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With the development of deep learning, the design of an appropriate network structure becomes funda- 2

mental. In recent years, the successful practice of Neural Architecture Search (NAS) has indicated that 3

an automated design of the network structure can efficiently replace the design performed by human ex- 4

perts. Most NAS algorithms make the assumption that the overall structure of the network is linear and 5

focus solely on accuracy to assess the performance of candidate networks. 6

This paper introduces a novel NAS algorithm based on a multi-objective modeling of the network design 7

problem to design accurate Convolutional Neural Networks (CNNs) with a small structure. The proposed 8

algorithm makes use of a graph-based representation of the solutions which enables a high flexibility in 9

the automatic design. Furthermore, the proposed algorithm includes novel ad-hoc crossover and muta- 10

tion operators. We also propose a mechanism to accelerate the evaluation of the candidate solutions. 11

Experimental results demonstrate that the proposed NAS approach can design accurate neural networks 12

with limited size. 13

Keywords: Deep Learning, Neural Architecture Search, Multi-objective Optimization, Genetic Algorithm. 14

1. Introduction 15

Convolution neural networks (CNNs) have 16

achieved remarkable results in solving many prob- 17

lems, such as image classification 16 and image seg- 18

mentation 40. CNNs are very efficient at obtaining 19

features from 1-D sequences of data, 2-D images, 20

†: These authors contributed equally to this work and should be considered co-first authors

1



May 26, 2021 15:34 ”MainIJNS - R1”

2 Yu Xue et al.

and 3-D images. The features extracted from 1-D21

sequences of sound data by 1-D convolution neural22

networks can be used to extract voiceprint features23

96; 48. The features extracted from 2-D image data by24

convolution neural network can be used for image25

content recognition, prediction, and segmentation.26

The features in 3-D space in 3-D image data (mostly27

medical image data) can be extracted by 3-D con-28

volution kernels, which is very useful in predicting29

diseases and identifying lesions 35; 34. In addition,30

video data with time attributes can also be classified31

by 3-D convolutional neural networks 21; 73.32

Among the plethora of real-world applications33

of CNNs, some modern examples representing the34

state-of-the-art in the field of neural systems are to35

analyse the electroencephalogram signals to diag-36

nose seizures 2; 46; 42 or depression 3. A neural sys-37

tem based on multiple CNNs is proposed in Ref.5238

to control epileptic seizures. Other studies propose39

CNNs to diagnose epilepsy in infants 7 and chil-40

dren 43 by classifying electroencephalogram signals.41

CNNs have been also successfully used to clas-42

sify medical images to diagnose Parkinson’s disease43

54; 12 and detect pupils72. Another popular applica-44

tion domain for CNNs is civil engineering. Some ex-45

amples of application include damage detection in46

concrete structures39 and roads53. Some other ex-47

amples are about vibration-based structural state48

identification95 and effect of wind on structures59.49

In addition, CNNs can be combined with other tech-50

nologies to be applied in more fields. In Ref. 56
51

CNNs are combined with Long Short Term Mem-52

ory to accurately predict the remaining useful life of53

components, thus helping to make an optimal deci-54

sion for maintenance management.55

There have been many classical network struc-56

tures, such as Alexnet 36, VGG 74, GoogLenet57

84, Inception-V4 83, Inception-Resnet 83, Resnet 31,58

Densenet 33, etc., which appear to perform well in59

image classification and image segmentation. How-60

ever, due to high complexity, it is impractical to61

use these CNNs on mobile platforms since they62

would require an excessive amount of computa-63

tional resources thus leading to an unreasonable64

waiting time, memory overflow, and high energy65

consumption. Therefore, some new lightweight net-66

work structures for mobile platforms have been pro-67

posed, such as MobileNet 68, ShuffelNet 51, Mnas-68

Net 85, EfficientNet 86, Xception 19, etc. All the net-69

work structures mentioned above are the result of70

(human) expert design.71

In recent years, Neural Architecture Search72

(NAS) methods17, that automatically search the73

network architectures, are progressively becoming74

more popular to design CNNs. Most NAS methods75

are to search the blocks or cells which are consist76

of convolution kernels with different sizes (such as77

3 × 3, 5 × 5, etc.) and the position of pool layers78

50; 82; 80. Moreover, in MUXConv 49 and Shufflenet79

51, it is pointed out that the generalization perfor-80

mance of the network can be improved by chan-81

nel multiplexing, spatial multiplexing, and channel82

shuffling, and then the accuracy of recognition can83

be improved. The majority of the NAS methods in84

the literature perform the automatic design by using85

accuracy as the sole objective of the targets. How-86

ever, operational efficiency is also an extremely im-87

portant aspect of the functioning of the network, es-88

pecially in mobile applications.89

In order to simultaneously address accuracy90

and computational cost, unlike the other studies91

in the literature, we propose an encoding mecha-92

nism with multi-objective evaluate mechanism of93

the problem where besides the accuracy of the CNN94

also the number of network parameters is taken into95

consideration 65; 66; 75; 88; 69; 70.96

Existing NAS methods design and limit the97

search space and search domain to reduce the time98

complexity of the optimization problem. An usual99

strategy consists of defining some building blocks100

which are defined by a human expert. This study101

proposes a graph-based flexible representation that102

supports a higher level of automatism of the de-103

sign process. Furthermore, the proposed method104

relates to the concept of regularized evolutionary105

algorithm67; 62 in that the approaches aim at reduc-106

ing the computational overhead (e.g. memory em-107

ployment) by performing an action on the optimiza-108

tion algorithm.109

The remainder of this paper is organised in110

the following way. Section 2 provides the back-111

ground about NAS methods, encoding mechanism112

and evaluation of candidate network architectures.113

Section 3 provides the details of the proposed NAS114

method. Section 4 provides the numerical results of115

this study.116
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2. Related Work: Neural Architecture 117

Search 118

The majority of NAS methods can be categorised ac- 119

cording to their search logic: 120

• Gradient-based methods 47; 92; 15; 121

• Reinforcement Learning (RL) 98; 28; 9; 122

• Evolutionary Algorithms (EA) 79; 50; 91; 63,82. 123

This list does not mean to be exhaustive since 124

other methods not belonging to any of the cat- 125

egories above exist, such as Monte Carlo Tree 126

search90. The various NAS methods belonging to 127

each category above present advantages and dis- 128

advantages. Specifically, RL-based algorithms re- 129

quire a large computational time to perform the 130

automatic design, even on median-scale datasets, 131

such as cifar10 and cifar100 37. Unlike RL-based 132

algorithms, gradient-based algorithms are usually 133

very fast. Besides, their search logic leads to ob- 134

taining a local optimum problem which may have 135

a much poorer performance than the desired opti- 136

mal design. Moreover, the gradient-based search al- 137

gorithm needs to construct a super network in ad- 138

vance, which should contain as much search space 139

as possible. The construction of this super network 140

requires substantial human intervention of an ex- 141

pert, see Ref.15; 25. Although EAs are not theoreti- 142

cally guaranteed to converge to the global optimum 143

of problem, they are able to overcome the local op- 144

tima. Also, they do not require a super network. 145

Thus, EAs are often considered a viable compromise 146

for NAS since they are relatively fast and can be ap- 147

plied to NAS without human intervention or prior 148

knowledge of the problem. One pioneering example 149

is in Ref.94. It is worthwhile remarking that there ex- 150

ist other search strategies integrated in NAS meth- 151

ods such as Ref.57, Ref.18, and Ref.55. 152

This paper focuses on EAs for NAS. In the 153

following subsections, some context is provided 154

around the two major challenges of this approach: 155

encoding mechanism and evaluation of the candi- 156

date solutions. 157

2.1. Encoding of NAS 158

The encoding of candidate network architectures 159

for NAS methods are broadly divided into two 160

categories 38: direct encoding and indirect encod- 161

ing. Indirect encoding was often used in early 162

works on NAS usually referred to as Neuroevolution, 163

see Ref.71, which is similar to NAS. Neuroevolu- 164

tion uses evolutionary computation to optimize the 165

structure and parameters of neural networks at the 166

same time 4; 27; 30; 26; 1, and many researchers still 167

work on it76; 77; 64; 32; 8. However, due to the limita- 168

tions of equipment at that time, the neuroevolution 169

can only be performed on small networks. Further- 170

more, due to the very large number of parameters in 171

fully connected networks, direct encoding cannot be 172

used to represent the whole network. Therefore, a 173

lot of effort is made to find simple ways (i.e.,indirect 174

encoding) to represent the connections and weight 175

parameters of neurons. Thus, indirect encoding is a 176

popular strategy to simplify the search space. These 177

search purposes determine that search space is dif- 178

ficult to represent with direct encoding, so indirect 179

encoding is needed to simplify the encoding and 180

early researchers used indirect encoding to repre- 181

sent individuals. 182

In recent years, most of the NAS studies have 183

been conducted on neural networks that albeit com- 184

plex, can be naturally schematised as intercon- 185

nected blocks. This is the case, besides the CNNs, of 186

Generative Adversarial Networks (GANs) 28, and 187

Recurrent Neural Networks (RNNs) 47. For net- 188

works of these types, direct encoding is an easy 189

and natural option. For example, CNNs contain 190

convolution blocks, pooling blocks, batch normal- 191

ization operations, and sometimes activation func- 192

tions. These blocks are often represented by a few 193

parameters. Convolution blocks can be fully repre- 194

sented by the number of convolution cores, the size 195

of the convolution cores, stride, padding, dilation 196

and groups (in fact, some parameters can be directly 197

ignored based on the actual search strategy and pur- 198

pose). In most cases, pooling blocks, batch normal- 199

ization operations and activation functions do not 200

even require parameters for special representations, 201

and they just need the position in the structure to 202

represent the modules. 203

For each block’s position in the structure, there 204

exist two encoding mechanisms 205

• linear structure 81, that is the sequential (linear) 206

arrangement of all blocks or units composed of 207

blocks; 208

• graph structure 91, that is a planar (graph) ar- 209

rangement of interconnected blocks. 210
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Although formally a linear structure is a spe-211

cial graph structure (a sequence is a special graph),212

we emphasise the distinction since the two encod-213

ing mechanisms correspond to two significantly dif-214

ferent implementations.215

Adjacency matrices are better suited for dense216

graph structures 58, since sparse structures can217

waste a lot of space in adjacency matrices. Sparse218

structures are better represented by adjacency tables219

(or adjacency lists). While adjacency matrices are220

matrices of ’0’ and ’1’ to indicate connection or with-221

out connection between nodes, adjacency tables are222

lists that indicate the for each node which nodes are223

linked to it. The latter allows a compact representa-224

tion of large sparse networks.225

The main advantage of a linear structure is its226

simplicity compared to that of graph structure. Be-227

sides, linear structures cannot represent all the net-228

works. In some cases, like the example in Fig. 1, a229

linear structure would yield an ambiguous repre-230

sentation of a neural network.231

232

Fig. 1. An example of architecture that cannot be repre-
sented by a linear structure. Blue blocks are modules in
CNNs. This architecture has two skip connections, so it
can’t be represented by a linear structure.

2.2. Evaluation of NAS233

To evaluate a candidate structure, the general prac-234

tice is to train the network and calculate its accuracy,235

see Ref.80.236

Since the training time of the network is very237

time-consuming, there are many ways to reduce the238

total time of the evaluation phase. There are two239

ways to reduce the total time: foresight and early240

closure. Foresight methods make use of models to241

predict the performance of the training network.242

Some researchers use the performance during train-243

ing to predict the future performance. For exam-244

ple, MetaQNN 10 gives the first 25% of the histor-245

ical data of the Stochastic Gradient Descent (SGD)246

training curve to the time series model for predic-247

tion and estimates the final accuracy of the network248

structure. Some researchers use other models, such249

as random forest, Bayes methods or other models250

to predict the possible representations of particular251

network architectures. The reason why they use this252

method is that the structures searched for by the253

same NAS method often have a great deal of sim-254

ilarity, and when encoded, it is possible to work out255

whether the network is good or not from the encod-256

ing directly. For instance, PNAS 45 uses the model257

to predict the top-1 accuracy of candidate networks.258

Ref.78 proposes an end-to-end offline performance259

predictor based on the random forest to accelerate260

the evaluation.261

Early closure is another way to reduce the to-262

tal time of the evaluation phase. This type of ap-263

proach reduces overall time through targeted eval-264

uations. For example, many researchers used sub-265

sets of the dataset for training 99; 89, so that the266

time of training each network will decrease. Also,267

Ref.89 uses a strategy to identify the required struc-268

ture in advance. In ChamNet 20, only 300 high-269

accuracy (or other indicators) samples with differ-270

ent efficiency are selected for each training. An-271

other approach is to keep the good structure and272

weight so that the new structure requires fewer273

times to train. There are three specific implemen-274

tations of this approach: weight sharing, One-Shot275

method, and weight inheritance. The weight shar-276

ing method, which is mostly used in NAS based on277

gradient, makes use of shared weights from a su-278

per network to accelerate the training process, see279

Ref.47; 92; 15; 98; 50. The one-shot method consists of280

adding components to a small network or deleting281

components from a large network 41; 22; 29; 11. The282

weight inheritance method is mostly used in NAS283

based on EAs 63; 23; 14; 24. This method requires that284

the candidate networks of the entire search space285

have similar structures. Most of the network struc-286

tures found by NAS based on EAs meet this condi-287

tion.288

Figure 2 illustrates the weight inheritance289

method. In the upper part of the figure, two parent290

solutions with a crossover point (indicated as a dia-291

mond) are depicted. The first parent solution is com-292

posed of the sequences G1 and G2 (representing the293

network structure) with the corresponding weights294

W1 and W2. Analogously, the second parent solu-295

tion is composed of G3 and G4 with the weights W3296

and W4. In the lower-left part of the figure, the stan-297

dard crossover is illustrated. The sequences G2 and298
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G4 are swapped over and four sets of corresponding 299

weights W5, W6, W7 and W8 are randomly initial- 300

ized, thus generating new networks (indicated with 301

a darker colour). In the lower right part of the figure, 302

the weight inheritance method is illustrated. When 303

the crossover occurs, the offspring solutions inherit 304

the weights of the parent (the weights of that por- 305

tion of the network). Thus, the first offspring solu- 306

tion is composed G1 and G4 with the weights W1 307

and W4 while the second solution is composed of 308

G3 and G2 with the weights W3 and W2. 309

310

Fig. 2. Comparison between basic crossover (with ran-
dom initialization of the weights) and crossover with
weight inheritance method.

3. The Proposed Approach: MOGIG-Net 311

In this section, we introduce the framework 312

of the proposed NAS algorithm, namely Multi- 313

Objective Graph-in-graph Network (MOGIG-Net) 314

whose flowchart is shown in Fig. 3. 315

This section firstly introduces the overall 316

framework of the proposed algorithm and then de- 317

scribes the encoding mechanism, crossover, muta- 318

tion, decoding method, evaluation, and environ- 319

ment selection in details. 320

3.1. Overall Description of the MOGIG-Net 321

Framework 322

Fig. 4 displays the structure of the whole algorithm. 323

First, the initial population is obtained through ran- 324

dom initialization (line 1), and then the fitness eval- 325

uation of the initial population is calculated (line 2- 326

3). 327

After the initialization, the algorithm makes 328

use of generation cycles to process the population 329

(line 4-15). New individuals are generated through 330

crossover and mutation. The new individuals are se- 331

lected for the survival of the fittest by evaluating the 332

fitness values for each objective (line 12-13). Finally, 333

individual sets with better performance on multiple 334

objectives are obtained. 335

336

Fig. 3. Flowchart of the of the MOGIG-Net framework

337

Input: The population size p, the maximal generation number T , the
crossover probability µ, the mutation probability ν, the maximal nodes
number in each block (Mmin,Mmax), the maximal blocks number
(Nmin, Nmax).
Output: Collection of individuals on the pareto frontier meeting the min-
imization goals.

1: P0 ←Initialize a population with the size of p by using the proposed
encoding strategy in Algorithm 6;

2: Convert all genes inP0 to models and evaluate the fitness of the mod-
els by method 12, and record the fitness of each corresponding indi-
vidual;

3: Record the fingerprint and fitness value of each individual.
4: t← 0
5: while t < T do
6: Q← φ
7: if the length ofQ < P then
8: Two individuals were randomly selected and will cross and mutate

by the method of Algorithm 7 and 8, and then two offspring will be
generated.

9: Record the fingerprint of each offspring, and add the two offspring
into populationQ.

10: end if
11: Pt ← Pt ∪Q
12: Convert genes to models and evaluate the fitness of individuals in

Q by method 12 to control sequence, and record the fitness of each
individual;

13: Sort Pt by non-dominated sorting algorithm, and retain P individ-
uals with better performance, and delete other individuals with poor
performance, then we will get Pt+1;

14: t← t+ 1
15: end while

Return: PT−1 338

Fig. 4. Framework of the MOGIG-Net algorithm

In NAS problems, the evaluation phase is by far 339
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the computationally most expensive as it requires340

the training of the candidate network structure. In341

order to avoid the re-evaluation of the same archi-342

tectures/structures, we keep an archive of visited343

solutions with their objective function value. If a so-344

lution is re-visited the archived objective function345

values are used.346

3.2. Encoding Mechanism of MoGIG-Net347

In this study, we use a graph structure to encode the348

architecture of the network. We propose the encod-349

ing of a CNN in a chromosome divided into blocks350

linked by separators. To understand the proposed351

encoding, let us remark that CNNs are composed352

of blocks, three of them being essential and named353

1) convolution; 2) pooling; 3) fully connection. The354

chromosome representing the CNN is described as355

follows:356

CB1-CB2-· · · -CBn-S-P357

where each CBj is a convolution block, S represents358

the structure how the convolution block are inter-359

linked and P describes the presence of pooling lay-360

ers in the CNN.361

The convolution block CBj is a sequence of sep-362

arators and binary numbers. The ′1′ indicates a link363

between neurons while ′0′ indicates the dismiss a364

connection. A convolution block containing m neu-365

rons is represented by a sequence of m(m−1)
2 binary366

numbers grouped in sub-blocks of 1, 2, . . .m− 1 bi-367

nary numbers. Each sub-block is separated by a dot.368

This sequence of binary numbers is the adjacency369

matrix associated with the convolution block. More370

specifically, each sub-block contains the information371

of a column of the adjacency matrix. Fig. 5 provides372

an example of the proposed encoding for m = 5.373

On the top of the figure, the encoding used in this374

study is shown. Below the chromosome, the corre-375

sponding adjacency matrix and table are displayed.376

It may be noticed that each block of the chromosome377

contains the columns of the adjacency matrix. At the378

bottom of Fig. 5, the corresponding network struc-379

ture is represented. Also, like CBj representing the380

connections in each block, the binary numbers in S381

is also the same representation as CBj , and thus rep-382

resents the connection between blocks.383

384

Fig. 5. Encoding of a convolution block CBj (part of
the chromosome) of the candidate CNN. The correspond-
ing adjacency matrix and table are displayed as well as
the graph of the encoded network. Convolution blocks
formed by these binary blocks are the components of the
CNN

The structure S is also a sequence of binary385

numbers which has n(n−1)
2 bits. The 1 indicates a386

link between two convolution blocks CBi and CBj387

while 0 indicates the dismiss of connections be-388

tween blocks. The sequence S is also divided into389

sub-blocks composing the columns of the adjacency390

matrix that describes the topology of the intercon-391

nections among convolution blocks. The sequence392

P is composed of n binary numbers, one for each393

convolution block CBj composing the CNN. The se-394

quence P can be seen as a binary sequence Z where395

zj = 1 represents the presence of pooling layers (Pj396

in Fig. 9) pointing to CBj+1 while zj = 0 represents397

the absence of a pooling layer pointing to CBj+1.398

The last binary number zn indicates the presence or399

the absence of a pooling layer between CBn and the400

fully connected layer FC.401

Fig. 6 provides the implementation details of402

the encoding mechanism in the context of the ini-403

tialization of the population to be processed by404

MOGIG-Net.405

The chromosome code only contains the topo-406

logical structure before the fully connected layer.407

The connection mode between the components of408

each individual is determined at the beginning409

of the algorithm (residual connection31 and close410

connection33).411

Let us indicate with α the maximum number of412

cells of and with β the maximum number of blocks413



May 26, 2021 15:34 ”MainIJNS - R1”

A Multiobjective Evolutionary Approach Based on Graph-in-graph for Neural Architecture Search of Convolutional Neural Networks 7

of the CNN. The longest possible code to search for 414

contains L bits, and L is calculated by the following 415

formula. 416

L =
α (α− 1)

2
+
β (β − 1)

2
+ α 417

The search space contains up to 2L possible candi- 418

date networks. 419

420

Input: The limit of nodes number in each block (Mmin,Mmax), the
limit of blocks number (Nmin, Nmax), the maximal pooling blocks
numberK.
Output: One chromosome

1: Generate a random number n, n ∈ (Nmin, Nmax);
2: flag ← 0
3: gene← empty string
4: while flag < n do
5: Generate a random numberm,m ∈ (Mmin,Mmax);
6: Generate a random sequence s of m(m−1)

2 binary numbers and al-
locate them with “.” separators in CBflag

7: Make sure that the sequence represents a connected graph, see Fig.
10.

8: gene← gene+s+′−′, the ’-’ in this paper is the separator between
genes of blocks and pools

9: flag ← flag + 1
10: end while
11: Generate a random sequence s of n(n−1)

2 numbers and allocate
them with “-” separators in S.

12: Make sure that the series can represent an oriented connected graph,
see Fig. 10.

13: Generate a random sequence p of n binary numbers and allocate
them in P

14: gene← gene+ s+′ −′ + p
Return: chromosome 421

Fig. 6. MOGIG-Net Encoding Strategy and Initialization

3.3. Crossover and Mutation 422

Due to the encoding mechanism proposed in this 423

paper, an ad-hoc crossover operator is here pro- 424

posed to ensure that the offspring solutions mean- 425

ingfully represent structures of neural networks13. 426

Furthermore, a meaningful chromosome must rep- 427

resent a connected graph. 428

The proposed crossover operator combines two 429

chromosomes I and II by selecting randomly some 430

blocks from the first and then filling the missing 431

gaps with the genotype of the second to ensure that 432

the offspring is meaningful. Fig. 7 provides the im- 433

plementation details of the crossover. 434

For the chromosome I, two separators are ran- 435

domly selected. Then the number of separators n 436

between the two selected separators is calculated 437

(line 6). Then, two separators in the chromosome 438

II are selected while the number of separators be- 439

tween these two separators is ensured to be also n 440

(line 7). Finally, the genes between the two separa- 441

tors are exchanged (line 8). 442

The mutation operation, outlined in Fig. 8, con- 443

sists of the random flip from 0 to 1 or from 1 to 0 444

of a gene (except for the position of separator). Al- 445

though the location of mutation changes is limited, 446

the fact is that only small connection changes will 447

affect all the input feature maps after this. 448

449

Input: Two parents, p1 and p2, probability of crossover µ ∈ (0, 1).
Output: Two offspring, q1 and q2.

1: Generate a random number flag;
2: if flag > µ then
3: if num of separators in p1 > num of separators in p2 then
4: p1, p2 ← p2, p1
5: end if
6: Select two different positions of separator randomly, l1 and l2, in p1,

(suppose l1 < l2);
7: Select two different positions of separator randomly, l3 and l4, in p2,

and make sure that the num of separators in p1[l1 : l2] is the same
as the num of separators in p2[l3 : l4];

8: Exchange the parts p1[l1 : l2] and p2[l3 : l4], then get two off-
spring, q1 and q2;

9: else
10: q1 ← p1;
11: q2 ← p2;
12: end if

Return: q1 and q2. 450

Fig. 7. MOGIG-Net Crossover

451

Input: One individual, p, probability of mutation ν ∈ (0, 1), bits to
change, n.
Output: One individual, q.

1: Generate a random number flag;
2: if flag > ν then
3: q ←modify n different bits in q;
4: else
5: q ← p;
6: end if

Return: q. 452

Fig. 8. MOGIG-Net Mutation

3.4. Decoding of MOGIG-Net 453

Fig. 9 represents the construction of the CNN from 454

its chromosome. At first, the CBj (in blue) are de- 455

coded. If the CBj is the same as that in the cor- 456

responding position in its parents, the module is 457

copied from its parents. Otherwise, the module is 458

generated according to the procedure illustrated in 459

Fig. 5. Then, the S is decoded and the corresponding 460

connection is represented by an input array of each 461

block (such as the two red arrows pointing to CB3). 462

Finally, P is decoded and the corresponding posi- 463

tion in each input array of each block is wrapped 464

by an adaptive pooling (like the right sub-figure in 465

9). The connection method in the detailed structure 466

depends on the method which we choose before the 467
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algorithm. If we use the residual structure, we add468

the connection directly. If we use the dense struc-469

ture, we adjust the channel and merge it by using470

the 1x1 convolution kernels to a unitize the channel471

number.472

473

Fig. 9. Construction of a CNN from its chromosome: The
blocks or connections are decided by the part of encod-
ing in the same colour. The green squares represent fixed
structures. FC means a fully connected layer. P means a
pooling layer. Blocks are built in Fig. 5

We also implemented a mechanism to han-474

dle missing connections within and among blocks475

when an adjacency list is generated. Let us consider476

at first the nodes within a block. If the generated477

solution contains a node which has inputs and no478

outputs, then a link between the node and the out-479

put node of the block is created. If the generated so-480

lution contains a node which has outputs and no481

outputs, then a link from the input node is gener-482

ated. If a node has neither inputs nor outputs, then483

the node is removed. The same reasoning is per-484

formed about the connectivity among blocks where485

each node represents a block while input and out-486

put blocks of the CNN are considered instead of487

input and output nodes of the block. Figure 10 de-488

scribes this mechanism by showing the three possi-489

ble scenarios where node 3 has only inputs (left), has490

only outputs (centre), has neither inputs nor out-491

puts.492

During the construction of a CNN from its493

chromosome, the skip connections (in blocks and494

between blocks), which need the sizes of the in-495

put and output to be the same, are fundamental to496

achieve a graph structure network. However, con-497

volution and pooling operations can both change498

the size of the image. This characteristic of CNNs499

makes difficult to unify the input size of each part500

in the graph structure network. Therefore, we main-501

tain the size consistency in the input and output of502

each block or search unit, so that the size reduction503

is completely controlled by the pooling layer. It is504

simple to keep the image size unchanged in the con-505

volution block, only by adjusting the super parame-506

ters of the convolution kernel and avoiding the use507

of a pooling layer.508

The formula for calculating the size of input509

and output is given in Eq.(1), where Xout and Xin510

are the size of the input and output, p is the number511

of padding around the input, d is the offset of two512

adjacent points of the dilated convolution, k is the513

size of the convolution kernel, and s is the step size514

of the convolution operation. Therefore, the size is515

controlled by means of the convolution kernel.516

Xout =

⌊
Xin + 2× p− d× (k − 1)− 1

s
+ 1

⌋
(1)517

Furthermore, since maintaining the consistency518

of image size outside the convolution block (i.e., the519

macro structure) another countermeasure has been520

adopted. We also encode the reduced position of the521

size (but did not add into the genes) as the reduction522

of the size does not affect the use of convolution ker-523

nel, see Fig. 6 line 11.524

We chose adaptive pooling, which is different525

from the traditional pooling operation. This oper-526

ation can dynamically create pooled cores accord-527

ing to the input and output requirements, and it has528

been used in the last layer of many existing models529

31; 33. The step size of the adaptive pooling layer can530

be obtained by Eq (2)531

stride = b sizein
sizeout

c (2)532

where sizein is the size of input feature map and533

sizeout is the size of output feature map. The size of534

pool sizepool is then calculated in Eq (3)535

sizepool = sizein − stride ∗ (sizeout − 1) (3)536

On the basis of these two formulas, we can ad-537

just the kernel of the adaptive pooling layer from538

the size of the input feature map and the size of the539

desired output feature map. As shown in Fig. 11, the540

two pool layers before the block and FC marked in541
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(a)(1.00.111.1111) (b)(1.11.110.1101) (c)(1.00.110.1101)

Fig. 10. Three scenarios to guarantee connected CNN blocks. In the left encoding, node 3 would have only inputs. Thus, an
output link is generated to guarantee connectivity. In the central encoding, node 3 would have only outputs. Thus, an input
link is generated to guarantee connectivity. In the right encoding, node 3 would be isolated. Thus, the node is removed from
the graph.

bold because we choose to add adaptive pools be- 542

fore them. In this way, we can control the size of in- 543

put and output in each layer by controlling the po- 544

sition of adaptive pooling. The location of adaptive 545

pooling and the combination of these channels are 546

referred to as the detailed structure of the individ- 547

ual and are recorded separately. 548

3.5. Evaluation and Environment Selection 549

We divide the training sets D into two parts, 80% 550

of which are real training sets Dtrain, and the rest 551

are validation sets Dvalid. When the new popula- 552

tion of offspring solutions is generated, their per- 553

formance must be assessed to select the population 554

undergoing the following generation. The networks 555

composing the new population undergo training by 556

means of the training set Dtrain. When the change 557

range is below a pre-arranged threshold, the learn- 558

ing rate is adjusted accordingly. If the learning rate 559

adjustment is less than a prearranged value, the 560

training will be stopped. 561

In our approach, we use weight inheritance to speed 562

up the search. Since our crossover operation can en- 563

sure that most of the modules of the network remain 564

unchanged, the weight of the model constructed by 565

the child will directly inherit the weight from the 566

model of the parent. This method, like weight shar- 567

ing, can make the network model obtain a relatively 568

high accuracy rate at the early stage of evolution. 569

In this way, we only need to continue training at a 570

relatively small learning rate to achieve the best per- 571

formance of each network. 572

After the training, the accuracy q.acc (that 573

is the error rate) of the network is assessed by 574

means of the validation set Dvalid. Furthermore, 575

the model size in terms of the number of param- 576

eters q.params is also calculated. Both the scores 577

q.acc and q.params characterise the quality of the 578

candidate CNN. The non-dominated sorting 50 is 579

used to select among parent and offspring solu- 580

tions the population undergoing the following gen- 581

eration, which often used to evaluate the quality 582

of two solutions in the process of multi-objective 583

optimization93. The condition for one individual 584

to dominate another is to have a performance not 585

worse than the other according to all objective and 586
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Fig. 11. The left subgraph is the macro structure without pool layers. After executing line 11 of the algorithm in Fig. 6,
the adaptive pooling is added at the specified location (center subgraph). The right subgraph is micro structure. Each block
includes some convolution cells, and each cell is consist of 3x3 and 1x1 convolution kernels, which do not change the size
of input.

to outperform it according to at least one objective.587

Fig. 12 provides the implementation details of588

evaluation and selection mechanisms.589

590

3.6. Limitations of MOGIG-Net and591

Countermeasures592

Without a prior knowledge on the problem, each593

connection has initially the same probability to be594

set as 0 or as 1. Thus, on average initialized solu-595

tions contain approximately half of the skip connec-596

tions, many of them being unnecessary. These skip597

connections can cause a slow down of the network598

training. Thus, the search efficiency of our method is599

rather low in the early stages. However, the method600

of weight inheritance accelerates the search and par-601

tially mitigates this limitation. Already from the sec-602

ond generation of the population, we observed a603

large number of excellent structures in the popula-604

tion and its parameters are retained along with the605

encoding, which makes the training process overall606

efficient and yields high-performance candidate so-607

lutions.608

4. Experiments609

This section displays the results of the proposed610

MOGIG-Net on two popular datasets and compares611

its performance with that of seventeen NAS meth-612

ods previously proposed in the literature.613

614

Input: The population Pt, the training set Dtrain, the validation set
Dvalid

Output: The new population Pt+1

1: for all individual q in population P do
2: Check the database of fingerprint
3: if fingerprint of q is in the database then
4: Get q.acc and q.params from database;
5: else
6: cnn← Generate the network with q;
7: train cnn on Dtrain until the loss and accuracy don’t change sig-

nificantly;
8: q.acc← the rate of accuracy assessed on the valid set;
9: q.params ← the number of parameters contained in the model

cnn itself;
10: end if
11: Update individual q in population P ;
12: end for
13: Do non-dominated sorting 50 and select half of the individuals who

were better at multiple goals from Pt+1.
Return: Pt+1615

Fig. 12. MOGIG-Net Multi-objective Evaluation and Se-
lection
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The popular datasets considered in this study 616

are Cifar-10 and cifar-100 proposed by the Cana- 617

dian Institute for Advanced Research 37. These two 618

datasets are often used to verify the performance of 619

network models. Each dataset comprises 60000 im- 620

ages, including 50000 in the training set and 10000 in 621

the test set. Each image is a 3-channel colour image, 622

and the height and the width are both 32. There are 623

10 categories in cifar-10 and 100 categories in cifar- 624

100. Both cifar-10 and cifar-100 come from a larger 625

dataset of 80 million small images. Therefore, to a 626

certain extent, cifar-10 and cifar-100 can illustrate 627

the predictive ability of the model. 628

Table 1 displays the results of MOGIG- 629

Net and twenty-one NAS competitors on cifar- 630

10 and cifar-100. The listed methods are divided 631

into three design categories: NAS human design, 632

single-objective approaches and multi-objective ap- 633

proaches. For each NAS method considered in this 634

study, the reference to its original implementation. 635

For each method we report the result of the ob- 636

jectives in the proposed model, that is the accu- 637

racy q.acc expressed in terms to percentage error for 638

Cifar-10 and Cifar-100 and the complexity q.param 639

expressed in million of parameters of the network 640

designed by the corresponding NAS method. We 641

may observe that the proposed MOGIG-Net can ef- 642

ficiently detect networks which combine a relatively 643

low number of parameters and a low percentage er- 644

ror. For example, none of the seventeen competitor 645

NAS methods can achieve an error rate of 14.38% on 646

Cifar-100 with only 3.7 million parameters. With re- 647

spect to NSGA-Net 50, that is a recent NAS method 648

considered the state-of-the-art in the field, the pro- 649

posed MOGIG-Net designed networks with a com- 650

parable performance notwithstanding a lower num- 651

ber of parameters (approximately 10% fewer pa- 652

rameters). 653

Figures 13 and 14 display the solutions in the 654

objective space considered in this study detected by 655

the proposed MOGIG-Net and its competitor. To en- 656

hance the readability of the figures, we present a 657

zoom around the non-dominated solutions. 658

We noticed that when the network structure is 659

relatively large, the number of pooling in the de- 660

tailed structure greatly affects the required training 661

time and the memory space. When the number of 662

pooling is small and the network structure is large, 663

the size of intermediate variables is very large and 664

the training time is very long. The results in this 665

study have been detected after two weeks of calcu- 666

lation. 667

Experimental results show that for networks 668

with similar structures, the accuracy of large mod- 669

els is higher than that of small models, includ- 670

ing our method. The reason of this phenomenon is 671

that the increase in the number of parameters ap- 672

pears to improve the generalization capability of the 673

model. Therefore, the maximum accuracy that can 674

be achieved with large models is higher than that of 675

smaller models. 676

677

Fig. 13. Solutions detected by MOGIG-Net and its com-
petitors represented in the objective space (Cifar-10)

678

Fig. 14. Solutions detected by MOGIG-Net and its com-
petitors represented in the objective space (Cifar-100)

The results in Fig. 13 and Fig. 14 show that 679

MixNet and MobileNetV2 display excellent perfor- 680

mance. However, MixNet and MobileNetV2, unlike 681

the proposed MOGIG-Net are human-designed net- 682

works with a predefined purpose. Thus, the per- 683
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formance of the methods cannot be directly com-684

pared. Also, LaNet produced a solution that dom-685

inates the MOGIG-Net solution for cifar-10. We sus-686

pect that this may be because LaNet tends to se-687

lect large models with high accuracy, and we come688

to this conclusion because some of the networks in689

the search space, like LaNet-L and oneshot-LaNet-690

L, seems to be large.691

However, when the network structure is rel-692

atively small, with the increase of total computa-693

tion times (Multiply-Adds operations), the gener-694

alization performance of the network is also im-695

proving. Consequently, the next step of this work696

will be to transform the network structure and/or697

to determine the number of pooling which is ran-698

domly added to the network structure, instead of699

randomly generating several pooling layers and in-700

serting them into random locations.701

702

Table 1. Results on Cifar-10 and Cifar-100 datasets703
37 of the proposed MOGIG-Net against twen-704

ty-one NAS methods. The percentage error “Error705

Rate (%)” and number of parameters expressed in706

million pf parameters “Params(M)” are reported.707

Name Params(M) Error Rate(%)
Cifar-10 Cifar-100

Human Design
DenseNet(k=12)33 1.0 5.24 24.42

ResNet(depth=101)31 1.7 6.43 25.16
ResNet(depth=1202)31 10.2 7.93 27.82

MobileNetV268 2.2 4.26 19.20
NASNet-A Mobile99 4.2 3.17 16.10

EfficientNet-B086 4.0 1.90 11.90
MixNet87 3.5 2.08 -
DARTS47 3.4 2.83 -

VGG74 20.1 6.66 28.05
NIN44 - 8.81 35.68

Single-Objective Approaches
Genetic CNN91 - 7.10 29.05
Block-QNN97 39.8 3.50 -

Block-QNN-s97 6.1 4.38 20.65
LaNet-S90 3.2 1.63 -
LaNet-L90 44.1 0.99 -

oneshot-LaNet-S90 3.6 1.68 -
oneshot-LaNet-L90 45.3 1.20 -

Large-scale Evolution63 5.4 5.40
40.4 23.00

MetaQNN9 - 6.92 27.14

AE-CNN80 2.0 4.30
5.4 20.85

Multi-Objective Approaches

NSGA-Net50
0.2 4.67
4.0 2.02
0.2 25.17
4.1 14.38

MOGIG-Net

0.9 4.67 -
3.0 3.13 -
3.7 2.01 -
0.7 - 24.71
3.2 - 18.23
3.7 - 14.38

Since numerical results indicate that the pro-708

posed MOGIG-Net is able to design excellent709

CNNs, a future direction of our research will in-710

clude the extension of the encoding strategy to711

other ingenious neural systems recently proposed712

in the literature, such as Enhanced Probabilis-713

tic Neural Network5, Neural Dynamic Classifica-714

tion Algorithm61, Dynamic Ensemble Learning Al-715

gorithm 6, and Finite Element Machine for Fast716

Learning60
717

5. Conclusion718

This paper proposes a NAS method to design CNNs719

with high performance in terms of accuracy and a720

limited impact on the computational resources.721

The proposed algorithm indicated with722

MOGIG-Net makes use of a novel block logic723

based on adjacency list to compose the network724

structure. The encoding mechanism proposed in725

this paper can naturally represent the structure of726

any graph. Moreover, MOGIG-Net employs ad-hoc727

crossover and mutation operators which are de-728

signed to explore the search space and identify po-729

tential candidate structures. At last, the proposed730

network encoding enables that the parent struc-731

tures can be effectively and naturally transferred to732

the offspring during the crossover process. The pro-733

posed approach overcomes the limitation of classi-734

cal NAS approaches based on Evolutionary Algo-735

rithms which require a search in a large space and736

an overhead due to multiple re-training sessions.737

Numerical results on two popular datasets Cifar-10738

and Cifar-100 show that MOGIG-Net can exceed739

most existing network structures.740

This paper confirms that multi-objective opti-741

mization modelling is a promising direction of re-742

search in the field of NAS. Future research will con-743

sider further objectives and strategies to reduce the744

computational cost of the training by e.g. limiting745

the number of skip connections in the first genera-746

tion.747
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