŵ(k) of the con-290

nectivity kernel. Consequentially, changing the kernel may change the linear stability of the291
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(A) (B)

Figure 6: Space-time plot of the perturbation δv(x, t) in mV when synchrony is linearly
unstable (A) and stable (B). Parameters values as in the corresponding panels in Figure 5.

(A) (B)

(C) (D)

Figure 7: Fourier transform (left) and eigenvalues of Ψ(k) as a function of ŵ(k) (right) for
the set of standard parameter values (top) and when gT = 12.6 mVmS/cm2, and γ = 0.65
(bottom).
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Figure 8: Space-time plot of the v component in mV where an eigenvalue of Ψ(k) leaves the
unit disc along the real axis at −1. Parameter values as in Table 1 and γ = 0.55, L = 0.40 cm.

synchronous state. This is illustrated in Figure 7, where we plot the eigenvalues of Ψ(k) as292

a function of ŵ(k) for the two sets of parameter values in Figure 5. If the values of ŵ(k) are293

such that the corresponding eigenvalues are bounded between −1 and 1, then synchrony is294

stable. Therefore, given the Fourier transform of a specific kernel, we only need to consult295

the appropriate plot of λi, i = 1, . . . , 4, as a function of ŵ(k) to infer linear stability of the296

synchronous state. As an example, consider the kernel in (2.6) with Fourier transform297

(3.9) ŵ(k) = −[a(k;σ, 0)− γ

2
(a(k;σ, ρ) + a(k;σ,−ρ))], a(k;σ, ρ) =

2σ

1 + (ρ− kσ)2
.298

For the parameter values as in Figure 5A, we obtain −1 ≤ ŵ(k) ≤ 0.4235 (see Figure 7A). We299

deduce from Figure 7B that synchrony is linearly unstable, which agrees with our previous300

result. On the contrary, the parameter values used in Figure 5B lead to the Fourier transform301

as shown in Figure 7C with −1 < ŵ(k) < 0.182. Then Figure 7D shows synchrony is stable.302

In the case where an eigenvalue of Ψ(k) leaves the unit disc along the real axis at −1303

then the synchronous solution breaks into standing oscillations in which a point in space fires304

on every other cycle, and the pattern on one cycle is shifted half a spatial cycle on the next305

temporal cycle. An example for this is shown in Figure 8. Where an eigenvalue of Ψ(k)306

leaves the unit disc away from ±1 then quasi-periodic, complex periodic, and possibly chaotic307

solutions are expected to appear. We have not seen this type of instability of the synchronous308

state using realistic parameter values.309

When probing the linear stability of the synchronous state in two spatial dimensions, the310

only change to the analysis above is that ŵ(k) is replaced by the two dimensional Fourier311

transform ŵ(k) =
∫
R2 w(r)eik·rdr with k ∈ R2. For the radially symmetric kernel given by312

(2.6) we have that313

(3.10) ŵ(k) = −[a(k;σ, 0)− γRe a(k;σ, ρ)], a(k;σ, ρ) = 2π
1− iρ

σ[k2 + (1− iρ)2/σ2]3/2
,314

This manuscript is for review purposes only.



14 S. MODHARA, Y. M. LAI, R. THUL, S. COOMBES

where k = |k|. Additional movie 3 in the Supplementary Material shows a 2D simulation when315

an eigenvalue crosses the unit disk along the real axis at −1. Analogously to Figure 8, we ob-316

serve a period-doubling pattern, but this time the pattern is only transient before undergoing317

a secondary instability.318

4. Periodic travelling waves. Travelling waves have been seen in a variety of different319

models of cortical and sub-cortical tissue as well as in vitro and in vivo [20]. Notable studies320

of travelling waves in thalamic models can be found in [25], which considers a biophysical cell-321

based model, and [31], which uses geometric singular perturbation methods to determine when322

waves exist. In the following we construct spatially periodic waves in one spatial dimension323

and determine the corresponding dispersion relation. Let ξ = x − ct denote the co-moving324

variable. For ease of presentation, we use the same symbols for the periodic travelling wave325

as for the synchronous solution and differentiate between them through their arguments, i.e.326

z(t) vs z(ξ). Transforming the synaptic variable, u(x, t), into the co-moving frame, using (2.4)327

and (2.5) as well as dropping the time dependence, we find328

(4.1) u(ξ) =
1

τR

∫ ∞
−∞

dyw(|y|)
∫ ∞

0
dsη(s)H (v(ξ − y + cs)− vth) .329

For ξ ∈ [0, φ], where φ denotes the spatial period of the travelling wave in the co-moving frame,330

v(ξ) exhibits an orbit that is topologically identical to the one shown in Figure 4. Hence, we331

can map the switching times Ti to switching events at ξi, i = 1, . . . , 4, in the co-moving frame,332

where ξ4 = φ is the full spatial period, which entails that v(0) = vh. With this choice, the333

Heaviside function in (4.1) only contributes if ξ1 + mφ ≤ ξ − y + cs ≤ ξ2 + mφ with m ∈ Z.334

This reduces (4.1) to335

(4.2) u(ξ) =
1

τR

∫ ∞
0

dsη(s)
∑
m∈Z

∫ ξ−ξ1+cs−mφ

ξ−ξ2+cs−mφ
dyw(|y|) ,336

which can be rewritten as337

(4.3) u(ξ) =
1

τR

∑
m∈Z

∫ ∞
0

dsη(s)W (−mφ+ cs+ ξ),338

where339

(4.4) W (x) =

∫ ξ2

ξ1

dyw(|x− y|).340

It is now natural to express u(ξ) as a Fourier series, which we obtain as341

(4.5) u(ξ) =
∑
p∈Z

upe
2πipξ/φ, up =

1

τRφ
η̂

(
−2πcp

φ

)
Ŵ

(
2πp

φ

)
.342

Here, η̂(k) and Ŵ (k) denote the Fourier transforms of η(t) and W (x), respectively, which are343

given by344

(4.6) η̂(k) =

(
α

α+ ik

)2

,345
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and346

(4.7) Ŵ (k) = −[a(k, σ, 0)− γ

2
(a(k, σ, ρ) + a(k, σ,−ρ))], a(k;σ, ρ) =

2σi(e−ikξ2 − e−ikξ1)

k(1 + (ρ− kσ)2)
.347

To determine the voltage profile v(ξ), we transform (2.2) into the travelling wave frame, which348

results in349

(4.8) − c d

dξ
v = gL(vL − v) + gThH(v − vh) + gsynu .350

When we introduce the Green’s function G(ξ) = egLξ/c and recall that v(0) = vh, we can write351

a solution to (4.8) succinctly as352

(4.9) v(ξ) = G(ξ)vh −
∫ ξ

0
G(ξ − ξ′)

(gLvL
c

+
gT

c
h(ξ′)H(ξ3 − ξ) +

gsyn

c
u(ξ′)

)
dξ′ ,353

where the Heaviside function reflects the fact the IT is only present for v > vh, which is354

equivalent to 0 ≤ ξ ≤ ξ3. To compute v(ξ), we require an expression for h(ξ). This is readily355

achieved by transforming (2.3) into the travelling wave frame, which results in356

(4.10) − c d

dξ
h =

h∞(v)− h
τh(v)

.357

Note that (4.10) is an uncoupled piecewise linear equation, rendering its solution straightfor-358

ward. Analogously to section 3 where we had to determine the switching times Ti and the359

initial state z0 to construct the synchronous solution, the periodic wave is parameterised by360

the switching coordinates ξi, i = 1, 2, 3, the period φ, the initial value h(0) and the wave speed361

c. Since there are 6 unknowns, but only five conditions (v(ξ1) = vth, v(ξ2) = vth, v(ξ3) = vh,362

v(φ) = vh, h(φ) = h(0)), the wave speed c becomes a function of the period φ. Figure 9 shows363

the resultant dispersion relation for three different values of α. As we decrease α going from364

the red to the black to the blue line, the emergent wave speed decreases. This is consistent365

with the interpretation of α as the inverse of the synaptic time scale. Decreasing α increases366

the time until peak synaptic response, which in turn results in synaptic activity spreading367

more slowly. The dots are results from numerical simulation and agree very well with our368

theoretical predictions. We already indicate linear stability of the periodic travelling waves369

in Figure 9. Linearly stable travelling waves are denoted by solid lines, while dashed lines370

refer to linearly unstable travelling waves. When initiating a numerical simulation with an371

unstable pattern, the emergent travelling wave is selected from the possible periods in the372

stable region of Figure 9. As an example, we initiated a travelling wave with a spatial pe-373

riod of φ = 1.32mm, which is linearly unstable. The emergent wave has a spatial period of374

φ = 0.66mm and is shown by an asterisks. The corresponding space-time plot of the periodic375

travelling wave is depicted in Figure 10.376

5. Stability of travelling waves. Having constructed periodic travelling waves in sec-377

tion 4, we already indicated in the dispersion relation in Figure 9 the linear stability of these378

waves. Those results are based on the following linear stability analysis. Let δz(ξ, t) denote a379
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Figure 9: Dispersion curves c = c(φ) for periodic travelling waves for three different values
of α: 0.07 ms−1 (blue), 0.1 ms−1 (black) and 0.2 ms−1 (red). Solid lines indicate linearly
stable travelling waves, while dashed lines correspond to linearly unstable travelling waves.
The Evans function plots in Figures 11 to 13 demonstrate how we have delineated the stability
boundaries for the three dispersion curves plotted. See the main body of text in section 5
for further details. Dots indicate simulation results. The asterisk represents the emergent
wave speed and period of an initially unstable wave with period φ = 1.32mm, with the
spatiotemporal plot showing the wavetrain instability and eventual emergent pattern shown
in Figure 10. Parameter values as in Table 1.

perturbation around the periodic travelling wave z(ξ). We again use the same notation for the380

perturbation of the periodic travelling wave as we did for those of the synchronous solution381

along the lines introduced in section 4. Based on (4.1), we obtain for the perturbation in382

synaptic activity383

(5.1) δu(ξ, t) =
1

τR

∫ ∞
−∞

dyw(|y|)
∫ ∞

0
dsη(s)

∑
m∈Z

2∑
i=1

δ(ξ − y + cs−mφ− ξi)
|v′(ξi)|

δv(ξ−y+cs, t−s) ,384

where we used the fact that the voltage v(ξ) crosses vth in the travelling wave frame at ξ1 +mφ385

and ξ2 + mφ, respectively, as well as that v′(mφ + ξ) = v′(ξ). Here, m ∈ Z, and the prime386

indicates differentiation with respect to ξ. We now make the ansatz that δz(ξ, t) = δZ(ξ)eλt387

and assume that δZ(ξ) is φ-periodic, i.e. δZ(ξ + φ) = δZ(ξ). This results in388

(5.2) δu(ξ;λ) =
1

τR

∑
m∈Z

∫ ∞
0

dsη(s)e−λs
2∑
i=1

w(|ξ − ξi −mφ+ cs|) δv(ξi)

|v′(ξi)|
389

As we did for the synaptic activity in section 4, we express δu(ξ) as a Fourier series such that390

(5.3) δu(ξ) =
∑
p∈Z

upe
2πipξ/φ, up =

1

τRφ
ŵ

(
2πp

φ

) 2∑
q=1

Iq ,391
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Figure 10: Space-time plot of the v component in mV of the travelling wave corresponding to
the asterisk in Figure 9.

where392

(5.4) Iq =
δv(ξq)

|v′(ξq)|
η̃

(
λ− 2πipc

φ

)
e−2πipξq/φ ,393

and394

(5.5) η̃(k) =

∫ ∞
0

η(s)e−ksds ,395

represents the Laplace transform of η(s). To obtain solutions for δv(ξ) and δh(ξ) we transform396

(2.2) and (2.3) into the travelling wave frame. Recalling the exponential time dependence of397

δz(ξ, t), we find that398

(5.6) c
d

dξ
δv(ξ) =

{
(gL + λ)δv(ξ) + gTδh(ξ) + gsynδu(ξ) , 0+ ≤ ξ ≤ ξ−3 ,
(gL + λ)δv(ξ) + gsynδu(ξ) , ξ+

3 ≤ ξ ≤ φ− ,
399

and400

(5.7) c
d

dξ
δh(ξ) =


(

1
τ−h

+ λ
)
δh(ξ) , 0+ ≤ ξ ≤ ξ−3 ,(

1
τ+h

+ λ
)
δh(ξ) , ξ+

3 ≤ ξ ≤ φ− .
401

Equations (5.6) and (5.7) are readily solved via the Green’s functions Gv(ξ) = e(gL+λ)ξ/c and402

G±h (ξ) = e(1/τ±h +λ)ξ/c. For 0+ ≤ ξ ≤ ξ−3 , we obtain403

δv(ξ) =Gv(ξ)δv(0+) +

∫ ξ

0
Gv(ξ − ξ′)

(gT

c
δh(ξ′) +

gsyn

c
δu(ξ′)

)
dξ′ ,(5.8a)404

δh(ξ) =G−h (ξ)δh(0+) ,(5.8b)405406
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while for ξ+
3 ≤ ξ ≤ φ−, we arrive at407

δv(ξ) =Gv(ξ − ξ3)δv(ξ+
3 ) +

gsyn

c

∫ ξ

ξ3

Gv(ξ − ξ′)δu(ξ′)dξ′ ,(5.9a)408

δh(ξ) =G+
h (ξ − ξ3)δh(ξ+

3 ) .(5.9b)409410

Note that the solutions in (5.8) and (5.9) depend on the variables evaluated at 0+ and ξ+
3 ,411

respectively. This results from the non-smooth dynamics of v and h when the voltage crosses412

vh. Analogously to section 3, we require saltation matrices Qi to propagate perturbations413

through the switching events: δZr(ξ
+
i ) = QiδZr(ξ

−
i ), where we have introduced the reduced414

state vectors Zr(ξ) = (v(ξ), h(ξ)) and δZr(ξ) = (δv(ξ), δh(ξ)). Following [3], the saltation415

matrices Qi have the same form as in (3.2), with I4 replaced by I2 and F±i constructed from416

the equations that govern the periodic solution derived in section 4, i.e.417

(5.10) Qi = I2 −
1

v′(ξ−i )

(
v′(ξ−i )− v′(ξ+

i ) 0
h′(ξ−i )− h′(ξ+

i ) 0

)
, i = 0, 3 ,418

where we set ξ0 = 0. Since we consider φ-periodic perturbations, we have δZr(0
+) =419

Q0δZr(φ
−). Using (5.8) and (5.9), it is therefore possible to express δZr(0

+) as a linear420

combination of δv(ξ1), δv(ξ2), δv(ξ−3 ) and δv(φ−). As an illustration, we show the calculation421

for δh(0+) in Appendix A. When we evaluate δv(ξ) at ξ1, ξ2, ξ−3 and ξ−4 , we obtain the linear422

system (Γ(λ)− I4)x = 0, where423

(5.11) Γ(λ) =


f1(ξ1;λ) f2(ξ1;λ) f3(ξ1;λ) f4(ξ1;λ)
f1(ξ2;λ) f2(ξ2;λ) f3(ξ2;λ) f4(ξ2;λ)
f1(ξ3;λ) f2(ξ3;λ) f3(ξ3;λ) f4(ξ3;λ)
g1(ξ4;λ) g2(ξ4;λ) g3(ξ4;λ) g4(ξ4;λ)

 ,424

and x = (δv(ξ1), δv(ξ2), δv(ξ−3 ), δv(ξ−4 )). The entries of Γ are listed in Appendix B. A non-425

trivial solution for x requires that the Evans function426

(5.12) E(λ) = det(Γ(λ)− I4) ,427

vanishes. This only happens at certain values of λ. Since in general λ ∈ C, we set λ = a+ ib428

and then compute the zero-contours of Re E(λ) and Im E(λ). Their intersections signify a zero429

of E and hence an admissible value for λ. When all eigenvalues have negative real part, the430

periodic travelling wave is stable, otherwise, it is unstable.431

Figure 11 shows the case when all eigenvalues are contained in the left-hand side of the432

complex plane and hence the periodic travelling wave is linearly stable. Upon increasing φ a433

pair of eigenvalues touches the imaginary axis (Figure 12) indicating the onset of an instability.434

This point is shown in Figure 9 by a transition from a black solid to a black dashed line at435

φ = 0.782mm. For even larger values of φ, a pair of eigenvalues with positive real parts436

exists (Figure 13), indicating a linearly unstable periodic travelling wave. In Figures 11 – 13,437

there is always an eigenvalue at zero, which originates from the translational invariance of438

the underlying equations. The persistence of the translation invariance zero eigenvalue can be439
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-8 -6 -4 -2 0 2 4
10-3

-0.1

-0.05

0

0.05

0.1 Figure 11: Zero-contours of Re E(λ)
(thick, red curve) and of Im E(λ) (thin,
blue curve) for φ = 0.74mm. Intersec-
tions of the zero-contours, and hence ze-
roes of E(λ), are shown as yellow dots.
The black dashed line separates the two
complex half planes with negative and
positive real part, respectively. Param-
eter values as in Table 1.

-8 -6 -4 -2 0 2 4
10-3

-0.1

-0.05

0

0.05

0.1 Figure 12: Zero-contours of Re E(λ)
(thick, red curve) and of Im E(λ) (thin,
blue curve) for φ = 0.782mm. Inter-
sections of the zero-contours, and hence
zeroes of E(λ), are shown as yellow dots.
The black dashed line separates the two
complex half planes with negative and
positive real part, respectively. Param-
eter values as in Table 1.

established by showing that z′(ξ) is an eigenfunction to the stability problem when λ = 0. For440

the local variables, v(ξ) and h(ξ), this is readily shown by differentiating the travelling wave441

equations (4.8) and (4.10) with respect to ξ and comparing with (5.6) and (5.7), respectively.442

In the case of the synaptic variable, first differentiate (4.3) to obtain443

(5.13)
du

dξ
=

1

τR

∑
m∈Z

∫ ∞
0

dsη(s)
(
w(|−mφ+ cs+ ξ − ξ1|)− w(|−mφ+ cs+ ξ − ξ2|)

)
,444

Then setting λ = 0 in (5.2), making the substitution δZ(ξ) = z′(ξ), and noting that v′(ξ1) > 0445

and v′(ξ2) < 0, one obtains (5.13). Therefore, δZ(ξ) = z′(ξ) is a solution to the stability446

problem when λ = 0, showing the translation invariance of the system, and that tangential447

perturbations to the orbit are neutrally stable.448

6. Discussion. Neural field models are ubiquitous throughout the computational and449

mathematical neuroscience community for their use in understanding the waves and pat-450
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Figure 13: Zero-contours of Re E(λ)
(thick, red curve) and of Im E(λ) (thin,
blue curve) for φ = 0.824mm. Inter-
sections of the zero-contours, and hence
zeroes of E(λ), are shown as yellow dots.
The black dashed line separates the two
complex half planes with negative and
positive real part, respectively. Param-
eter values as in Table 1.

terns that are readily observed in cortex. For example, voltage-sensitive dyes can be used451

to observe waves of activity in the primary visual cortex of the awake monkey [21], and452

electro-encephalograms routinely exhibit alpha oscillations propagating over the human scalp453

[14]. Nonetheless, their domain of applicability does not immediately extend to modelling454

sub-cortical structures without due consideration of how this tissue may differ from that of455

the cortex. A case in point is the thalamus where nonlinear ionic currents expressed at the456

cellular level play a large role in shaping spatio-temporal patterns seen at the tissue level [9].457

This has been explored from a theoretical perspective by Rinzel et al. [25] using a compu-458

tational model, and by Yew et al. [31] from a more mathematical perspective using singular459

perturbation methods. However, analytical progress on waves in such sub-cortical structures460

has not kept pace with the growth of results for standard neural fields, as reviewed in [7]. This461

is in part because of certain cortical model simplifications, and in particular the “Heaviside462

world” perspective promoted by Amari [2]. Here, we have shown that the switch-like dynamics463

governing many neuronal ionic currents can be accommodated within a standard Amari style464

neural field model by augmenting the Heaviside firing rate to be a function of a (non-spiking)465

voltage variable that tracks the gating dynamics for sub-cellular currents. If the latter is car-466

icatured by activation or inactivation functions that are piece-wise constant (step functions)467

then the Amari programme for finding closed form solutions and determining their stability468

goes over albeit with the recognition that one is now dealing with a non-smooth system. To469

illustrate how this programme can be applied in practice, we have considered the inclusion of470

a slow T-type calcium current into a continuum model of an inhibitory network, in the spirit471

of that employed by Huertas et al. [15] as a minimal model of the thalamus (dorsal lateral472

geniculate nucleus). The model supports robust whole tissue synchronous oscillations via the473

mechanism of post-inhibitory rebound for a wide range of parameters. By merging the tradi-474

tional Amari approach with tools from nonsmooth dynamical systems, we have shown how to475

construct new network level saltation operators to determine the linear stability of the syn-476

chronous solution. We have used this to showcase the possibility of emergent solutions which477

have a spatially periodic component (with a wavelength determined by the Fourier transform478
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of the anatomical connectivity pattern) superimposed on the bulk oscillation. Moreover, di-479

rect simulations also show that the model can support more exotic solutions, in the form of480

both regular and irregular travelling waves. By moving to a co-moving frame we have shown481

how to construct the former (in one spatial dimension), and made use of saltation operators482

to construct the Evans function for periodic travelling waves. Direct numerical simulations483

show excellent agreement with the stable branch of the theoretically determined dispersion484

curve.485

The mathematical analysis presented in this paper was motivated by the novel patterns486

seen in direct simulations. Although we have taken a step toward understanding the poten-487

tially very rich dynamics that can arise in models of neural tissue with rebound currents,488

there is clearly much more to do in analysing secondary bifurcations and the routes to exotic489

pattern generation. This could include a more thorough analysis of planar waves (generalising490

what we have achieved here for waves in one spatial dimension), as well as exploring so-called491

lurching waves that are also a hallmark of systems with rebound currents [25]. It would also492

be natural to consider more refined models of the thalamus that include the two main cell493

types of reticular (RE) and thalamo-cortical (TC) relay cells and their reciprocal connections.494

Both express an IT current though in a way that allows TC cells to fire upon release from495

inhibition and RE cells to burst in response to excitation. The model presented here is easily496

generalised to this case following the modelling approach described in [5]. Moreover, it is also497

possible to accommodate window currents that arise when multiple gating variables conspire498

to generate persistent background currents. The use of piecewise linear, rather than piecewise499

constant, activation and inactivation curves that overlap can account for this, without detri-500

ment to mathematical tractability [19]. All of these are topics of ongoing study and will be501

reported upon elsewhere.502
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Appendix A. Saltation matrices and Jacobians.503

The equations governing the synchronous solution (3.1) contain discontinuities in the vec-504

tor field. To determine linear stability, we require saltation matrices that map perturbations505

across discontinuities. A derivation of saltation matrices for temporal switching events can be506

found in [22]. For all local dynamics, we are permitted to use the first, second and fourth rows507

of (3.2). For the non-local dynamics in the third rows of K1 and K2, we derive the correct508

expression as discussed in section 3. Using this approach, the saltation matrices read as509

K1 =


1 0 0 0
0 1 0 0

α
τR

ŵ(k)

v̇(T−1 )
0 1 0

0 0 0 1

 ,(A.1a)510

K2 =


1 0 0 0
0 1 0 0

− α
τR

ŵ(k)

v̇(T−2 )
0 1 0

0 0 0 1

 ,(A.1b)511

K3 =


1−gTh(T−3 )

Cv̇(T−3 )
0 0 0

0 1 0 0
0 0 1 0

1/τ+−h(T+
3 )/τ++h(T−3 )/τ−

v̇(T−3 )
0 0 1

 ,(A.1c)512

K4 =


1+

gTh(0+)

Cv̇(T−4 )
0 0 0

0 1 0 0
0 0 1 0

−h(0+)/τ−−1/τ++h(T−4 )/τ+

v̇(T−4 )
0 0 1

 .(A.1d)513

514

The dynamics away from switching events is piecewise linear. Therefore, the propagator515

takes the form exp(Jt), where J is the piecewise constant Jacobian matrix and is given by516

(A.2) J =


J1, 0+ ≤ t ≤ T−1
J2, T+

1 ≤ t ≤ T
−
2

J3, T+
2 ≤ t ≤ T

−
3

J4, T+
3 ≤ t ≤ T−

517
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where518

J1 = J2 = J3 =


−gL/C gsyn/C 0 gT/C

0 −α α 0
0 0 −α 0
0 0 0 −1/τ−

 ,(A.3a)519

J4 =


−gL/C gsyn/C 0 0

0 −α α 0
0 0 −α 0
0 0 0 −1/τ+

 .(A.3b)520

521

Whereas the synchronous solution is spatially homogeneous, periodic travelling waves are522

not, and therefore switching in the dynamics has a spatial dependence. See the Appendix of523

[3] for a derivation of the saltation matrix in the co-moving frame. In our case, the perturbed524

synapse variable is a smooth function of ξ, so saltation matrices in this case take the reduced525

form (5.10), where only δv(ξ) and δh(ξ) contain discontinuities. Let Vi denote the (2, 1)526

component of Qi as defined in (5.10). Using (5.8b) and (5.9b), we find that527

δh(0+) = V0δv(φ−) + δh(φ−)

= V0δv(φ−) +G+
h (φ− ξ3)δh(ξ+

3 )

= V0δv(φ−) +G+
h (φ− ξ3)

(
V3δv(ξ−3 ) + δh(ξ−3 )

)
= V0δv(φ−) + V3G

+
h (φ− ξ3)δv(ξ−3 ) +G+

h (φ− ξ3)G−h (ξ3)δh(0+) ,

(A.4)528

so that529

(A.5) δh(0+) =
V0δv(φ−) + V3G

+
h (φ− ξ3)δv(ξ−3 )

1−G+
h (φ− ξ3)G−h (ξ3)

.530

Appendix B. Functions for Evans function calculation.531

Here, we give the functions that are the entries of the matrix Γ(λ), (5.11), which is required532

for computing the Evans function.533

f1(ξ) =
gsyn

c

1

|v′(ξ−1 )|
∑
p∈Z

Īp,ξ1,λ

(
e

2πipξ
φ − e( gL+λ

c )ξ

)
,(B.1a)534

f2(ξ) =
gsyn

c

1

|v′(ξ−2 )|
∑
p∈Z

Īp,ξ2,λ

(
e

2πipξ
φ − e( gL+λ

c )ξ

)
,(B.1b)535

f3(ξ) =
gT

c
fh(ξ)

(
− h′(ξ−3 )− h′(ξ+

3 )

v′(ξ−3 )
e(λ/c+1/cτ+)(φ−ξ3)

)
,(B.1c)536

f4(ξ) =

(
1− v′(φ−)− v′(0+)

v′(φ−)

)
e( gL+λ

c )ξ − gT

c
fh(ξ)

(
h′(φ−)− h′(0+)

v′(φ−)

)
,(B.1d)537

538
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where539

Īp,a,λ =
Ip,a,λ

2πip
φ −

gL+λ
c

,(B.2a)540

Ip,a,λ =
1

τRφ
η̃
(
λ− 2πipc

φ

)
ŵ
(2πp

φ

)
e
− 2πipa

φ ,(B.2b)541
542

and543

(B.3) fh(ξ) =
e(λc+ 1

cτ− )ξ − e( gL+λ

c )ξ(
λ
c + 1

cτ− −
gL+λ
c

)(
1− e(λ

c
+ 1
cτ− )ξ3e(λ

c
+ 1
cτ+

)(φ−ξ3)
) ,544

and545

g1(ξ) =
gsyn

c

1

|v′(ξ−1 )|
∑
p∈Z

Īp,ξ1,λ

(
e

2πipξ
φ − e

2πipξ3
φ e( gL+λ

c )(ξ−ξ3)

)
,(B.4a)546

g2(ξ) =
gsyn

c

1

|v′(ξ−2 )|
∑
p∈Z

Īp,ξ2,λ

(
e

2πipξ
φ − e

2πipξ3
φ e( gL+λ

c )(ξ−ξ3)

)
,(B.4b)547

g3(ξ) =

(
1− v′(ξ−3 )− v′(ξ+

3 )

v′(ξ−3 )

)
e( gL+λ

c )(ξ−ξ3),(B.4c)548

g4(ξ) = 0.(B.4d)549550

The infinite sums in f1(ξ), f2(ξ), g1(ξ), g2(ξ), are well-behaved as p → ±∞, so these can be551

truncated during computation.552
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