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High intake of vegetables is linked to lower
white blood cell profile and the effect is
mediated by the gut microbiome
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Abstract

Background: Chronic inflammation, which can be modulated by diet, is linked to high white blood cell counts and
correlates with higher cardiometabolic risk and risk of more severe infections, as in the case of COVID-19.

Methods: Here, we assessed the association between white blood cell profile (lymphocytes, basophils, eosinophils,
neutrophils, monocytes and total white blood cells) as markers of chronic inflammation, habitual diet and gut
microbiome composition (determined by sequencing of the 16S RNA) in 986 healthy individuals from the PREDICT-
1 nutritional intervention study. We then investigated whether the gut microbiome mediates part of the benefits of
vegetable intake on lymphocyte counts.

Results: Higher levels of white blood cells, lymphocytes and basophils were all significantly correlated with lower
habitual intake of vegetables, with vegetable intake explaining between 3.59 and 6.58% of variation in white blood
cells after adjusting for covariates and multiple testing using false discovery rate (q < 0.1). No such association was
seen with fruit intake. A mediation analysis found that 20.00% of the effect of vegetable intake on lymphocyte
counts was mediated by one bacterial genus, Collinsella, known to increase with the intake of processed foods and
previously associated with fatty liver disease. We further correlated white blood cells to other inflammatory markers
including IL6 and GlycA, fasting and post-prandial glucose levels and found a significant relationship between
inflammation and diet.

Conclusion: A habitual diet high in vegetables, but not fruits, is linked to a lower inflammatory profile for white
blood cells, and a fifth of the effect is mediated by the genus Collinsella.

Trial registration: The ClinicalTrials.gov registration identifier is NCT03479866.
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Background
Inflammation is a normal component of host defence;
however, elevated unresolved chronic inflammation is a
core perturbation in a range of chronic diseases [1].
Chronic inflammation and activation of immune cells
are key mechanisms in the development of atheroscler-
osis with hypercholesterolemia-induced neutrophil re-
cruitment promoting early atherosclerotic changes [2].
Moreover, inflammation is an important contributor to
type 2 diabetes, via the processes of insulin resistance
and islet β cell failure [3], and increased white blood cell
(WBC) counts are predictive of incidence for type 2 dia-
betes [3, 4]. Neutrophils, which are the predominant cir-
culating WBC in humans, kill and degrade microbes via
the process of phagocytosis [5] and are major effectors
of acute inflammation. They also contribute to chronic
inflammatory conditions [6] including atherosclerosis [2]
and adipose tissue inflammation [7]. Furthermore,
chronic inflammation promotes lymphocyte infiltration
into inflamed non-lymphoid tissues that do not recruit
significant numbers of lymphocytes under normal condi-
tions [8].
In the past decade, the composition of the gut micro-

biome has been identified as a key modifier of chronic
inflammation and cardiometabolic risk [9]. Interactions
between toll-like receptors (TLRs) and NOD-like recep-
tors (NLRs) of the intestinal epithelium and bacterial
pathogen-associated molecular patterns (PAMPs), the
most common being lipopolysaccharide present on the
membrane of Gram-negative bacteria, can result in the
release of proinflammatory cytokines. This results in a
balance between regulation of expression of epithelial re-
ceptors in the gut and stimulation by the gut microbiota.
Independently of this direct interaction between the
gastrointestinal epithelium and constituents of the
microbiota, by-products of bacterial fermentation of
components of the diet can also modulate the immune
system. For example, short chain fatty acids produced
via the fermentation of fibre will inhibit inflammation
via suppression of monocyte and macrophage recruit-
ment and cytokine production [10]. Conversely,
trimethylamine-N-oxide, formed through the microbial
breakdown of choline to trimethylamine after metabol-
ism in the liver, will induce inflammation and athero-
sclerosis via inhibition of cholesterol transport and
promotion of macrophage cholesterol accumulation by
modulating scavenger receptor expression [11, 12]. As
the main site of nutrient absorption, there is a clear
interdependence between the gut microbiome and diet,
with both of these factors interacting with the immune
system [13].
A substantial amount of evidence suggests that many

foods, nutrients and non-nutrient components modulate
inflammation and immune function, both acutely and

chronically [14–16]. In particular, a reduction in inflam-
matory markers (hs-CRP and TGF-ß) has been observed
in individuals adhering to a healthy plant-based diet [17,
18]. More specifically, a role has been proposed for diet-
ary nitrate, the main source of which is leafy green vege-
tables such as spinach and lettuce [19] . In a 12-week
placebo-controlled animal model, nitrate-fed mice had
reduced systemic leukocyte rolling and adherence, circu-
lating neutrophil numbers, neutrophil CD11b expression
and myeloperoxidase activity (an enzymatic marker of
neutrophil tissue infiltration, compared with wild-type
littermates) [20]. Additionally, dietary nitrate administra-
tion was reported to reduce tissue level expression of
myeloperoxidase [21] and oxidative stress [22], a patho-
physiological process closely related to chronic low-
grade inflammation [23].
The COVID-19 pandemic [24] has revealed a signifi-

cantly higher risk of hospitalisation and death among in-
dividuals with cardiometabolic comorbidities, including
type 2 diabetes, hypertension and cardiovascular diseases
[25], with associated endothelial dysfunction [26]. This
has brought to the forefront the key question of how can
inflammatory markers be modulated by diet and what
are the links between diet, gut microbiome and
inflammation.
The aim of this study is to investigate the links be-

tween white blood cell counts (overall and by subtypes),
as markers of chronic inflammation, habitual diet and
gut microbiome composition in the PREDICT-1 Study
[27].

Methods
Study design and participants
We included 986 individuals from the UK-based PRED
ICT-1 study with 16S gut microbiome, white blood cell
profile markers and who completed a food frequency
questionnaire (FFQ). The PREDICT-1 study [27] was a
single-arm nutritional intervention conducted between
June 2018 and May 2019. Study participants were
healthy individuals (thus eliminating potential con-
founders brought about by the presence of infections or
other comorbidities) aged between 18 and 65 years re-
cruited from the TwinsUK registry [28] and the general
population using online advertising. Participants
attended a full day clinical visit consisting of test meal
challenges followed by a 13-day home-based phase, as
previously described [27].

Blood cell count measurements
Blood samples were collected using EDTA tubes for
measurement of the complete blood cell counts. They
were analysed on a blood cell counter (Beckman Coulter,
CA). The following parameters were considered as expo-
sures: WBC; total and differential WBC count (109 cells/
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L), including lymphocytes, monocytes, neutrophils, eo-
sinophils and basophils.

Inflammatory markers
Levels of IL-6 were measured by Affinity Biomarkers,
London, using the standardised Human Proinflamma-
tory panel 1 assay kit (cat number K151A0H-1), distrib-
uted by Meso Scale Discovery.

Dietary information
Habitual dietary information was estimated via food fre-
quency questionnaires (FFQs), and nutrient intakes were
determined using FETA software to calculate macro-
and micronutrient [29]. FFQs were excluded if more
than 10 of 187 food items were left unanswered or if the
estimated total energy intake derived from FFQ as a ra-
tio of the subject’s estimated basal metabolic rate (deter-
mined by the Harris–Benedict equation) [29] was more
than 2 standard deviations outside the mean of this ratio
(< 0.52 or > 2.58), as previously described [27]. From
FFQs, intake for fruit and vegetables was quantified by
the number of portions and grams. In addition to total
vegetable intake, 5 categories of vegetables were gener-
ated from characteristics, including allium, cruciferous,
green leafy, yellow and other (as explained in Table S1).
Nitrate intake was estimated from 19 vegetables that

overlapped with the European Food Safety Authority
panel on nitrates in vegetables [19], where European
member states were requested to report nitrate concentra-
tions in individual vegetable samples. To ensure compar-
able levels of performance between laboratories, strict
requirements to commission regulation (No. 1882/2006)
were in place. Over 21 states provided 40,861 data points
[19]. Mean (mg/kg) and median (mg/kg) nitrate concen-
trations for each type of vegetable were then estimated
[19], facilitating nitrate content (mg) per portion for 19
vegetables from our FFQ to be calculated. For each vege-
table, nitrate per portion was multiplied by reported quan-
tity consumed. Then, nitrate intake from all 19 vegetables
was summated to generate total nitrate intake.

The plant-based diet index
Two versions of the plant-based diet index were consid-
ered [30]: the healthy plant-based index (h-PDI) and the
unhealthy plant-based index (u-PDI). Eighteen food
groups (amalgamated from the FFQ food groups) were
assigned either positive or reverse scores after segrega-
tion into quintiles [31]. For the h-PDI, positive scores
were applied to the ‘healthy’ plant foods, with a score of
5 given to those in the highest quintile and 1 in the low-
est, and a reverse score to the ‘less-healthy’ plant foods
and the animal-based foods. Scores were then summated
with possible scores ranging from 18 to 90 (18 food
groups scored at a minimum 1 and maximum 5). The

opposite arrangement was applied to the u-PDI, a posi-
tive score to ‘less-healthy’ and a negative score to
‘healthy’ plant foods.

Stool-sample collection
Participants collected a stool sample at home prior to
their clinical visit using the EasySampler collection kit
(ALPCO). Upon receipt at the laboratory, samples were
homogenised, aliquoted and stored at − 80 °C in Qiagen
PowerBeads 1.5-ml tubes (Qiagen) as previously de-
scribed [27].

Microbiome 16S RNA gene sequencing
Gut microbiome composition was determined by 16S
rRNA gene sequencing carried out as previously de-
scribed [27]. Briefly, the V4 region of the 16S rRNA gene
was amplified and sequenced Genomescan. Quality con-
trol of the reads was carried out using the ‘filterAnd-
Trim’ function from the DADA2 package, truncating
eight nucleotides from each read to remove barcodes,
discarding all reads with quality less than 20, discarding
all reads with at least one N and removing the phiX Illu-
mina spike-in. Only paired-end reads with at least 120
bp and with an expected DADA2 error less than 4 were
retained for downstream analyses. Merged reads were
further processed, and only reads within 280 and 290 bp
were retained, representing the majority of the distribu-
tion of the lengths. Reads were further processed to re-
move chimeras. Finally, taxonomy was assigned using
the SILVA database (version 132) using the ‘assignTax-
onomy’ function, requiring a minimum bootstrap value
of 80, to obtain a table of relative abundances of oper-
ational taxonomic units. The relative abundance values
were normalised using the arcsine square root trans-
formation as described elsewhere [27]. The arcsine
square root transformation is a monotonic transform-
ation useful for improving normality as the variance of
the distribution results more stable and has been previ-
ously used in finding associations using a general linear
model [32] and for detecting a microbial signature in
colorectal cancer patients [33].

Lipoprotein profiling by nuclear magnetic resonance
Circulating levels of triglyceride (TG) and glycoprotein
A (GlycA) were measured by Nightingale Ltd. (previ-
ously known as Brainshake Ltd., Finland, https://www.
brainshake.fi/) from fasting serum samples using
500 Mhz proton nuclear magnetic resonance spectros-
copy as previously described [34].

Statistical analysis
Statistical analysis was carried out using Stata version 12.
We ran linear regression to evaluate the associations

between white blood cell counts and (i) fruit and
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vegetable; (ii) microbiome abundances; (iii) markers of
inflammation; and (iv) cardiometabolic phenotypes in-
take, adjusting for age, gender, BMI and multiple testing
using false discovery rate (q < 0.1). All traits were stan-
dardised to have mean 0 and 1 SD to allow effect com-
parison across traits.
We used all OTUs that were present in at least 70% of

all participants (n = 690). This resulted in a total of 85
OTUs with a mean relative abundance of 1.1%. Using
this cut-off to achieve a q < 0.1 allows to test for 510 in-
dependent tests (85 OTUs × 6 traits) with a nominal
alpha of 0.00019. This sample size and the cut-off used
have 80% statistical power to observe correlations be-
tween OTU relative abundances and the six traits inves-
tigated with r = 0.17 or higher.
We further employed mediation analysis as implemented

in the Stata package ‘medeff’ to test the mediation effects of
gut microbiome diversity (indirect effect) on (i) the total ef-
fect of vegetable intake on white blood cells (lymphocytes);
(ii) the total effect of dietary nitrate on white blood cells
(lymphocytes), adjusting for age, gender and BMI. We fur-
ther adjusted for family relatedness. A mediation model iden-
tifies the mechanism underlying an observed relationship
between an independent variable (X- here vegetable intake
or nitrate intake) and a dependent variable (Y- here lympho-
cytes) via the inclusion of the mediator variable (M- here gut
microbiome diversity). Rather than a direct causal relation-
ship between vegetable intake/nitrate and lymphocytes, a
mediation model proposes that the independent variable
(vegetable intake/nitrate) influences the mediator variable gut
microbiome diversity, which in turn influences the
dependent variable lymphocytes. As such, the mediation
model provides greater understanding between the relation-
ship between an independent variable and a dependent vari-
able when these variables do not have an obvious direct
connection. We constructed a mediation model to quantify
both the direct effect of vegetable intake/dietary nitrate on
white blood cells and the indirect (mediated) effects men-
tioned above. A full mediation is indicated in the case where
the direct effect c’ is not significant, whereas the indirect ef-
fect a × b is significant. This means only the indirect effect
via the mediator exists. All other situations under the condi-
tion that both the direct effect c’ and the indirect effect a × b
are significant represent partial mediation [35].
The variance accounted for (VAF) score, which repre-

sents the ratio of indirect-to-total effect and determines
the proportion of the variance explained by the mediation
process, was further used to determine the magnitude of
the mediation effect [36]. A VAF exceeding 80% supports
an additional argument for a full mediation [35].

Results
The descriptive characteristics of the study population
are presented in Table 1. Of the 1002 PREDICT-1

participants [27], here we included 986 individuals (of
which 246 twin pairs) with 16S gut microbiome, white
blood cell profile markers and who completed an FFQ.
The average energy intake of the included subjects was
2345.97 Kcal and comprised of 262.36 g carbohydrates,
109.19 g fat and 80.75 g protein, surpassing current UK
intake of 1860.00 Kcal, 224.00 g carbs and 76.90 g pro-
tein [37], in line with NHS guidelines of at least 260.00 g
of carbohydrates [38].
We found that WBC were positively correlated with

higher postprandial glycaemic response, higher levels of

Table 1 Descriptive characteristics of the study population,
mean (SD)

Phenotype Mean SD

N 986

M to F 277:726

Age, years 45.65 11.96

BMI, kg/m2 25.59 5.05

White blood cells

Basophils 0.05 0.05

Eosinophils 0.14 0.11

Lymphocytes 1.58 0.44

Monocytes 0.41 0.13

Neutrophils 3.10 1.19

WBC 5.25 1.44

Dietary measures % EI

Energy, Kcal 2345.97 851.37

Carbohydrate, g 262.36 100.37 44.70

Fat, g 109.19 48.09 41.90

Protein, g 80.75 28.54 13.80

Vegetable intake*, portions 5.55 2.91

Fruit intake*, portions 2.76 1.90

h-PDI score 59.48 7.31

u-PDI score 59.23 6.68

Clinical measures

SBP, mmHg 109.85 12.87

DBP, mmHg 74.10 8.70

IL6 0.74 1.21

Fasting glucose, mmol/L 7.55 1.13

Glucose at 60 min, mmol/L 5.74 1.50

Glucose at 120 min, mmol/L 5.45 1.27

Insulin rise 30 min, mmol/L 60.19 51.26

Insulin rise 120 min, mmol/L 31.24 27.58

Fasting triglycerides, mmol/L 1.07 0.54

Triglycerides at 360 min, mmol/L 1.90 1.20

Abbreviations: BMI body mass index, WBC white blood cells, EI energy intake,
h-PDI healthy plant-based diet index, u-PDI unhealthy plant-based diet index,
SBP systolic blood pressure, DBP diastolic blood pressure, IL6 interleukin-6, *
energy adjusted
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the proinflammatory cytokine IL-6, higher GlycA (a
marker of systemic inflammation and cardiovascular dis-
ease risk [39]), higher glycated haemoglobin and post-
prandial insulin, consistent with such counts being
markers of chronic inflammation and cardiometabolic
risk (Fig. 1). Lymphocytes, basophils and WBC counts
were all significantly correlated with lower habitual in-
take of vegetables, with vegetable intake explaining be-
tween 3.59 and 6.58% of white blood cells (Fig. 1) after
adjusting for age, gender, BMI and multiple testing using
false discovery rate (q < 0.1). The results were consistent
when further adjusting for family relatedness. No such
association was observed with fruit intake (Fig. 1). We
also found that (i) all WBC (but monocytes) are nega-
tively correlated with having a healthy diet, measured via
the Healthy PDI score [30], and (ii) all but lymphocytes
are positively correlated with having an unhealthy diet,
measured via the Unhealthy PDI score [30].
We then examined the association between WBC and

bacterial abundances (genera present in at least 70% of
the sample). We identified 2 genera significantly associ-
ated with lymphocytes, one with basophils, one with eo-
sinophils and one with monocytes after adjusting for
age, gender, BMI and multiple testing using FDR correc-
tion (FDR < 0.1) (Fig. 2 and Supplementary Table 2).
These include the following: (i) the positive correlation
of lymphocytes and Collinsella, a microbe known to be
linked to intake of processed foods and to increase risk
of fatty liver [40, 41]; (ii) the positive correlation of both
basophils and eosinophils with Clostridia; (iii) the nega-
tive correlation of lymphocytes with Christensenella-
ceae_R-7_group; and (iv) the negative correlation of
monocytes with Ruminococcus_1.

In addition, we found that Collinsella abundances were
positively correlated with both eosinophils and WBC
and negatively correlated with vegetable intake as well as
with nitrate intake.
We therefore conducted a formal mediation analysis

to determine the indirect effect of the gut microbiome
(Collinsella) on the effect between vegetable intake and
lymphocytes. The analysis found that the Collinsella
acted as potential partial mediator in the negative associ-
ation between vegetable intake and lymphocytes (VAF =
20.00% [11.12%, 67.04%] P < 0.001) (Fig. 3) and in the
negative association between nitrate intake and lympho-
cytes (VAF = 12.79[8.25; 28.15%] P < 0.0001).

Discussion
Here, we investigated the relationship between white
blood cells, habitual diet and gut microbiome compos-
ition. When we investigated links with habitual diet, we
found that high vegetable intake, particularly green leafy
and cruciferous vegetables, correlated with lower levels
of white blood cell counts. No such relationship was
seen with fruit intake, which may be a consequence of
the relatively high sugar content of fruit compared to
vegetables [42] and that a high sugar diet has been
shown to be pro-inflammatory [42, 43]. On the other
hand, it may be due to the presence of compounds com-
mon in vegetables but not in fruits. This would exclude
plant-based food components such as dietary fibre or
polyphenols, which are found both in fruit and vegeta-
bles [44] and tend to be higher in fruits. We hypothe-
sised that it could be dietary nitrate content, which has
been related to improved cardiometabolic outcomes
[45], increased nitric oxide production and altered

Fig. 1 Each cell of the matrix contains the standardised regression coefficient between one white cell trait and a food item or clinical trait and
the corresponding p value. The table is colour coded by correlation according to the table legend (red for positive and blue for
negative correlations)
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inflammation and immune function [18]. Approximately
60–80% inorganic nitrate exposure in the human diet is
contributed by vegetable consumption [46]. Although in-
organic nitrate is a relatively stable molecule, under spe-
cific conditions, it can be metabolised in the body to
produce nitrous oxide (NO) via the nitrate–nitrite–NO
pathway. NO is a major signalling molecule in the

human body and has a key role in maintaining vascular
tone, smooth muscle cell proliferation, platelet activity
and inflammation [46, 47]. In animal models, dietary ni-
trate has been shown to attenuate endothelial dysfunc-
tion in animals fed a high-fat diet [48] or with diabetes
[49], and has equivalent effects to those of metformin on
glucose/insulin homeostasis and even larger effects

Fig. 2 White blood cell–microbiome associations. Analyses adjusted by age, sex, BMI and multiple testing using FDR correction (q < 0.1)

Menni et al. BMC Medicine           (2021) 19:37 Page 6 of 10



regarding protection against cardiovascular dysfunction
and liver steatosis [50]. We indeed find that nitrate con-
tent is also correlated with lower blood cell counts cor-
responding to lower cardiometabolic risk. Specifically, an
increase in total WBC, lymphocytes, monocytes and
neutrophil counts has been associated with higher CVD
risk and total white blood cell count could potentially
serve as a marker to predict CVD risk [51].
We then investigated the links between inflammatory

cell profiles and gut microbiome composition and found
that in particular the genus Collinsella was significantly
associated with both lower vegetable intake and higher
blood cell counts. In particular, the relative abundance
of Collinsella explains 20% of the effect of vegetable in-
take on lymphocyte cell counts. The genus Collinsella
has been previously reported to be significantly associ-
ated with higher risk of liver steatosis [40]. Moreover, its

abundance in gnotobiotic mice increases with an in-
creased intake of highly processed foods containing ad-
vanced glycation end products (AGEs) which are present
in many heat-processed foods rich in starch, including
potato chips and French fries [41]. Our data suggest that
the abundance of Collinsella may be negatively affected
by vegetable intake or nitrates. Nitric oxide production
has been postulated as a possible molecular mechanism
for the cardiometabolic risk reduction seen with the
vegetable-rich Mediterranean diet [52]. Importantly, two
Collinsella species were the key taxa whose abundances
decrease as a result of a Mediterranean diet intervention
in a 12-month intervention in 612 elderly participants
across 5 European countries [53] further highlighting
the link between the benefits of a high-nitrate vegetable-
rich diet and low Collinsella abundance. Our results sug-
gest that this may be enhanced or mediated by the lower

Fig. 3 Mediation analysis of the association between (a) vegetable intake and (b) dietary nitrate and lymphocytes count. Average direct effect
(ADE) and average causal mediation effects (ACME) are reported (*P < 0.05; **P < 0.01; ***P < 0.001)
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abundance of the genus Collinsella, which in turn in-
creases upon intake of processed foods. There have been
previous studies that have shown the association of the
microbiome with blood cell dynamics including associa-
tions with neutrophil to lymphocyte ratios that are corre-
lated with the prognosis of multiple diseases including
inflammatory and cardiovascular disease [13, 54, 55]. In
the current study, we were able to infer for the association
of the microbiota on systemic immune cell dynamics and
how these could potentially be modulated via the diet.
We note some study limitations. First, this is an obser-

vational study with cross-sectional data and we have not
carried out a vegetable intake intervention to assess its
effect on pro-inflammatory cell count profiles. Future
studies should investigate the causality of the observed
decrease in white blood cell counts. Second, we have not
been able to measure nitric oxide production in our
samples as faecal samples were immediately processed
for DNA extraction as per protocol and no supernatant
for nitrates was therefore available. Third, we have used
FFQs rather than other methods for assessing dietary in-
take. FFQs have become a well-accepted method for
quantitative assessment of usual nutrient intake [54], but
being recall data are subject to some bias. However, the
value of FFQs for assessing dietary composition has been
documented objectively by correlations with biochemical
indicators and the prediction of outcomes in prospective
studies [55, 56]. On the other hand, the data presented
here links gut microbiome, cell counts and diet in a
deeply phenotyped cohort and helps generate specific
hypotheses to design dietary intervention studies aimed
at reducing pro-inflammatory white cell profiles.

Conclusion
Here, we link the gut microbiome, cell counts and diet in
a deeply phenotyped cohort, setting a foundation to gen-
erate specific hypotheses to be tested in dietary interven-
tion studies aimed at reducing pro-inflammatory white
cell profiles. Our data highlight the link between vegetable
dietary intake, reduced abundance of a bacterial genus,
which increases with the intake of processed foods (Col-
linsella), and higher levels of immune-response cells in-
volved in inflammatory processes. Very recently, the
direct functional links between gut microbiome compos-
ition and immune response in humans [55] have been
demonstrated in the 10-year follow-up of 2000 cancer pa-
tients. The next step, which our work contributes to ad-
dress, is understanding the dietary patterns and specific
nutrients involved in modifying the gut microbes that in-
fluence immune-response cells. Understanding such links
can help develop dietary interventions to reduce inflam-
matory patterns involved in a vast array of pathophysio-
logical processes from response to infections, to cancer
and chronic cardiometabolic diseases.
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