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1. Introduction

In this paper, we propose a test for the null of strict stationarity of a series generated by a Random

Coefficient AutoRegressive (RCAR) model of order 1:

Xt = (ϕ+ bt)Xt−1 + et, t ∈ Z <∞. (1.1)

Our procedure requires minimal moment conditions, and it can be applied as long as sup
t
E |Xt|δ <∞

for some δ > 0. Further, the test can also be used when bt = 0 a.s., thus being valid also in a standard

autoregressive set-up. No prior knowledge is needed as to whether the variance of Xt is finite or not,

or as to whether the autoregressive coefficient is random or not.

The RCAR model was firstly proposed by Anděl (1976), and subsequently extensively studied in the

monograph by Nicholls and Quinn (2012); see also the recent review by Regis et al. (2021). Since its

initial appearance, equation (1.1) has attracted considerable attention by the literature, mainly due

to its flexibility. Indeed, (1.1) nests the AR(1) model as a special case, with the advantage that it

can be viewed as a more flexible competitor for a model with an abrupt break in the autoregressive

root (see, especially, a related paper by Giraitis et al., 2014). (1.1) also belongs in the class of condi-

tional heteroskedasticity models: Tsay (1987) showed that the popular ARCH model can be viewed

as a second-order equivalent to an RCAR model; further, (1.1) is also closely related to the Double
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AutoRegressive (DAR) model Xt = ϕXt−1 + vt with vt =
√
a+ bX2

t−1εt. Finally, a restricted version

of (1.1) with ϕ = 1 has become a popular alternative to deterministic unit root processes - this is

known in the literature as the Stochastic Unit Root (STUR) process, and we refer to the contributions

by Granger and Swanson (1997), McCabe and Tremayne (1995) and Leybourne et al. (1996), among

others, for an overview. On account of such flexibility, (1.1) has been used ubiquitously in applied

sciences, with several examples in such diverse fields as biology (Stenseth et al., 1998), medicine (Fryz,

2017), and physics (Ślezak et al., 2019). The RCAR model has also been applied successfully in the

analysis of economic and financial data, where the STUR variant of (1.1) is viewed as a convenient

way of modelling possibly nonstationary time series: see, inter alia, Tsay (2005) and Banerjee et al.

(2013).

Some aspects of the inference on (1.1) are generally well-developed. As far as estimation of ϕ is

concerned, Quasi-ML estimation has been developed by Aue et al. (2006) and Berkes et al. (2009); Koul

and Schick (1996) and Horváth and Trapani (2016) study Weighted Least Squares (WLS) estimation,

whereas Hill and Peng (2014) and Hill et al. (2016) consider the Empirical Likelihood (EL) estimator.

In addition, Akharif and Hallin (2003), Nagakura (2009) and Horváth and Trapani (2019) propose

tests to check whether the autoregressive coefficient is genuinely random.

Other aspects of the inference on (1.1) are not fully established. In particular, only few results are

available as far as testing for the stationarity/ergodicity of Xt is concerned. This is in stark contrast

with the very well-developed literature on unit roots in the AR(1) case, and also with the rest of the

literature on nonlinear models (see e.g. Tsay, 1997, and Kapetanios et al., 2003, inter alia). Indeed,

most contributions which refer to the RCAR model focus on restricted versions of (1.1), e.g. testing

whether Xt is a genuine unit root process versus the alternative of a STUR process - see McCabe and

Tremayne (1995), Leybourne et al. (1996), Distaso (2008) and Nagakura (2009). Moreover, even in

the AR(1) case, testing procedures usually require the existence of at least the first two moments (see

however Phillips, 1990).

To the best of our knowledge, there are very few contributions which propose a test for the stationarity

of Xt as generated by (1.1). All such contributions have one (restrictive) assumption in common: the

finiteness of the second moment of the data. Indeed, available tests for the RCAR model are typically

based on verifying the necessary and sufficient condition for stationarity (see Nicholls and Quinn, 2012)

ϕ2 + E
(
b20
)
< 1. For example, Aue and Horváth (2011) propose a test based on QMLE, and Zhao

and Wang (2012) study the Empirical Likelihood estimator for (1.1), developing, as a by-product, a
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test for the null of stationarity. In addition to requiring finite variance, both tests also require that

E(b20) > 0, thus not being valid in the case of a pure AR model. Trapani (2021) proposes a procedure

to decide between the null of (strict) stationarity and the alternative of nonstationarity, which does

not require having finite second moments and can be used irrespective of whether bt = 0 a.s. or not.

In particular, Trapani (2021) constructs a family of statistics which converge to a nonzero constant

under the null, and drift to zero under the alternative. Exploiting such rates, a randomised test is

proposed, thus obtaining a test statistic which converges to a well-defined limiting law under the null,

and diverges under the alternative. Despite its generality, the procedure proposed by Trapani (2021)

suffers from one major drawback: the randomness added by each researcher in constructing the test

statistic does not vanish asymptotically. This has two potentially undesirable consequences. Firstly,

different researchers using the same data will have different outcomes, dashing hopes of reproducibility

- in fact, it could be shown that if an infinite number of tests were carried out, the p-values would

follow a U [0, 1] distribution. Secondly, the randomised test is constructed in a non-traditional way,

in that the randomisation amounts to reject randomly H0, with probability 5%, whenever the test

statistic takes a small value, whatever the evidence in favour of the null. Conversely, the test proposed

in this contribution is constructed so as to reject with asymptotic probability 5% at the boundary of

the null hypothesis, but with asymptotic probability 0 at a point belonging to the interior of the null

hypothesis.

This note complements the paper by Trapani (2021). Under the same assumptions, we develop a

test which does not require a randomisation, thus yielding the same outcome for all researchers. The

test is based on the same statistic as in Trapani (2021), say DT . By proving a CLT for the suitably

normed DT − E (DT ), a test is proposed for the null that E (DT ) > 0, which corresponds to strict

stationarity, versus the alternative that E (DT ) = 0, which corresponds to nonstationarity. The relevant

limiting law is shown to hold for all cases considered (finite or infinite variance, random or nonrandom

autoregressive root), with no need for estimation of nuisance parameters. The corresponding testing

procedure is shown to ensure pointwise size control, and a small scale Monte Carlo experiment shows

that the test has good size and power.

NOTATION Henceforth, c0, c1,... denote positive and finite constants that do not depend on the sample

size (unless otherwise stated), and whose value may change from line to line. We use “→” to denote

the ordinary limit; “
D→” to denote convergence in distribution; “

D
=” to indicate equality in distribution;

“a.s.” stands for almost surely.
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2. Testing for strict stationarity

As mentioned in the introduction, we propose a test for H0 : Xt is strictly stationary

HA : Xt is nonstationary
(2.1)

Under the assumption that logarithmic moments exist for e0 and ϕ+ b0, the strict stationarity of Xt

depends on whether θ = E ln |ϕ+ b0| is negative or not. Indeed, when −∞ ≤ θ < 0, then it is well

known (Aue et al., 2006) that Xt is strictly stationary, in the sense that it converges (exponentially

fast and for all initial values X0) to a strictly stationary solution. Conversely, if θ ≥ 0, then Xt is

nonstationary. In particular, when θ > 0, Xt exhibits an explosive behaviour, i.e. exp(−C0t) |Xt| → ∞

a.s. for all 0 < C0 < θ (see e.g. Corollary 1 in Berkes et al., 2009). On the other hand, when θ = 0, Xt

is also nonstationary, although in this case |Xt| diverges at a slower rate than exponential (Horváth

and Trapani, 2016; Horváth and Trapani, 2019).

We require the following assumptions, which are the same as in Trapani (2021).

Assumption 1. It holds that: (i) {bt,−∞ < t < ∞} and {et,−∞ < t <∞} are independent se-

quences; (ii) {bt,−∞ < t < ∞} are independent and identically distributed random variables; (iii)

{et,−∞ < t < ∞} are independent and identically distributed random variables; (iv) b0 and e0 are

symmetric random variables; (v) E |b0|ν <∞ and E |e0|ν <∞ for some ν > 0; (vi) X0 is independent

of {et, bt, t ≥ 1} with E |X0|ν <∞.

Assumption 2. If θ < 0, it holds that (i) P
(
|X̄0| = 0

)
< 1; (ii) P (|e0| = 0) < 1.

Assumption 3. If θ ≥ 0, it holds that: (i) e0 has bounded density; (ii) when P (b0 = 0) < 1,

E |ln |ϕ+ b0||k <∞ for some k > 2; (iii) EX2
0 <∞.

Assumption 4. When θ = 0 with b0 = 0 a.s., it holds that either (i) E |X0|2 <∞ and E |e0|ν
′
<∞ for

some ν′ > 2; or (ii) (a) {et,−∞ < t <∞} are symmetric random variables with common distribution

F (x) such that

1− F (x) = C0x
−γ + ς (x)x−γ , x ≥ x0,

with C0 > 0, γ ∈ (0, 2] and ς (x) → 0 as x → ∞, with ς (x)x−γ decreasing for all x ≥ x0; and (b)

E |X0|γ
′
<∞ for all γ′ < γ.

Assumptions 1-4 are the same as in Trapani (2021). Comments and examples are in the Supplement.
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In order to propose a “universal” test for H0 in (2.1), recall that - under all possible circumstances,

i.e. whether bt = 0 a.s. or not and/or whether E |Xt|2 <∞ or not - it holds that |Xt| → ∞ a.s. or not

according as Xt is non-stationary or stationary. Given a sample 1 ≤ t ≤ T , and along the same lines

as in Trapani (2021), therefore, we propose using the transformation

Yt (a) =
a

a+X2
t

, (2.2)

with 0 < a <∞. In particular, Trapani (2021) shows that, as T →∞

1

T

T∑
t=1

Yt (a) =

 c0 (a) + oa.s. (1)

O (T−ε)
according as

θ < 0

θ ≥ 0
, (2.3)

with 0 < c0 (a) <∞ and for all ε > 0 and all a > 0.

In order to ensure scale invariance, we propose

Yt =

∫ ∞
0

Yt (a) dF (a) , (2.4)

where F (a) is a distribution.

Theorem 1. We assume that Assumptions 1 and 4 are satisfied. Then, as T →∞, under Assumption

2 it holds that ∑T
t=1 (Yt − E (Yt))(

E
(∑T

t=1 (Yt − EYt)
)2)1/2

D→ Z, (2.5)

with E (Yt) > 0, where Z ∼ N (0, 1). Under Assumption 3, it holds that, for all β ≥ 1

1

T

T∑
t=1

Y βt = oa.s. (1) . (2.6)

Based on Theorem 1, a test for the null of strict stationarity could be based on the one-sided α-level

confidence interval

CIα =

(
T−1

T∑
t=1

Yt − cαT−1/2V 1/2,∞

)
,

where

V = lim
T→∞

E

(
T−1/2

T∑
t=1

(Yt − EYt)

)2

.

If CIα contains 0, this indicates that Xt is nonstationary, whereas if it does not, then it may be

concluded that Xt is stationary. Equation (2.5) ensures that, as T → ∞, under H0 it holds that

P (0 ∈ CIα) = α for all θ < 0; similarly, by (2.6), as T →∞, under HA it holds that P (0 ∈ CIα) = 1.
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In order to make the test feasible, we propose a (standard) weighted-sum-of-covariances estimator for

V

V̂ = r̂0 + 2

H∑
j=1

(
1− j

H + 1

)
r̂j ,

having defined

r̂j =
1

T

T∑
t=j+1

(
Yt −

1

T

T∑
t=1

Yt

)(
Yt−j −

1

T

T∑
t=1

Yt

)
,

for j = 0, 1, ....

Lemma 1. We assume that Assumptions 1 and 2 are satisfied. Then, as min (H,T )→∞ with H3

T → 0,

it holds that V̂ = V + oP (1). Under Assumptions 1 and 3-4, it holds that T−1/2V̂ = oP (1).

3. Simulations

We assess the performance of the proposed method through a small Monte Carlo exercise, using (1.1)

as a DGP. We generate bt and et as independent of each other and i.i.d. with a power law distribution

with tail index γ - that is, letting F (x) denote the common distribution of b0 and e0, F (x) = Cx−γ ;

we simulate the power law distribution as indicated in Clauset et al. (2009), by setting

εt = σε (1− ve,t)−1/γ , (3.1)

bt = σb (1− vb,t)−1/γ , (3.2)

where ve,t and vb,t are generated independently and as i.i.d. from a uniform distribution on the interval

[0, 1], and then we center εt and bt around zero; σε and σb are scale parameters. Across all experiments,

we have used γ = 1.2, and 1.5, and we have also considered, as benchmark, the case where bt and

et are generated as N
(
0, σ2

b

)
and N (0, 1), respectively. As far as the implementation of the test is

concerned, we have used a = ±0.5, drawn with equal probability. Preliminary experiments show that

using cα = 1.64 (corresponding to a 95% confidence interval) works well in general, but it yields very

low power in the unit root case, where ϕ = 1 and bt = 0 a.s.; in order to enhance power, we propose a

less conservative approach based on using the interval

(
T−1

∑T
t=1 Yt −

√
lnT
T V 1/2,∞

)
. In addition to

reporting results for this test, we also consider, by way of comparison, the test developed by Trapani

(2021), the test proposed in Zhao and Wang (2012), and also a test, based on the QML estimator,

proposed in Aue and Horváth (2011). We point out that the hypothesis testing in Zhao and Wang

(2012) (similarly to Aue and Horváth, 2011) is spelt out as

H0 : ϕ2 + σ2
b ≤ 1− h (3.3)

HA : ϕ2 + σ2
b ≥ 1 + h,
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where h > 0 is a user defined truncation (in our experiments, we have used h = 1/8, which is one of

the values proposed in Zhao and Wang, 2012). Based on this, it can be anticipated that the test may

have size distortion when ϕ2 + σ2
b is smaller than 1, but close to the boundary. Finally, the number or

replications is set equal to 1, 000 - this entails that, when considering empirical rejection frequencies

under the null, these have a confidence interval of [0.036, 0.064].

Table 1 reports results for “ordinary” cases, where the null and the alternative are not on the boundary.

In these case, the test has the correct behaviour under both the null and the alternative. Indeed, the

test has very low probability of Type 1 error for all cases (with the partial exception of the Gaussian

case with (ϕ, σb) = (1.05, 0.1), although as T increases this distortion vanishes) under the null. The

power of the testing procedure is satisfactorily high whenever θ > 0, and it seems to be only marginally

affected by γ; note that the test by Zhao and Wang (2012), especially for smaller values of T , has higher

power, although in some cases the power of that test, puzzlingly, dips as T increases. Note also that

the test by Trapani (2021) does not have vanishing empirical rejection frequencies for θ very faraway

from 1. This is due to the fact that, as mentioned in the introduction, the test is constructed so as to

reject the null with 5% probability irrespective of whether θ is very close to the boundary (i.e., θ = −ε)

or well inside the parameter space defined by the null (i.e. θ << 0).

Boundary cases are explored in Table 2. The results show that the test has the best performance among

all tests considered as far as probability of Type 1 error is concerned, at least when T ≥ 1, 000. In

general, it can be noted that the empirical rejection frequencies decline as T increases, but less quickly

as γ decreases. The power of the testing procedure is satisfactorily high for all cases considered, and

it seems to be only marginally affected by γ. Interestingly, as could be predicted on the grounds of

(3.3), the test by Zhao and Wang (2012) has severe size distortion when the null is satisfied but very

close to the boundary; conversely, their test is very powerful versus the alternative, but this is bound

to be affected by the size distortion. In addition to studying several boundary cases, in Table 3, we

have run a small scale experiment to assess the behaviour of the test in the case of the popular STUR

specification, where ϕ = 1, but having σb > 0 may entail that the series is stationary. Again, the test

has low rejection frequency under the null and satisfactory power - indeed, the test by Zhao and Wang

(2012) has higher power, but occasionally, especially when θ is close to zero but negative, this is at the

expense of size. Interestingly, in the STUR set-up, the procedure based on Aue and Horváth (2011)

does not seem to work even in the Gaussian case.

Finally, in the Supplement we report further evidence concerning the case of a time-varying, determin-
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istic coefficient1.

Appendix A: Proofs and technical lemmas

We report some preliminary lemmas and the proof of Theorem 1. The proofs of the lemmas, and the

proof of Lemma 1, which is quite repetitive, are in the Supplement.

We know from the proof of Lemma 2 in Aue et al. (2006) that there exists a k ∈ (0, ν) such that

0 ≤ δ = E |ϕ+ b0|k < 1. Also, when −∞ ≤ θ < 0

Xt =

t∑
s=−∞

es

t∏
z=s+1

(ϕ+ bz) , (A.1)

converges a.s.; the process
{
Xt, t ∈ Z

}
is the unique, stationary, causal solution of (1.1) - see Aue et al.

(2006). In the proofs, we will also use the construction

X̂t =

t∑
s=t−bβ lnTc

es

t∏
z=s+1

(ϕ+ bz) +

t−bβ lnTc−1∑
s=−∞

ês

t∏
z=s+1

(
ϕ+ b̂z

)
, (A.2)

where β is chosen as

β =
1 + k + ε

1− δ
, (A.3)

with ε > 0, and
{
êt, b̂t

}∞
t=−∞

are completely independent and independent of {et, bt}∞t=−∞, with

êt
D
= et and b̂t

D
= bt. Clearly, X̂t

D
= Xt. Finally, we define the short-hand notation

z′t =

∫
a

a+X
2

t

dF (a)− E
∫

a

a+X
2

0

dF (a) . (A.4)

zt =

∫
a

a+ X̂2
t

dF (a)− E
∫

a

a+X
2

0

dF (a) . (A.5)

We now report some preliminary lemmas.

Lemma A.1. We assume that Assumptions 1 and 4 are satisfied. Then it holds that

T∑
t=1

(∫
a

a+ X̂2
t

dF (a)−
∫

a

a+X
2

t

dF (a)

)
= OP

(
Tδbβ lnTc/(1+k)

)
= O

(
T−ε

)
. (A.6)

Lemma A.2. We assume that Assumptions 1 and 4 are satisfied. Then it holds that

E

(
T∑
t=1

z′t

)2

= O (T ) . (A.7)

Let B2
T = V ar

(∑T
t=1 zt

)
.

1I wish to thank a Referee for asking the question which led to this idea.
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Lemma A.3. We assume that Assumptions 1 and 4 are satisfied. Then it holds that

E

(
m∑
t=1

zt

)2

= O
(
m2
)
, (A.8)

B2
T = O (T lnT ) , (A.9)

B2
T ≥ c0T. (A.10)

Lemma A.4. We assume that Assumptions 1 and 4 are satisfied. Then it holds that∑T
t=1 z

′
t[

E
(∑T

t=1 z
′
t

)2]1/2 =

∑T
t=1 zt[

E
(∑T

t=1 zt

)2]1/2 + oP (1) .

Lemma A.5. We assume that Assumptions 1 and 4 are satisfied. Then it holds that∑T
t=1 zt[

E
(∑T

t=1 zt

)2]1/2 D→ N (0, 1) .

Let z̃t = Yt−E (Yt); then equation (7.7) in Horváth and Trapani (2016) yields E |z̃t − z′t| = O (δt), for

some 0 < δ < 1, so that it follows immediately that

T∑
t=1

z̃t =

T∑
t=1

z′t +OP (1) . (A.11)

Also note that

E

(
T∑
t=1

z̃t

)2

− E

(
T∑
t=1

z′t

)2

= E

[(
T∑
t=1

(z̃t + z′t)

)(
T∑
t=1

(z̃t − z′t)

)]

≤

E( T∑
t=1

(z̃t + z′t)

)2
1/2 E( T∑

t=1

(z̃t − z′t)

)2
1/2

.

We now have that

E

(
T∑
t=1

(z̃t − z′t)

)2

= E

(
T∑
t=1

T∑
s=1

(z̃t − z′t) (z̃s − z′s)

)
≤

T∑
t=1

T∑
s=1

[
E (z̃t − z′t)

2
]1/2 [

E (z̃s − z′s)
2
]1/2

(A.12)

≤

(
T∑
t=1

[
E (z̃t − z′t)

2
]1/2)2

≤

(
2

T∑
t=1

(E |z̃t − z′t|)
1/2

)2

= O (1) ,

by the same logic as above. Also, noting that E
(∑T

t=1 (z̃t + z′t)
)2
≤ 2E

(
2
∑T
t=1 z

′
t

)2
+ 2E

(∑T
t=1 (z̃t − z′t)

)2
= O (T ), by virtue of Lemma A.2 and (A.12), it follows that

E

(
T∑
t=1

z̃t

)2

= E

(
T∑
t=1

z′t

)2

+O
(
T 1/2

)
. (A.13)
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Thus, (A.11) and (A.13) yield ∑T
t=1 z̃t[

E
(∑T

t=1 z̃t

)2]1/2 =

∑T
t=1 z

′
t[

E
(∑T

t=1 z
′
t

)2]1/2 + oP (1) . (A.14)

Lemmas A.4 and A.5 now yield the desired result.

We now show that

E

(
a

a+ X̂2
0

)
> 0. (A.15)

Indeed, for all 0 < c0 <∞

E

(
a

a+ X̂2
0

)
= E

(
a

a+ X̂2
0

|X̂2
0 ≥ c0

)
P
(
X̂2

0 ≥ c0
)

+ E

(
a

a+ X̂2
0

|X̂2
0 < c0

)
P
(
X̂2

0 < c0

)
≥ E

(
a

a+ X̂2
0

|X̂2
0 < c0

)
P
(
X̂2

0 < c0

)
≥ c1P

(
X̂2

0 < c0

)
.

Assumption 2(i) immediately entails that there exists a d > 0 such that E
∣∣X0

∣∣d > 0; thus, P
(
X̂2

0 ≥ c0
)
≤

c
−d/2
0 E

∣∣X0

∣∣d. Upon choosing c
d/2
0 = b + E

∣∣X0

∣∣d, for some b > 0, it follows that P
(
X̂2

0 ≥ c0
)
< 1,

which yields (A.15). This readily entails that E
(∫

a

a+X̂2
0

dF (a)
)
> 0; in turn, this entails E (Yt) > 0.

Finally, (2.6) has been shown in Lemma 10 in Trapani (2021).

Table 1
Empirical rejection frequencies

Gaussian case

T = 500 T = 1000 T = 2000 T = 4000 LT
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (0.5, 0.1) θ = −0.922 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.058 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.051
(ϕ, σb) = (0.5, 0.0) θ = −0.693 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.051
(ϕ, σb) = (0.75, 0.1) θ = −0.412 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.052 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.051
(ϕ, σb) = (1.05, 0.1) θ = −0.007 0.080 0.130 0.996 0.335 0.076 0.090 1.000 0.480 0.050 0.050 1.000 0.592 0.022 0.005 1.000 0.972
(ϕ, σb) = (1.05, 0.0) θ = 0.049 0.742 1.000 1.000 0.980 0.887 1.000 1.000 0.998 0.951 0.566 1.000 1.000 0.958 0.766 1.000 1.000

γ = 1.5, σe = 0.1

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (0.5, 0.1) θ = −1.801 0.006 0.001 0.029 0.053 0.000 0.000 0.048 0.047 0.006 0.000 0.081 0.051 0.001 0.000 0.131 0.046
(ϕ, σb) = (0.5, 0.0) θ = −0.693 0.000 0.000 0.001 0.045 0.000 0.000 0.002 0.053 0.000 0.000 0.005 0.059 0.000 0.000 0.007 0.046
(ϕ, σb) = (0.75, 0.1) θ = −0.921 0.006 0.001 0.096 0.048 0.000 0.000 0.125 0.052 0.004 0.000 0.195 0.058 0.000 0.000 0.240 0.046
(ϕ, σb) = (1.05, 0.1) θ = −0.299 0.008 0.001 0.464 0.062 0.001 0.002 0.472 0.044 0.003 0.000 0.495 0.060 0.000 0.000 0.495 0.046
(ϕ, σb) = (1.05, 0.0) θ = 0.049 0.969 0.974 0.950 0.999 0.992 1.000 0.984 0.998 0.998 0.788 0.983 1.000 1.000 1.000 1.000 1.000

γ = 1.2, σe = 0.1

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (0.5, 0.1) θ = −0.514 0.002 0.009 0.172 0.044 0.001 0.000 0.187 0.042 0.001 0.000 0.250 0.059 0.009 0.001 0.270 0.048
(ϕ, σb) = (0.5, 0.0) θ = −0.693 0.012 0.000 0.025 0.046 0.014 0.000 0.027 0.047 0.002 0.000 0.063 0.058 0.001 0.000 0.084 0.048
(ϕ, σb) = (0.75, 0.1) θ = −1.069 0.001 0.003 0.210 0.039 0.001 0.000 0.215 0.041 0.009 0.000 0.253 0.057 0.008 0.000 0.250 0.048
(ϕ, σb) = (1.05, 0.1) θ = −0.959 0.000 0.000 0.309 0.042 0.000 0.000 0.299 0.040 0.000 0.000 0.301 0.055 0.000 0.000 0.275 0.048
(ϕ, σb) = (1.05, 0.0) θ = 0.049 0.991 1.000 0.918 0.994 1.000 1.000 0.954 1.000 0.999 0.704 0.955 1.000 1.000 1.000 1.000 1.000

The tests considered in the table are, in addition to the one developed in this paper: Zhao and Wang (2012) (denoted as ZW); the one based on the
QML estimator studied in Aue and Horváth (2011) (denoted as AH); and the one developed in Trapani (2021) (denoted as LT).
As in the remainder of the paper, we use the notation ϑ = E ln |φ + b0|. Routines are written using Gauss 21. In all experiments, T + 1, 000
datapoints have been generated, discarding the first 1, 000 observations to remove dependence on initial conditions.
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Table 2
Empirical rejection frequencies

Gaussian case

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (1, 0.0) θ = 0.000 0.659 0.707 0.192 0.526 0.680 0.823 0.221 0.688 0.692 0.812 0.200 0.755 0.698 0.876 0.205 0.904
(ϕ, σb) = (1, 0.05) θ = −0.001 0.087 0.104 0.638 0.066 0.029 0.122 0.833 0.055 0.000 0.093 0.964 0.058 0.000 0.082 1.000 0.048
(ϕ, σb) = (1, 0.1) θ = −0.062 0.000 0.000 0.819 0.081 0.000 0.002 0.957 0.068 0.000 0.000 0.999 0.054 0.000 0.001 1.000 0.048
(ϕ, σb) = (1, 0.2) θ = −0.141 0.000 0.001 0.934 0.058 0.000 0.002 0.999 0.062 0.000 0.001 1.000 0.059 0.000 0.000 1.000 0.048

γ = 1.5, σe = 0.1

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (1, 0.0) θ = 0.000 0.409 0.740 0.064 0.566 0.505 0.795 0.076 0.703 0.543 0.811 0.106 0.786 0.639 0.838 0.149 0.876
(ϕ, σb) = (1, 0.05) θ = −0.030 0.004 0.000 0.361 0.073 0.001 0.000 0.401 0.064 0.001 0.000 0.433 0.058 0.000 0.000 0.492 0.049
(ϕ, σb) = (1, 0.1) θ = −0.381 0.004 0.001 0.340 0.071 0.002 0.000 0.422 0.071 0.002 0.000 0.457 0.055 0.000 0.000 0.458 0.049
(ϕ, σb) = (1, 0.2) θ = −0.707 0.014 0.001 0.354 0.053 0.009 0.000 0.406 0.055 0.003 0.001 0.445 0.061 0.000 0.000 0.461 0.049

γ = 1.2, σe = 0.1

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (1, 0.0) θ = 0.000 0.428 0.684 0.098 0.554 0.521 0.691 0.116 0.683 0.655 0.712 0.137 0.779 0.737 0.991 0.168 1.000
(ϕ, σb) = (1, 0.05) θ = −0.089 0.037 0.000 0.290 0.059 0.026 0.001 0.322 0.064 0.020 0.000 0.304 0.057 0.028 0.000 0.329 0.046
(ϕ, σb) = (1, 0.1) θ = −1.019 0.034 0.003 0.271 0.079 0.039 0.001 0.292 0.072 0.004 0.000 0.328 0.063 0.004 0.000 0.315 0.046
(ϕ, σb) = (1, 0.2) θ = −0.677 0.009 0.004 0.301 0.070 0.007 0.000 0.321 0.066 0.001 0.001 0.369 0.059 0.001 0.000 0.343 0.046

See Table 1 for details.

Table 3
Empirical rejection frequencies

Gaussian case

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (0.95, 0.0) θ = −0.051 0.000 0.031 0.000 0.056 0.000 0.095 0.000 0.059 0.000 0.239 0.000 0.051 0.000 0.461 0.000 0.051
(ϕ, σb) = (0.98, 0.0) θ = −0.020 0.012 0.997 0.000 0.058 0.000 1.000 0.000 0.054 0.000 1.000 0.000 0.054 0.000 1.000 0.000 0.051
(ϕ, σb) = (0.99, 0.0) θ = −0.011 0.126 1.000 0.399 0.038 0.027 1.000 0.540 0.038 0.000 1.000 0.726 0.058 0.000 1.000 0.910 0.051
(ϕ, σb) = (0.99, 0.05) θ = −0.010 0.028 0.018 0.401 0.043 0.001 0.021 0.713 0.055 0.000 0.027 0.777 0.056 0.000 0.015 0.923 0.051
(ϕ, σb) = (1.01, 0.01) θ = 0.005 0.828 1.000 0.812 0.966 0.928 1.000 0.959 0.978 0.971 1.000 0.997 1.000 0.994 1.000 1.000 1.000
(ϕ, σb) = (1.01, 0.0) θ = 0.010 0.960 1.000 0.902 0.998 0.997 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

γ = 1.5, σe = 0.1

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (0.95, 0.0) θ = −0.051 0.008 0.199 0.003 0.037 0.000 0.349 0.002 0.040 0.003 0.504 0.013 0.058 0.000 0.762 0.035 0.046
(ϕ, σb) = (0.98, 0.0) θ = −0.020 0.043 0.990 0.166 0.044 0.027 1.000 0.186 0.041 0.016 1.000 0.173 0.059 0.001 1.000 0.200 0.046
(ϕ, σb) = (0.99, 0.0) θ = −0.011 0.126 1.000 0.344 0.052 0.080 1.000 0.405 0.037 0.040 1.000 0.416 0.058 0.022 1.000 0.424 0.046
(ϕ, σb) = (0.99, 0.05) θ = −0.032 0.004 0.001 0.385 0.044 0.001 0.002 0.412 0.042 0.001 0.000 0.442 0.058 0.000 0.000 0.445 0.046
(ϕ, σb) = (1.01, 0.01) θ = −0.055 0.116 0.128 0.812 0.062 0.031 0.142 0.959 0.062 0.007 0.118 0.997 0.059 0.000 0.152 1.000 0.046
(ϕ, σb) = (1.01, 0.0) θ = 0.010 0.977 0.993 0.598 0.994 0.997 1.000 0.726 1.000 0.999 1.000 0.824 1.000 1.000 1.000 0.906 1.000

γ = 1.2, σe = 0.1

T = 500 T = 1000 T = 2000 T = 4000
This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT This paper ZW AH LT

(ϕ, σb) = (0.95, 0.0) θ = −0.051 0.018 0.315 0.015 0.041 0.007 0.483 0.041 0.053 0.002 0.648 0.096 0.060 0.006 0.825 0.152 0.049
(ϕ, σb) = (0.98, 0.0) θ = −0.020 0.080 0.992 0.219 0.044 0.034 1.000 0.197 0.054 0.020 1.000 0.210 0.061 0.012 1.000 0.267 0.049
(ϕ, σb) = (0.99, 0.0) θ = −0.011 0.169 0.998 0.353 0.048 0.138 1.000 0.397 0.051 0.090 1.000 0.388 0.061 0.047 1.000 0.421 0.049
(ϕ, σb) = (0.99, 0.05) θ = −0.090 0.037 0.001 0.315 0.046 0.026 0.000 0.283 0.038 0.020 0.000 0.295 0.061 0.028 0.000 0.282 0.049
(ϕ, σb) = (1.01, 0.01) θ = −0.293 0.020 0.000 0.000 0.055 0.011 0.000 0.000 0.057 0.011 0.000 0.000 0.061 0.007 0.000 0.000 0.049
(ϕ, σb) = (1.01, 0.0) θ = 0.010 0.957 0.994 0.584 0.991 0.997 1.000 0.704 1.000 1.000 1.000 0.761 1.000 1.000 1.000 0.853 1.000

See Table 1 for details.
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Anděl, J. (1976). Autoregressive series with random parameters. Mathematische Operationsforschung

und Statistik 7 (5), 735–741.
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