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Abstract. Computing the workspace of parallel manipulators is critical to 

characterize their behavior. Usually, workspace is obtained by iterating the 

robot’s forward kinematics for a discrete range of poses, resulting in a cloud of 

reachable points. Here we propose an alternative algebraic formulation that is 

based on a recursive generation of volumes for solids of revolution to evaluate 

each limb’s workspace. The robot’s workspace is then obtained as the 

intersection of the limbs’ workspaces. With a practical example on the CaPaMan 

design and on a 3-UPR architecture, both the numerical and algebraic methods 

are discussed with their features and limits. 
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1 Introduction 

The architecture of parallel robots consists of two platforms—one fixed, one mobile—

that are connected by multiple kinematic chains, called limbs, that determine their 

relative motion [1-2]. When compared to serial robotic architectures, which are made 

of a single kinematic chain from base to end-effector, parallel robots usually perform 

better in speed and repeatability. Furthermore, as each limb is usually actuated by a 

single motor, the moving masses can be limited to move with a lower inertia and higher 

efficiency than in the case of serial robots. However, the complex kinematics and the 

multiple physical constraints on the mobile platform result in a smaller workspace that 

can be further split into distinct working volumes by singular poses and assembly 

configurations [1]. These issues make the workspace of a parallel robot difficult to be 

represented with its geometrical shape, so that, rather than using the full reachable 

workspace, many researchers opt to operate a parallel robot in a subset of it that 

corresponds to suitable geometrical shapes, such as cylinders or spheres [3]. 

In general, the workspace is calculated in a recursive way, by iterating the forward 

kinematic problem of the robot with discretized pose parameters ranging from their 

minimum to maximum values. This workspace generation procedure results in a point 

cloud that includes the reachable poses of the robot, and as such it may be difficult for 

an easy geometrical interpretation unless a subset with a “familiar”, easy-to-use shape 
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(e.g. cylinder, cube, sphere) is used. Furthermore, while a good approximation of the 

workspace can only be obtained with a fine discretization interval, large intervals are 

needed for efficient computation with shorter times to solution [1-2].  

 An algebraic approach for the generation of the workspace of robots has been often 

proposed as an alternative to the popular iterative solution. This approach provides an 

exact solution for workspace volume and topology by generating the workspace 

geometrically as a solid of revolution when considering revolute motion generation [4-

5]. A rich literature on the topic can be found for serial manipulators, but the application 

of this method to parallel robots has been limited because of the complexity in defining 

and modelling their boundary conditions and constraints [1-2]. Most of the applications 

of algebraic approaches for the determination of the workspace of parallel robots are 

related to planar parallel manipulators, as a generation procedure can be simplified from 

volumes to areas [6-8]. A solution has been also provided for a few parallel structures, 

such as Delta Robots [9-10], spherical manipulators [11-12], and others [13-14]. 

However, a general approach has not been proposed yet, as only structure-specific 

formulations have given solutions that are available in literature. 

In this paper, the characteristics of iterative and algebraic approaches are discussed 

and compared. First, a general algorithm is presented to generate the workspace of a 

parallel robot for each of those methods. Then, two examples are reported as referring 

to the CaPaMan design [15-16] and a 3-UPR design [17-20] to compare the solutions 

and to discuss advantages and disadvantages of each of them. 

2 Workspace determination 

In this section, two main approaches to generate the workspace of a parallel manipulator 

are described: an iterative method and an algebraic one. The iterative method evaluates 

workspace boundaries as a point cloud of reachable configurations by discretizing the 

motion parameters and computing the position of the end-effector for each parameter 

combination. Conversely, the algebraic approach evaluates the workspace volume by 

generating a volume of reachable points for each limb of the robot and then obtaining 

the overall workspace of the robot as the intersection of such volumes. 

2.1 Workspace discretization 

A discrete approach for workspace evaluation can be obtained from the forward 

kinematic problem of a robot. The continuous range of motion [𝑞𝑖,𝑚𝑖𝑛; 𝑞𝑖,𝑚𝑎𝑥] of each 

active joint parameter 𝑞𝑖 of actuation vector 𝒒 can be discretized into a set of n points 

with an interval of ∆𝑞𝑖 from each other, as 

[𝑞𝑖,𝑚𝑖𝑛; 𝑞𝑖,𝑚𝑎𝑥] → {𝑞𝑖,1, 𝑞𝑖,2, … , 𝑞𝑖,𝑛 , },         (1)   

𝑞𝑖,𝑗 = 𝑞𝑖,𝑚𝑖𝑛 + ∑ (𝑗 − 1)∆𝑞𝑖
𝑛
𝑗=1 ,     ∆𝑞𝑖 =

𝑞𝑖,𝑚𝑎𝑥−𝑞𝑖,𝑚𝑖𝑛

𝑛
            (2) 

The forward kinematic problem (FKP) 𝒙 = 𝑓FKP(𝒒) can be used to compute the end-

effector pose 𝒙 corresponding to a given combination of the m active joint parameters. 

Thus, by considering all the possible point combinations given by the discretization (2) 

of each joint parameter, the workspace can be generated as a point cloud of nm poses. 
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The exponential nature of the number of resulting poses means that the determination 

of a workspace with the discretization method can be extremely taxing from a 

computational point of view. Out of the two parameters that influence the number of 

loops, m is an intrinsic parameter that is defined by the robot architecture and it cannot 

be modified, whereas n is a function of the chosen discretization interval, as formulated 

in (2), and it can only be reduced at the expense of point density, which reduces the 

resolution of the workspace and risks missing critical points where the manipulator 

behaves singularly. However, this approach is widely used because of its simplicity as 

in [2], as it only requires knowledge of the forward kinematic problem of the robot. 

2.2 Algebraic geometrical approach 

In the algebraic geometrical approach, the workspace of a parallel manipulator can be 

computed by intersecting the workspace volumes that is generated by each of its limbs. 

This method does not require any a priori modelling of the manipulator but only its 

topological layout and constraints, in contrast with the previously described approach, 

which requires the FKP. The algebraic approach starts by determining the workspace 

Λ𝑖  of each limb, which is obtained as a volume of revolution by considering the rotation 

of each link of the limb’s kinematic chain around the axes of its revolute joints. For 

clarity, a practical example is here reported in Fig. 1 for a UPS kinematic chain 

(universal-prismatic-spherical joints, with the prismatic joint 𝑞𝑖 actuated by a linear 

motor as per Gough-Stewart platform [1-2]). The universal and spherical joints are 

decomposed into a series of revolute joints (i.e., two consecutive revolute joints 𝜗𝑖1 and 

𝜗𝑖2 along the x- and y-axes for the universal joint, and three consecutive revolute joints 

𝜗𝑖3, 𝜗𝑖4, and 𝜗𝑖5 along the x-, y-, and z-axes respectively for the spherical joint). Thus, 

the limb workspace can be obtained as due to the sequence of the joint motions as 

Λ𝑖 = Rotx(𝜗𝑖1) · Roty(𝜗𝑖2) · Trz(𝑞𝑖) · Rotx(𝜗𝑖3) · Roty(𝜗𝑖4) · Rotz(𝜗𝑖5)        (3)    

where Rotk is a rotation matrix around the k-axis and Trk is a translation matrix along 

the k-axis. The resulting workspace is a family of spheres S that can be expressed as 

𝑆𝑖: (𝑥 − 𝑥0𝑖)
2 + (𝑦 − 𝑦0𝑖)2 + (𝑧 − 𝑧0𝑖)

2 = 𝑟𝑖
2        (4) 

These spheres are all centered on the extremity of the limb fixed onto the base in 

(𝑥0𝑖 , 𝑦0𝑖 , 𝑧0𝑖) and they are characterized by variable radius 𝑟𝑖 as family parameter, 

which corresponds to the length of the linear actuator in the limb and is thus related to 

its motion parameter and its lower and upper boundaries. By considering the actuation 

constraints, the limb workspace can be determined as the union of these spheres as 

Λ𝑖 = ⋃ 𝑆𝑖
𝑟𝑚𝑎𝑥
𝑟𝑖=𝑟𝑚𝑖𝑛

           (5)    

Once the limb workspaces Λ𝑖  have been defined, the overall workspace of the 

parallel manipulator Λ can be computed as their intersection [21] as 

Λ = ⋂ Λ𝑖
𝑚
𝑖=1             (6) 

When compared to the previous method, the algebraic geometrical approach is 

computationally efficient and provides an exact solution rather than an approximated 

one. However, the highly coupled behavior of different limbs of a parallel manipulator 

makes the implementation of self-collision constraints difficult and can result in 

unexpected operational failure. A first solution can represent a theoretical reachable 

workspace of the robot, without considering limb collisions. 
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a. 

 
b. 

Fig. 1. Algebraic geometrical generation of workspace volume: a. A kinematic scheme with axes 

of rotation of the joints of each limb; b. An example workspace Λ of a parallel manipulator 

obtained as a solid of revolution by following the procedure in Eqs. (3-5). 

3 Numerical examples  

In this section, the above-mentioned methods are compared by referring to two 

examples of parallel manipulators: a lower-mobility mechanism that was designed for 

earthquake simulations, CaPaMan [15-16], and a robotic leg mechanism [17-20]. 

3.1 CaPaMan 

The CaPaMan parallel robot has been conceived to simulate the 3D motion modes 

of earthquakes [16]. As shown in Fig. 2, CaPaMan is a lower-mobility manipulator with 

three limbs with a PaPS kinematic chain based on a four-bar parallelogram (Pa) [15]. 

With reference to the diagram in Fig. 2a and the formulation in [15], CaPaMan’s 

kinematics can be written as 

𝑥 =
𝑦3−𝑦2

√3
−

𝑟𝑝

2
(1 − sin 𝜑) cos(𝜓 − 𝜗) , 𝑧 =

𝑧1+𝑧2+𝑧3

3
,  

𝑦 = 𝑦1 − 𝑟𝑝(sin 𝜓 cos 𝜗 + cos 𝜓 sin 𝜑 sin 𝜗)         (7) 

where       

𝜑 = arccos
2√𝑧1

2+𝑧2
2+𝑧3

2−𝑧1𝑧2−𝑧2𝑧3−𝑧3𝑧1

3𝑟𝑝
, 𝜓 = arctan

√3(𝑧3−𝑧2)

2𝑧1−𝑧2−𝑧3
,   

𝜗 = arcsin
2(𝑦1+𝑦2+𝑦3)

3𝑟𝑝(1+sin 𝜑)
− 𝜓,           (8) 

where 𝑦𝑘 = 𝑏𝑘 cos 𝑞𝑘 and 𝑧𝑘 = 𝑏𝑘 sin 𝑞𝑘+ℎ𝑘 are function of motion variable 𝑞𝑘 and 

geometrical parameters 𝑏𝑘 and ℎ𝑘. 

By using (7), the workspace of CaPaMan with 𝑏1 = 𝑏2 = 𝑏3 = 100 𝑚𝑚, ℎ1 = ℎ2 =
ℎ3 = 100 𝑚𝑚, 𝑟𝑝 = 50 𝑚𝑚 has been computed by discretizing actuation variables 

{𝑞1, 𝑞2, 𝑞3} with a step ∆𝑞 = 𝜋/36 𝑟𝑎𝑑, with the results shown in Fig. 3; and by using 

the proposed algebraic geometrical method, with results shown in Fig. 4. 
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a. 

 
b. 

Fig. 2. CaPaMan, Cassino Parallel Manipulator [15]: a. A kinematic scheme with main 

parameters; b. A prototype at LARM laboratory of University of Cassino. 

 
a. 

 
b. 

Fig. 3. Computed discretized workspace Λ of CaPaMan in Fig. 2: a. side view; b. top view. 

 
a. 

 
b. 

Fig. 4. Computed algebraic workspace Λ of CaPaMan in Fig. 2: a. side view; b. top view. 
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3.2 3-UPR mechanism 

The 3-UPR parallel manipulator in this example has been designed for the locomotion 

system of service robots [17-20]. The mechanism design is shown in Fig. 5, and its 

performance is analyzed in [2, 20]. With reference to the diagram in Fig. 5a, the FKP 

of the system can be formulated as 

 𝑥 =
1

2√3𝑎
(𝑙1

2 − 𝑙2
2), 𝑦 =

1

6𝑎
(𝑙1

2 + 𝑙2
2 − 2𝑙3

2), 𝑧 = √𝑙3
2 − 𝑥2 − (𝑦 − 𝑎)2      (9) 

By using (9), the workspace of a 3-UPR mechanism with 𝑎 = 100 𝑚𝑚, 𝑙𝑖,𝑚𝑖𝑛 =

200 𝑚𝑚, 𝑙𝑖,𝑚𝑎𝑥 = 300 𝑚𝑚 has been computed by discretizing actuation variables 

{𝑙1, 𝑙2, 𝑙3} with a step ∆𝑙 = 10 𝑚𝑚, with the results shown in Fig. 6; and by using the 

proposed algebraic geometrical method, with results shown in Fig. 7. 

 
a. 

 
b. 

Fig. 5. A 3-UPR parallel mechanism for robotic legs [20]: a. A kinematic scheme with main 

parameters; b. A prototype at LARM2 laboratory of University of Rome Tor Vergata. 

 
a. 

 
b. 

Fig. 6. Computed discretized workspace Λ of the mechanism in Fig. 5: a. side view; b. top view. 
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a. 

 
b. 

Fig. 7. Computed algebraic workspace Λ of the mechanism in Fig. 5: a. side view; b. top view. 

3.3 Results and discussion 

Both the proposed algebraic geometrical method and the discretized approach in the 

examples above have been computed in MATLAB 2021a on a Windows 10 computer 

with a 3.70 GHz 6-core CPU (AMD Ryzen 5 5600X). In both cases, the algebraic 

approach computes a general geometrical solution in less than 0.01 s, whereas the 

discretized workspace is obtained after 3.20 s for the CaPaMan and 0.40 s for the UPR 

mechanism.  

Thus, the algebraic geometrical method is computationally more efficient than the 

discretized one and provides a solution rather than an approximated one as from the 

other procedure. However, the discretized workspace can include self-collision 

constraints that have not be implemented in the algebraic formulation up to now. 

Furthermore, the geometrical approach only results in the position workspace of the 

manipulator, without giving information on the orientation. In conclusion, the algebraic 

method is more precise and efficient for an evaluation and representation of the 

workspace, whereas the discretized workspace enables the inclusion of self-collision 

and can provide further information on the manipulator behavior that cannot be seen 

with the algebraic geometrical approach. 

4 Conclusions 

In this paper, two different methods for the determination of the workspace of parallel 

manipulators are compared: an iterative method based on the discretization of pose 

parameters, and a geometrical approach with an algebraic formulation. After briefly 

introducing the methods, advantages and disadvantages of both approaches are outlined 

through two examples on lower-mobility parallel manipulators with three degrees of 

freedom. Even if the discretized approach provides more information on the workspace, 

the algebraic formulation provides a faster exact solution that can be used for a fast 

representation of the workspace without the need of a kinematic model, as well as for 

an exact determination of the workspace boundaries. 
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