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SUMMARY

Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is
also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a
key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly un-
derstood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rb1) and
the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-
tagged full-length proteins. Here, we demonstrate that TAMRA-tagged IL-23 has a greater than 7-fold higher
affinity for IL12Rb1 than IL23R. However, in the presence of both receptor subunits, IL-23 affinity is increased
more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in
the position of the N-terminal domains of the two receptor subunits, consistent with a conformational change
in the heteromeric receptor structure.

INTRODUCTION

Interleukin-23 (IL-23) is an important pro-inflammatory cytokine,

produced by antigen-presenting cells, such as dendritic cells

and macrophages, that plays a crucial role in host defense

against bacterial and fungal pathogens (Verreck et al., 2004;

Werner et al., 2011). IL-23 acts as a pre-requisite for the activa-

tion of T helper 17 (Th17) cells and has additional pro-inflamma-

tory effects on natural killer T, innate lymphoid, and gdT cell types

(Gaffen et al., 2014).

IL-23 is a disulfide-linked heterodimeric cytokine, an arrange-

ment unique to the IL-12 family, of which there are three other

reported members in man, IL-12, IL-27, and IL-35, with an addi-

tional member IL-39 identified in mice (Tait Wojno et al., 2019;

Wang et al., 2012). The heterodimer is formed of a single domain

four-helical bundle a subunit and a larger triplet domain b subunit

composed of two type III fibronectin domains and a single immu-

noglobulin-like domain (Hasegawa et al., 2016). The a and b sub-

units of the IL-23 heterodimer are IL23p19 and IL12p40, respec-

tively (Oppmann et al., 2000). The corresponding receptors for

the IL-12 cytokines are heteromers formed from different combi-

nations of five single transmembrane domain proteins. Each

IL-12 heteromeric receptor component is thought to have affinity

for a specific a or b subunit of each heterodimeric IL-12 family

cytokine (Hasegawa et al., 2016). The specific receptor for the

IL-23 cytokine is formed of the IL-12 receptor subunit b1

(IL12Rb1) and the IL-23 receptor (IL23R), which are both needed

for subsequent Janus kinase (JAK) activation and signaling (Par-

ham et al., 2002). The formation of heteromers by IL-12 family

cytokine receptors facilitates promiscuous pairing within the

IL-12 family, leading to a diverse range of functional effects

(Floss et al., 2020; Hasegawa et al., 2016). The archetypal

example of this promiscuity is the dual use of the IL12p40 cyto-

kine subunit and the IL12Rb1 receptor subunit in both the IL-23

and IL-12 cytokine receptor complexes (Parham et al., 2002).

Despite shared constituents, IL-23 and IL-12 mediate distinct

pathways, with IL-23 inducing the expansion and maintenance

of Th17 cells and IL-12, leading to differentiation of Th1 cells

(Vignali and Kuchroo, 2012).

Both IL-12 and IL-23 became a major focus for therapeutic

intervention when elevated expression of IL12p40 was observed

in autoimmune disorders (Fassbender et al., 1998; Shigehara

et al., 2003). This led to the first therapeutic to be developed

for intervention in the IL-12 and IL-23 signaling pathways to be

an anti-IL12p40 antibody (ustekinumab) (Benson et al., 2011).

Further research utilizing genome-wide association studies
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demonstrated links between single-nucleotide polymorphisms

in IL23p19 and IL23R and the incidence of ankylosing spondy-

litis, Crohn’s disease (CD), ulcerative colitis (UC), and psoriasis

among other disorders, identifying that IL-23 rather than IL-12

was involved in these diseases (Cargill et al., 2007; Dong et al.,

2013; Duerr et al., 2006). Further evidence from murine studies

demonstrated the IL-23 signaling pathway’s role in autoinflam-

mation (Cua et al., 2003; Langrish et al., 2005). Subsequently,

anti-IL23p19 inhibitors have been developed, and antibody ther-

apies are now licensed for the treatment of CD, UC, and psoria-

sis with ongoing trials for further autoinflammatory conditions

(Chyuan and Lai, 2020). The importance of the IL-23 signaling

pathway in other diseases has now been reported, including

for cancer (Ngiow et al., 2013) and cardiovascular disease (Ye

et al., 2020). Ustekinumab and other anti-IL23p19 inhibitors

have been highly effective for the treatment of autoimmune dis-

ease; however, these treatments are not without issues, which

include the reliance on administration by subcutaneous injection

and immunogenicity (Jullien et al., 2015). These problems have

led to the development of a class of small orally bioavailable pep-

tide inhibitors of the IL-23 receptor (Kong et al., 2020) such as

PTG-200, a competitive inhibitor of IL23R (Bourne, et al., 2016;

Cheng et al., 2019).

Despite the intense therapeutic focus on IL-23 and the wider

IL-12 family, there is a paucity of information regarding the spe-

cific mechanisms of the ligand-receptor interactions. The exact

regions of IL-23 that interact with its receptor have only been

defined relatively recently. Contrary to previous predictions

based on the assembly of the closely related IL-6 receptor com-

plex, the individual IL-23 receptor subunits appear to bind to

distinct a and b chains of IL-23 (Schroder et al., 2015). Two

recent studies have used X-ray crystallography to solve the

structures of the IL-23:IL23R and IL-23:IL23R:IL12Rb1(D1) com-

plexes, respectively, with the latter group also determining cryo-

genic electron microscopy structures for the extracellular do-

mains of IL-12 and IL-23 cytokine:receptor complexes (Bloch

et al., 2018; Glassman et al., 2021). This work and further muta-

tional studies demonstrated that IL-12 engages its receptor in a

similar way to IL-23, with IL12p40 binding IL12Rb1 and IL12p35

engaging IL12Rb2 (Esch et al., 2020; Glassman et al., 2021). As

part of the initial structural characterization of the IL23:IL23R

complex, the affinity of IL-23 was measured for the purified

extracellular domains of the IL-23 receptor using isothermal titra-

tion calorimetry (ITC). It was found that IL-23 has a higher affinity

for the truncated extracellular domain of IL23R than the equiva-

lent extracellular domain of IL12Rb1, leading to the suggestion

that the IL-23 receptor complex assembles via ligand-induced

dimerization, with IL-23 first binding IL23R followed by the

recruitment of IL12Rb1 by the IL23R:IL-23 complex (Bloch

et al., 2018).

To investigate the proposed model of IL-23 receptor complex

formation, we have used NanoLuciferase (NL) bioluminescence

resonance energy transfer (NanoBRET) (Machleidt et al., 2015;

Stoddart et al., 2015) to measure the binding of a tetramethylr-

hodamine (TAMRA)-labeled variant of IL-23 to individual full-

length IL-23 receptor subunits and heteromeric receptor

complexes in living cells. We have also measured the level of

constitutive association of receptor units and agonist-induced

changes in receptor subunit conformation utilizing dual-tagged

receptor variants that enable the measurement of intra-receptor

NanoBRET.

RESULTS

Characterization of IL23-TMR and IL-23 receptor
subunit fusion constructs
Preparation of fluorescently labeled IL-23 was carried out via in-

cubation of purified recombinant IL-23 with NHS-ester-linked

TAMRA. Following removal of the unreacted labeling reagent us-

ing a desalting column, the TAMRA-conjugated IL-23 (hereafter

referred to as IL23-TMR) and the unlabeled IL-23 were assessed

using liquid chromatography coupled with mass spectrometry

(LC-MS; Figures S1 and S2). This analysis revealed that both

the labeled and unlabeled cytokine samples were heterodimeric

and uncontaminated with IL12p40 or IL23p19 monomers (Fig-

ure S2B). Furthermore, upon the application of dithiothreitol

(DTT), the protein could be split into its constituent monomers

by reduction of the linking disulfide bond (Figures S1 and S2).

While the IL23p19 subunit closely matched its predicted molec-

ular weight, the IL12p40 subunit gave several peaks differing by

162 Da, all with masses higher than that predicted from the pro-

tein’s amino acid sequence (Table S1). This most likely corre-

sponded to varying levels of post-translational modification

(PTM) by N-linked glycosylation, a modification that has been

previously reported for the IL12p40 subunit (Bohnacker et al.,

2020). The unlabeled IL-23 heterodimeric complex exhibited

the previously described heterogeneous pattern, with the most

abundant peak corresponding to a 56,050-Da species

(Figure S2).

In the IL23-TMR sample the most abundant species remained

the unlabeled IL-23 at 56,050 Da; however, a single TAMRA-

labeled 56,461-Da species and a double-labeled 56,876-Da

species were also present. Trace amounts of three and four

labeled species were also apparent from low-abundance peaks

at 57,287 and 57,702 Da, respectively (Figure S2). Reduction of

the IL23-TMR sample with DTT revealed that the IL23p19 sub-

unit was labeled to a greater extent than the IL12p40 subunit

(Figure S2A), with peak intensity analysis demonstrating that

64.9% of TAMRA labels were located on IL23p19. The primary

constituents of the heterodimeric IL23-TMR fraction were deter-

mined by the relative abundance of themost intense PTM variant

to be 52.3% unlabeled, 29.5% single labeled, and 18.2% double

labeled.

To gain a further quantitative measure of the constituents of

the labeled IL-23 mixture, we used fluorescence correlation

spectroscopy (FCS) (Briddon et al., 2004) essentially as

described by Kilpatrick et al. (2017). To measure the concentra-

tion of TAMRA-labeled particles in solution, we collected FCS

fluctuations from freely diffusing IL23-TMR in a confocal mea-

surement volume (Figure 1A). Subsequent autocorrelation anal-

ysis (Figure 1B), allowed calculation of the concentration of

fluorescent particles (Briddon et al., 2004; Kilpatrick et al.,

2017). Measured IL23-TMR concentrations were substantially

lower than predicted, but the addition of 1 mg/mL BSA, which

prevents non-specific interactions of the protein with the plate

(Kilpatrick et al., 2017), increased the observed concentration

(Figure 1D). Consequently, 1 mg/mL BSA was included

in all subsequent IL-23 and IL23-TMR experiments. FCS
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measurements of IL23-TMR in the presence of BSA displayed a

single diffusing species with a diffusion coefficient of 37.9 ±

1.8 mm2/s while that for TAMRA alone was 280 mm2/s. By

comparing the measured concentration of this IL23-TMR fluo-

rescent species with the total concentration of IL-23 measured

in the sample via absorbance at 280 nm, it was demonstrated

that 51.5% of the IL-23 in the sample was fluorescently labeled

with TAMRA.

The ratio of mono- to multi-labeled IL23-TMR particles was

determined by calculating the average molecular brightness of

individual fluorescent particles using a two-component

photon-counting histogram analysis from the same intensity

fluctuations (Chen et al., 1999; Figure 1C). It was found that the

IL23-TMR fraction was 77% composed of a 163,983 ± 2,537

cpm/s brightness fraction and 23% composed of a 589,772 ±

5,557 cpm/s brightness fraction. The brightness of unconjugated

TAMRA under these conditions was determined to be 301,461 ±

10,764 cpm/s. As the LC-MS spectra showed that themajority of

labeled IL-23 is bound to just one TAMRAmolecule, this demon-

strated that reaction of the fluorophore with IL-23 caused signif-

Figure 1. Characterization of labeled IL23-

TMR using fluorescence correlation spectros-

copy and photon-counting histogram analysis

(A) Example of the fluorescence fluctuations ob-

tained over time for 100 nM IL23-TMR in the pres-

ence of 1 mg/mL BSA.

(B) Autocorrelation curves for four concurrently

collected replicate fluorescence correlation spec-

troscopy (FCS) readings of 100 nM IL23-TMR in the

presence of 1 mg/mL BSA, with a red line denoting

the one-component free 3D fit of the data.

(C) Photon-counting histogram (PCH) of the data

presented in (B) fit with a two-component model (red

line).

(D) Analysis of IL23-TMR showing the concentration

of TAMRA-labeled molecules measured by FCS in

(B) versus the total concentration of IL-23 (initially

quantified by absorbance at 280 nm), in the pres-

ence (red) or absence (blue) of 1 mg/mL BSA. Di-

agonal dotted line represents x = y. Each data point

represents mean value ± SEM of 20 measurements

from five independent experiments.

(E) Proportion of labeled IL-23 species. Total con-

centration of IL-23 was quantified by UV absor-

bance at 280 nm, and total concentration of

TMR-labeled IL-23 was determined using the auto-

correlation analysis demonstrated in (B). The pro-

portion of different populations of labeled species

was quantified using the two-component PCH

analysis demonstrated in (C). Data shown are

mean ± SEM of values obtained in five independent

experiments.

icant quenching of its brightness, with a

mean value almost 2-fold lower than that

of unbound TAMRA. The second bright-

ness component likely represents a

mixture of IL-23 species, bound to two or

more TAMRA molecules with a mean

brightness formed both from variable label

number and differing degrees of fluores-

cence quenching. As a result these components are hereafter

referred to asmono- andmulti-labeled IL-23. The overall propor-

tions of these components when compared with the previously

established total labeled IL-23 concentration were determined

to be 39.6% mono-labeled and 11.9% multi-labeled IL-23, with

a remaining 48.5% of the mixture being made up of unlabeled

IL-23 (Figure 1B).

Cell surface expression of NL fusions of IL23R and IL12Rb1 in

HEK293T cells was confirmed using luminescence imaging and

anti-NL immunocytochemical imaging, which showed that NL

constructs were localized to the plasma membrane (Figure 2).

Cell surface expression of HT-IL12Rb1 and SNAP-IL12Rb1

was confirmed by imaging cells expressing these constructs,

which had been labeled by incubation with AlexaFluor 488

(AF488)-fused HaloTag or SNAP-tag substrate (Figure S3).

To calibrate NL luminescence and AF488 fluorescent intensity

values in order to estimate expression levels, we made up and

measured a standard curve of both purified NL and SNAP-

AF488 substrate according to the same protocol that would be

used in further experiments (Figure S4).
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To ascertain whether the fusion of NL to IL23R or the fusion of

SNAP-tag or HaloTag to IL12Rb1 had any effect on IL-23-

induced signaling in HEK293T cells, we monitored phosphoryla-

tion of the downstream signal transducer and activator of

transcription 3 (STAT3) transcription factor. Co-expression of

the wild-type IL23R heteromer (IL23R and IL12Rb1), followed

by stimulation with varying concentrations of IL-23, led to deter-

mination of an EC50 = 269 ± 106 pM (n = 4) for cytokine stimula-

tion of phosphorylated STAT3 (pSTAT3). This experiment was

replicated utilizing co-transient transfections of either NL-IL23R

and IL12Rb1 or NL-IL23R and SNAP-tag fused IL12Rb1

(SNAP-IL12Rb1) or NL-IL23R andHaloTag fused IL12Rb1, which

led to the determination of potency values of 154 ± 46 pM (n = 4),

150 ± 43 pM (n = 4), and 199 ± 33 pM, respectively, for IL-23

stimulation of pSTAT3 (Figure 3). These results demonstrated

that use of these fusion constructs did not significantly alter

signal transduction induced by IL-23 (p > 0.05; one-

way ANOVA).

Binding of IL23-TMR to IL12Rb1, IL23R, and heteromers
of both receptor subunits
The binding of IL23-TMR was measured using NanoBRET in

HEK293T cells transiently expressing NL fusions of IL23R or

IL12Rb1 in the presence and absence of the corresponding un-

Figure 2. Expression of NanoLuciferase-tagged

IL23R and IL12Rb1 constructs

(A) Bright-field (top) and luminescence images (bottom)

of HEK293T cells expressing NL-IL12Rb1, NL-IL23R,

and NL-IL23R co-expressed with IL12Rb1 (collected

with an Olympus LV200 Bioluminescence microscope).

A 3-s exposure was used for NL-IL12Rb1 transfected

cells and a 10-s exposure for the other conditions. Im-

ages are representative of those collected in five inde-

pendent experiments and were collected on the same

experimental occasion. Scale bar represents 50 mm.

(B) Immunocytochemical imaging of transfected

HEK293T cells labeled with an anti-NanoLuciferase

antibody. Images are presented with (bottom) and

without (top) Hoechst staining and are representative of

those taken in three independent experiments. Images

were taken on the same experimental day. Scale bar

represents 20 mm.

tagged co-receptor. Increasing concentrations

of IL23-TMR resulted in an increase in the

BRET signal that was composed of saturable

specific and linear non-specific binding com-

ponents (Figure 4). Non-specific binding was

determined in the presence of an excess of un-

labeled IL-23; 1 mMwas used for NL-IL23R and

NL-IL12Rb1 transfected cells and 50 nM was

used for NL-IL23R co-expressed with

IL12Rb1. IL23-TMR had a greater affinity for

NL- IL12Rb1 (KD = 30.1 ± 5.5 nM; n = 5) than

NL-IL23R (KD = 222.2 ± 71.1 nM; n = 5) when

the constructs were expressed in isolation

(Figures 4A and 4B). However, when NL-

IL23R was co-expressed with unlabeled

IL12Rb1, the dissociation constant of IL23-

TMR to the heteromeric receptor complex was markedly

decreased to 27.0 ± 3.6 pM (n = 5), which was significantly

different from the affinity of IL23-TMR to cells expressing NL

fused monomers (unpaired t test; Figure 4C).

The dissociation constant obtained for IL23-TMR binding to

NL-IL12Rb1 in the presence of unlabeled IL23R was higher

(46.7 ± 16.1 nM, n= 3; Figure 5B) and similar to the value obtained

with NL-IL12Rb1 alone. However, comparison of the lumines-

cence intensities of cells expressing NL-IL12Rb1 and NL-IL23R

indicated that NL-IL12Rb1 achieved a much higher expression

level in transient transfections than that obtained with NL-IL23R

(0.0518 ± 0.0066 versus 0.0125 ± 0.0027 pmol/well, respectively;

Figure 5A). The higher dissociation constant obtained for NL-

IL12Rb1 in the presence of unlabeled IL23R is therefore likely to

be a consequence of the NL-IL12Rb1:IL23R complex only repre-

senting a small proportion of the total binding of IL23-TMR to NL-

IL12Rb1. To investigate this further, we undertook transfections

using a lower (1:10) transfection ratio of NL-IL12Rb1 and IL23R.

The affinity of IL23-TMR under these conditions was 19-fold

higher (KD = 647 ± 79.5 pM, n = 5; Figure 5B) and consistent

with a higher proportion of NL-IL12Rb1:IL23R complexes pre-

sent under these experimental conditions.

To ascertain whether the fusion of N-terminal tags to IL12Rb1

blocked the binding of IL23-TMR, BRET binding experiments
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analogous to those previously detailed were carried out using

cells expressing NL-IL23R and HT-IL12Rb1 or SNAP-IL12Rb1.

IL23-TMR bound to cells expressing both receptor fusion con-

structs with an affinity of 179 ± 8 pM and 454 ± 43 pM to

the HT-IL12Rb1 and SNAP-IL12Rb1 conditions, respectively

(Figure S5).

Binding affinity of unlabeled IL-23 for the NL-
IL23R:IL12Rb1 receptor complex
To measure the affinity of unlabeled IL-23 for the IL-23 receptor

complex, we undertook NanoBRET competition experiments us-

ing NL-IL23R and IL12Rb1 co-transfected into HEK293T cells.

This assay was carried out using several concentrations of

IL23-TMR and increasing concentration of unlabeled IL-23,

whereby the IC50 determined for unlabeled IL-23 was shifted to

higher concentrations (with increasing concentrations of IL23-

TMR) consistent with a competitive interaction (Figures 6A and

6B; Cheng and Prusoff, 1973). However, at the highest concen-

tration of IL-23 used (3 nM) the decrease in potency reached a

limiting value indicative of a more complex interaction (Figures

6A and 6B). Analysis of the data obtained with lower concentra-

tions of IL23-TMR yielded a mean Ki for IL-23 of 31.6 ± 7.7 pM

(n = 13), which was not significantly different from the pre-deter-

mined value for the KD of IL23-TMR (unpaired t test). In addition, a

Ki IL-23 of 27.2pMandaKD IL23-TMRof 35.1pMwereobtained from

a linear plot of the relationship between IL23-TMR concentration

and the corresponding IC50 values of unlabeled IL-23 (Figure 6B).

IL-23-induced changes in the position of the N termini of
IL12Rb1 and IL23R
To ascertain the level of constitutive association between

IL12Rb1 and IL23R, we transfected HEK293T cells with varying

concentrations of N-terminal fused SNAP-IL12Rb1 plasmid

with a constant concentration of NL-IL23R plasmid. The BRET

signal between NL and AF488 bound to the SNAP-tag was

then measured in the presence and absence of 5 nM IL-23.

BRET was observed between the subunits both with and without

IL-23, with the signal amplitude in the absence of IL-23 being

54.5% ± 3.9% that of the signal with IL-23. The BRET signal

was saturable with increasing SNAP-IL12Rb1 plasmid concen-

tration (Figure 7A); however, the level of SNAP-IL12Rb1 expres-

sion increased in a linear fashion with plasmid concentration

(Figure 7B), as quantified by fluorescent intensity measurements

before substrate addition. This demonstrated that the increase in

BRET signal was due to specific interactions of the constructs

rather than non-specific BRET in the membrane. The BRET ratio

obtained for the interaction between NL-IL23R and SNAP-

IL12Rb1 was significantly increased by 5 nM IL-23 (p < 0.0001;

t test). The ng of SNAP-IL12Rb1 cDNA transfected per well could

be further transformed into the pmol/well of SNAP-IL12Rb1

construct through the use of the SNAP-tag AF488 curve outlined

in Figure S4. This transformation (Figures 7C and 7D) enabled the

calculation of the BRET50 values of 0.0167 ± 0.0094 and 0.0840 ±

0.0409 pmol/well SNAP-IL12Rb1 per well in the presence and

absence of 5 nM IL-23, respectively.

To determine how the receptor subunit proximity or orienta-

tion changed during the formation of the ligand-bound IL-23 re-

ceptor complex, we carried out a BRET assay whereby

HEK293T cells were co-transfected with equal concentrations

of NL-IL23R and N-terminal SNAP-tag or HaloTag fused

IL12Rb1. The receptor was fluorescently labeled by addition

of SNAP-tag AF488 substrate to the SNAP-tag or HaloTag

618 (HT618) ligand to the HaloTag. In both the SNAP-tag and

HaloTag-IL12Rb1 conditions there was a clear change in

BRET ratio after incubation with increasing concentrations of

unlabeled IL-23 (Figure 7D). The EC50 values of IL-23 for

these responses were 42.9 ± 10.3 pM (n = 5) and 43.6 ± 15.8

pM (n = 5) for the SNAP-tag and HaloTag assays, respectively

(no statistical difference; unpaired t test; Figure 7D). However,

while the SNAP-IL12Rb1 assay gave an increase in BRET

signal following addition of IL-23, in the HaloTag-IL12Rb1 assay

the BRET signal decreased with increasing concentrations of

IL-23 (Figure 7E). A comparable BRET assay was also estab-

lished using HEK293T cells transfected with both NL-IL12Rb1

and HaloTag-IL23R. This assay demonstrated an increase in

BRET with increasing concentrations of IL-23 but gave a higher

EC50 value of 457 ± 209 pM (Figure S6). Taken together, these

data are consistent with a change in conformation of the IL23-

R:IL12Rb1 complex rather than an increase in the formation of

these complexes following agonist addition.

DISCUSSION

The IL-23 cytokine and its receptor are important therapeutic tar-

gets (Verreck et al., 2004; Werner et al., 2011). However, many

aspects relating to the mechanisms by which the IL-23:IL23R:

IL12Rb1 protein complex is formed remain to be fully elucidated.

In the present study, NanoBRET was utilized to measure the af-

finity of fluorescently labeled IL-23 to NL fusions of the full-length

individual IL-23 and IL12Rb1 receptor subunits and the full-

length IL-23 receptor heteromeric complex in living cells.

Figure 3. The effect of N-terminal NanoLuciferase, HaloTag, or

SNAP-tag additions to IL-23 receptor subunits on IL-23-induced
STAT3 phosphorylation

STAT3 phosphorylation induced in HEK293T cells transfected with different

tagged variants of the IL-23 receptor after a 30-min incubation with increasing

concentrations of IL-23. Data are expressed as a percentage of the response

obtained with 15 nM IL-23. Values are mean ± SEM from four or three (NL-

IL23R and HT-IL12Rb1) independent experiments.
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A previous study that characterized the interaction of IL-23

with the purified extracellular domains of the IL23R and

IL12Rb1 receptor subunits using ITC indicated that IL-23 has a

much higher affinity for the extracellular domain of IL23R

(44 nM) than the extracellular domain of IL12Rb1 (2 mM) (Bloch

et al., 2018). These observations led Bloch and colleagues to

suggest that the binding of IL-23 involved a sequential mecha-

nism whereby IL-23 binds first to the IL23R subunit and then in-

duces a dimerization step between the IL23R:IL-23 complex and

IL12Rb1, leading to the final complex (Bloch et al., 2018).

In the present study, we determined that the dissociation con-

stant of IL23-TMR binding to full-length cell surface-expressed

NL-IL23R was 222.2 ± 71.1 nM. However, the dissociation con-

stant of IL23-TMR binding to the full-length NL-IL12Rb1 in intact

cells was 30.1 ± 5.5 nM. This is nearly an order of magnitude

lower than the value obtained for IL23R and suggests that the

sequence of events identified by Bloch et al. (2018) may need

to be re-evaluated. The higher affinity of IL23-TMR for IL12Rb1

in live cells is also consistent with previous reports that cells ex-

pressing IL12Rb1 have a 2- to 5-nM affinity for the IL-12 cytokine

(Chua et al., 1994). This observation is pertinent to the current

study, given that IL-12 and IL-23 heteromers share the IL12p40

cytokine subunit and have both been shown to engage their re-

ceptors in a similar manner (Glassman et al., 2021).

When NL-IL23R was co-expressed in cells alongside unla-

beled IL12Rb1, the affinity for IL23-TMRwas increased by nearly

four orders of magnitude to 27.0 ± 3.6 pM. This suggests that a

Figure 4. Binding of IL23-TMR toNL-IL12Rb1,

NL-IL23R, and NL-IL23R co-expressed with

untagged IL12Rb1

(A–C) Binding of increasing concentrations of IL23-

TMR to HEK293T cells expressing either (A) NL-

IL23R, (B) NL-IL12Rb1, or (C) NL-IL23R and IL12Rb1

in the presence (red) or absence (blue) of an excess

of unlabeled IL-23. The concentration of unlabeled

IL-23 used was 1 mM (A and B) and 50 nM (C). Data

points are mean raw BRET ratio values ± SEM from

five independent experiments.

(D) The combined specific binding data from (A) to

(C) after subtraction of non-specific binding.

third, high-affinity binding site for IL23-

TMR is formed by oligomeric complexes

containing both IL23R and IL12Rb1 on

the cell surface. To further characterize

this third binding site, we measured the af-

finity of unlabeled IL-23 in cells expressing

both NL-IL23R and IL12Rb1 using a

competition binding assay. The results of

these competition experiments confirmed

that the IL-23:IL12Rb1 complex had a

high affinity for the untagged IL-23 cyto-

kine, KD = 27.2 ± 12.0 pM, which was

similar to that measured for IL23-TMR. In

the context of a growing list of reported

IL23R antagonists (Cheng et al., 2019;

Kong et al., 2020; Kucha�r et al., 2014; Pan-

dya et al., 2020; Quiniou et al., 2014), this

assay should be a useful tool for future

screening efforts to identify and develop IL-23 receptor

inhibitors.

To determine whether IL23R and IL12Rb1 proteins can form

constitutive heterodimers in the absence of ligand in HEK293T

cells, and to what extent this is influenced by agonist treatment,

we compared BRET measures between NL-tagged IL23R and

a fluorescently labeled SNAP-tag fusion of IL12Rb1. These ex-

periments demonstrated that IL12Rb1 and IL23R can form di-

mers in the absence of IL-23, as demonstrated by the saturable

increase in BRET ratio obtained with increasing amounts of

transfected SNAP-IL12Rb1. Furthermore, following the addition

of IL-23 (5 nM) there was an increase in the BRET ratio ob-

tained for the interaction between NL-IL23R and SNAP-

IL12Rb1. Addition of IL-23 produced a concentration-depen-

dent increase in BRET ratio in HEK293T cells transfected with

a 1:1 ratio of NL-IL23R and SNAP-IL12Rb1. This interaction

had an EC50 value of 42.9 pM that corresponded well with

the high-affinity binding site measured in IL-23 competition as-

says (KD = 31.6 pM) when both NL-IL23R and IL12Rb1 were

expressed together in the same cells. However, while in the

SNAP-IL12Rb1 assay the BRET signal increased with IL-23

binding, in the HaloTag-IL12Rb1 assay the BRET signal

decreased following agonist binding. The IC50 value for this

inhibitory effect of IL-23 was very similar (43.6 pM) to the

EC50 value obtained for the increase in BRET signal in the

SNAP-IL12Rb1 assay. Furthermore, when the HaloTag was

placed on IL23R and the NL tag was added to IL12Rb1, this
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IL-23-induced decrease in BRET was changed to a large in-

crease in the BRET signal.

The resonance energy transfer that occurs between two

labeled proteins depends very much on both proximity

(<10 nm) and orientation of the acceptor and donor species

(Dacres et al., 2012). In the case of receptors that are labeled

with both a donor and acceptor species, this can lead to

agonist-induced increases or decreases in BRET as a conse-

quence of conformational changes induced by agonist binding.

This has been demonstrated particularly well with intra-molec-

ular FRET sensors for G-protein-coupled receptors (Perpiñá-Vi-

ciano et al., 2020). Taken together, the data obtained for IL-

23:IL12Rb1 oligomerization indicates that binding of IL-23 to

a high-affinity binding site formed by the oligomeric complex

triggers a conformational change in the N-terminal domains

of the IL-23 receptor components. This is the simplest explana-

tion for the positive and negative BRET signals obtained

following IL-23 addition for the interaction between IL23R and

IL12Rb1 with different tag arrangements. The SNAP-tag is a

19.4-kDa protein and the HaloTag is a 33-kDa protein (Crivat

and Taraska, 2012), so it is very likely that their orientation

with respect to the 19-kDa NL on NLuc-tagged proteins can

change in different ways as a result of conformational changes

induced by IL-23.

We observed a decrease in the potency of IL-23-induced

conformational change when using cells transfected with the

HT-IL23R and NL-IL12Rb1 tagging conformation; however, for

cells transfected with the constructs NL-IL23R and SNAP-

IL12Rb1 we measured no change in the potency of IL-23-

induced STAT phosphorylation compared with the untagged

control. Notwithstanding any subtle effects of the NL fusions

and fluorescent labeling on IL-23 binding affinity, it is clear that

the NanoBRET technique has enabled the detection of binding

events that are at a far higher order of affinity than any of those

previously measured at the receptor using untagged but trun-

cated purified protein (Bloch et al., 2018). Furthermore, we

have shown that SNAP fusions of IL12Rb1 and NL fusions of

IL23R do not abrogate the ability of the receptor to initiate signal

transduction through the phosphorylation of STAT3. The high-af-

finity binding site identified in this work is in agreement with the

EC50 values we measured for downstream phosphorylation of

STAT3 and others measured for the IL-23-induced phosphoryla-

tion of STAT5 (EC50 = 28 pM; Varghese et al., 2020).

A consensus mechanism of receptor activation for the wider

IL-12 cytokine family of receptors has yet to be elucidated.

Within the cytokine receptor family, initial suggestions of

ligand-induced dimerization (Cochet et al., 1988) have been su-

perseded in many instances by a mechanism involving

Figure 5. Impact of expression level on

ligand-binding characteristics of NL-

IL12Rb1

(A) Luminescence signal measured from HEK293T

cells following transient transfection. Correspond-

ing NL (pmol/well) levels are calculated from a

purified NL standard curve (Figure S4). Values are

expressed as mean ± SEM from five or three (1:1

NL-IL12Rb1 + IL23R) independent experiments.

(B) Binding of IL23-TMR to combinations of NL-

IL12Rb1 and IL23R at different transfection ratios in

HEK293T cells. Values show mean ± SEM cells of

the BRET ratios obtained after subtraction of non-

specific binding. The concentration of IL-23 used

to define non-specific binding was 1 mM (blue and

green) and 100 nM (red). Data were obtained from

three (green) or five (red and blue) separate ex-

periments. The data for 1:1 NL-IL12Rb1 + IL23R

(green circles) were fitted to a two-site binding

curve, which yielded KD values of 28 pM and 72 nM with the high-affinity site accounting for 16.2% of the maximum specific binding. For these data, the two-

site binding curve was a significantly better fit than to a single-site saturation curve (p < 0.0001; partial F test).

Figure 6. Determining the affinity of unla-

beled IL-23 for the IL-23 receptor

(A) HEK293T cells expressing NL-IL23R and

IL12Rb1 were incubated with varying concentra-

tions of IL23-TMR as shown in the bar chart (left) and

increasing concentrations of unlabeled IL-23 (right).

Data represent mean ± SEM of the raw BRET ratios

obtained from five independent experiments.

(B) IL-23 IC50 values derived in (A) plotted against the

buffer concentration of IL23-TMR, with all points

except that for 3 nM IL23-TMR fitted by linear

regression.
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conformational change and the presence of pre-formed inactive

dimeric receptor complexes (Chua et al., 1994; Gent et al., 2002;

Couturier and Jockers, 2003; Schuster et al., 2003). These re-

ceptors can then be activated by a rotation of the transmem-

brane domains (reviewed by Maruyama, 2015), which results in

a rearrangement of pre-dimerized trans-inhibiting JAKs allowing

phosphorylation and signaling (Waters et al., 2014). If this is the

case for the IL-23 receptor, it is unlikely that the interaction oc-

curs within the extracellular domains of the receptor subunits

alone, as it has previously been demonstrated that purified

IL23R and IL12Rb1 extracellular domains have no affinity for

each other (Bloch et al., 2018) and even that these domains

can be replaced entirely by nanobodies and still initiate signaling

with the addition of a synthetic dual antigenic ligand (Engelowski

et al., 2018).

While the present study contradicts the previous report of the

ligand-induced dimerization of the IL-23 receptor, there is evi-

dence to support the existence of pre-dimerized receptor com-

plexes at the IL-23 receptor, within the wider IL-12 family and at

other closely related receptors. Sivenesan and colleagues used

IL-23 receptor C-terminal fusions of split Renilla luciferase ex-

pressed in HEK293 cells to demonstrate luminescence in the

absence of IL-23 and used this as evidence to argue that the

IL-23 receptor is constitutively associated in the absence of

ligand, similarly to the related erythropoietin receptor (Remy

et al., 1999; Sivanesan et al., 2016).

The initial study outlining the discovery of the IL-12 receptor

reported cytokine binding sites of three different affinities on

live cells, and the authors proposed that the highest-affinity

5- to 20-pM site was formed by a pre-formed receptor dimer

(Chua et al., 1994). In addition, the deletion of the extracellular

stalk region of IL23R has been shown to cause the formation

of IL23R receptor subunit complexes that signal in the absence

of ligand (Hummel et al., 2017); this could be evidence for an

inhibitory domain that ordinarily prevents signaling in constitu-

tively formed dimers. The closely related IL-6 receptor, which in-

cludes a gp130 subunit highly homologous to IL12Rb1 (Chua

et al., 1994), has also been shown to undergo ligand-indepen-

dent dimerization (Schuster et al., 2003).

This study has outlined the application of a proximity-based

technique for the IL-12 cytokine family. This approach could

be further developed to gain insights into the kinetics of cyto-

kine binding and receptor assembly and be used to assess

any differences in interactions caused by disease-relevant

mutations. The successful application of this technology to

the IL-23 receptor also highlights its utility to measure similar

interactions at other related cytokine receptors that remain

equally underinvestigated, with IL-12 being the only one of

the four IL-12 family cytokines to have a reported cellular af-

finity (Chua et al., 1994).

The IL-23 cytokine and its receptor are a target of high thera-

peutic interest. However, the binding mechanism, an important

piece of information for drug discovery, has not yet been defined

on living cells. This study defines the affinity of IL-23 to its full-

length receptor in living cells, demonstrating that the current

ligand-induced dimerization hypothesis of IL-23 receptor as-

sembly is unlikely and that a conformational change-based

activation mechanism is the more probable situation. The

Figure 7. Association of IL12Rb1 and IL23R in

the absence of IL-23 with changes in the posi-

tion of the N-terminal regions of IL12Rb1 and

IL23R following binding of IL-23

(A) Effect on the BRET signal of transfecting

increasing concentrations of SNAP-IL12Rb1 with

50 ng of NL-IL23R into cells. The SNAP-IL12Rb1

was labeled with SNAP-tag-AF488 substrate and

BRET between NL-IL23R and SNAP-IL12Rb1 was

then monitored in the presence or absence of 5 nM

IL-23. Data are Mean ± SEM from five independent

experiments. The BRET signal was normalized to

cells expressing NL-IL23R in isolation.

(B) Fluorescence intensity signals from laser-excited

SNAP-tag bound AF488 taken before the BRET

readings in (A), normalized to the fluorescence in-

tensity signal of cells expressing NL-IL23R in

isolation.

(C and D) Data shown in (A) and (B), respectively with

the x axis transformed to pmol/well SNAP-IL12Rb1

as calculated from the normalized fluorescent in-

tensity values using an SNAP-AF488 substrate

standard curve (Figure S4).

(E) Intra-receptor BRET between HT618-IL12Rb1

(green) or SNAP488-IL12Rb1 (blue) co-expressed

with NL-IL23R on HEK293T cells after incubation

with increasing concentrations of unlabeled IL-23.

Data show mean ± SEM of background-corrected

BRET signals from five independent experiments.

(F) Data from (E) normalized to percentage of the

maximum inhibition or induction of BRET.
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implications of this are that two further protein-protein interac-

tion sites could exist for drug discovery, firstly the dimeric IL23R:

IL12Rb1 interface with IL-23 and secondly the IL23R interface

with IL12Rb1.

SIGNIFICANCE

The IL-23 receptor is an important therapeutic target for

autoinflammatory conditions such as Crohn’s disease and

psoriasis; however, the mechanism of receptor activation

has yet to be fully defined. Using NanoBRET we measured

the interaction of IL23-TMRwith NL fusions of the full-length

IL-23 receptor subunits expressed in cells and report that

IL23-TMR had a higher affinity for NL-IL12Rb1 compared

with that for NL-IL23R. In addition, we observed that co-

expression of NL-IL23R with IL12Rb1 created a binding

site with an affinity far higher than those measured for NL-

IL23R or NL-IL12Rb1 alone. This heteromeric complex could

be formed in the absence of added ligand, suggesting that

this high-affinity binding site was constitutively present.

Furthermore, the impact of IL-23 addition on the position

of N-terminal regions of the constituent protomers was

dependent on the nature of the tags used but was consistent

with an IL-23-mediated change in receptor conformation.

These results together suggest that IL-23 binds to pre-

formed heteromers of both IL23R and IL12Rb1, leading to

a conformational change. This finding is significant, as it

has been reported that the IL-23 receptor is activated by

ligand-induced dimerization with initial binding to the

IL23R subunit. The findings of this study have direct implica-

tions for drug discovery both by outlining a methodology

through which to characterize IL-23 receptor antagonists

and by revealing that the IL23R:IL12Rb1 interface could be

a good target to disrupt IL-23 receptor heteromer formation

and signaling.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-NanoLuciferase Promega Corporation Gifted by Promega

AF488 Chicken Anti-Rabbit ThermoFisher Scientific Cat# A-21441; RRID: AB_2535859

Chemicals, peptides, recombinant proteins

HaloTag NanoBRET 618 Ligand Promega Corporation Cat# G9801

SNAP-tag AlexaFluor 488 membrane

impermeant substrate

New England BioLabs Cat# S9124S

AlexaFluor 488 HaloTag Ligand Promega Corporation Cat# G1001

5(6)-TAMRA (5-(and-6)-

Carboxytetramethylrhodamine), mixed

isomers

ThermoFisher Scientific Cat# C300

TAMRA, SE; 5-(and-6)-

Carboxytetramethylrhodamine,

Succinimidyl Ester (5(6)-TAMRA, SE),

mixed isomers

ThermoFisher Scientific Cat# C1171

Recombinant IL-23 protein GlaxoSmithKline (internal) Gifted by Surjit Bains

FuGENE HD Promega Cat# E2312

Fetal Bovine Serum Sigma Aldrich Cat# F2442

Protease-free Bovine Serum Albumin Sigma Aldrich Cat# A7030

Dulbecco’s Modified Eagle’s Medium Sigma Aldrich Cat# D6429

Poly-D-Lysine hydrobromide Sigma Aldrich Cat# P6407

Phosphate Buffered Saline (PBS) Sigma Aldrich Cat# D8537

Opti-MEM reduced serum medium ThermoFisher Scientific Cat# 11058021

Dithiothreitol (DTT) ThermoFisher Scientific Cat# R0862

Formic acid Fisher Chemical Cat# F/1900/PB15

Acetonitrile Sigma-Aldrich Cat# 34851

Paraformaldehyde (PFA) Sigma Aldrich Cat# F8775

Glycine Sigma Aldrich Cat# G8898

Chicken Serum Sigma Aldrich Cat# C5405

Immersol 518F (30�C) oil Zeiss Cat# 444970-9000-000

Hoechst Nuclear Stain (H33342) Sigma Aldrich Cat# B2261

Purified NanoLuciferase Veprintsev Lab Gifted by Bradley Hoare

Critical commercial assays

Nano-Glo luciferase assay system

(Furimizine)

Promega Corporation Cat# N1130

AlphaLISA SureFire Ultra p-STAT3 (Tyr705)

Assay Kit

Perkin Elmer Cat# ALSU-PST3

Experimental models: Cell lines

Human: HEK293T cells (female) ATCC (Virginia, USA) Cat# CRL-3216

Recombinant DNA

IL6SS-NL-IL12Rb1 Genscript Custom synthesis

IL6SS-NL-IL23R Genscript Custom synthesis

IL6SS-HT-TEV-IL12Rb1 Genscript Custom synthesis

IL6SS-HT-TEV-IL23R Genscript Custom synthesis

IL23R-MycDDK expression plasmid Origene Cat# RC211477

IL12Rb1 expression plasmid Origene Cat# SC303661

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Requests for resource and reagent sharing should be directed to and will be fulfilled by the lead contact, Professor Stephen J Hill

(Stephen.hill@nottingham.ac.uk).

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and code availability
This study did not generate/analyze any computational datasets/code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Female HEK293T cells were cultured and transfected as described in Method details.

METHOD DETAILS

Materials
All reagents unless otherwise stated were purchased from Sigma-Aldrich. Xba1 and Xho1 restriction enzymes, pNLF and FuGENE

HD transfection reagent, pNLF vectors, NanoGlo Substrate, AF488 HaloTag Ligand and HaloTag NanoBRET 618 Ligand were

purchased fromPromega. OptiMEMandNHSEster linked 5 and 6-Carboxytetramethylrhodamine (TAMRA)mixed isomers were pur-

chased from Thermo-Fisher Scientific. SNAP-Surface Alexa Fluor 488 was purchased from New England BioLabs. An IL23R-

MYCDDK expression plasmid (accession code NM_144701) and an IL12Rb1 expression plasmid (accession code NM_005535)

were purchased fromOrigene. Recombinant NanoLuciferase expressed in E. coli and purified using an N terminal His-tag was gifted

by Bradley Hoare of the Veprintsev lab, University of Nottingham. Rabbit anti-Nanoluciferase was kindly gifted by Promega. Recom-

binant IL-23 protein was gifted by Surjit Bains at GlaxoSmithKline (Stevenage, UK). The protein was originally purified through

expression in HEK293-F cells via co-transduction with BacMam viruses containing the p19-His and p40 transcripts. Heterodimeric

IL-23 was then purified from the supernatant using a Ni-Sepharose column.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pc 3.1 zeo SigSNAP-tag (Gherbi et al., 2015) Custom synthesis

pc3.1 zeo Invitrogen Cat# V86020

Software and algorithims

GraphPad Prism 7.02 GraphPad Software www.graphpad.com

Zen 2012 Zeiss www.zeiss.com

MaxEnt1 4.1 Waters www.waters.com

ImageJ Fiji 1.53 National Institute of Health www.fiji.sc

Other

White 96-well plates Greiner Bio-One Cat# 655098

Poroshell 300SB-C3 column Agilent Cat# PN 821075-924

PD10 column Cytiva Cat# 17085101

Nunc Lab-Tek 8-well chambered coverslips ThermoFisher Scientific Cat# 1554411

35 mm glass bottom dish MatTek Cat# P35G-1.5-14-C

384 well white Optiplate Perkin Elmer Cat# 6007290

Xba1 restriction enzyme Promega Corporation Cat# R6181

Xho1 restriction enzyme Promega Corporation Cat# R6161

T4 Ligase New England BioLabs Cat# M0202S

DAM negative E. coli Agilent Technologies Cat# 200247

DH5 alpha E. coli Invitrogen Cat# 18265017
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Molecular biology
Construction of N-terminal fusion constructs

NL constructs were custommade at Genscript by synthesis of either IL23R or IL12Rb1 without their endogenous signal peptides and

the subsequent sub-cloning of these, into a pNLF vector (Promega) using Xho1 and Xba1, which previously had an IL-6 secretion

signal added to the N terminus of NanoLuc viamutagenesis. The resulting open reading frames encoded anN-terminal IL-6 secretion

signal followed by NL then a Gly-Ser-Arg linker between the NL fusion and the N terminus of either IL23R or IL12Rb1. HaloTag con-

structs were custom synthesised at Genscript by synthesis of cDNA encoding an N-terminal IL-6 secretion signal followed by

HaloTag which was fused to either IL23R or IL12Rb1 by a Glu-Pro-Thr-Thr-Glu-Asp-Leu-Tyr-Phe-Gln-Ser-Asp-Asn linker that con-

tained a Tobacco Etch Virus (TEV) protease site. These cDNAs were then sub cloned into pNLF plasmids via Nhe1 and Not1 restric-

tion sites.

N-terminal SNAP-tag constructs were created by sub cloning IL23R and IL12Rb1 genes from the previously outlined N-terminal

NanoLuc fusion plasmids (grown in DAM negative E. coli) into a pc3.1 zeocin vector with and N-terminal SNAP-tag fused with a mu-

rine 5-HT3a receptor signal sequence, that has previously been described (Gherbi et al., 2015), using the restriction sites Xho1 and

Xba1. This resulted in a linker between SNAP-tag and the gene with a sequence of Ser-Thr-Ser-Pro-Val-Trp-Trp-Asn-Ser-Ala-Asp-

Ile-Gln-His-Ser-Gly-Gly-Arg-Ser-Arg.

Labelling of purified IL-23 protein

Recombinant IL-23 was labelled by incubation of 100 mg of protein with a 3 times molar ratio (21.4 mM) of NHS ester coupled TAMRA

dye, at room temperature for 2 hours in a pH 7.4 Phosphate Buffered Saline (PBS) buffer. The labelled protein was separated from the

reaction mixture through elution in a PD10 desalting column (Cytiva). Absorbance of the fractions at both 280 and 557 nm was then

quantified through the use of a Nanodrop Spectrophotometer (ThermoFisher Scientific) and combined into aliquots of varying IL-23

concentrations (as defined by 280 nm absorbance).

LC-MS analysis of TAMRA labelled IL-23 cytokine

Unfolding intact mass experiments were carried out using liquid chromatography coupled mass spectrometry (LC-MS). Samples

were analysed on Reversed-Phase (RP) chromatography (BioResolve RP column (2.1 x 50 mm, 2.7 mM, PN: on BioAccord RDa sys-

tem (Waters). Sampleswere desalted bywashingwith 0.1% formic acid in 25%acetonitrile and eluted using linear gradient with 0.1%

formic acid up to 80% acetonitrile at a flow rate of 0.5 ml/min. The divert valve was used and directed flow to waste from 0 to 0.5 min

after injection to avoid source contamination with buffer components. The eluate was ionised by electrospray ionisation (ESI). The

column temperature was maintained at 80�C, RDa acquisition was set to high mass range (400-7000 m/z) in positive ion mode

with the following source settings: cone voltage - 70 V, capillary voltage - 1.5 kV and the desolvation temperature - 550�C.
Non-reduced samples were injected into LC-MS directly from the stock buffer, when samples were run reduced, 50 mM final con-

centration of DTT was added to sample prior to injection. Chromatography peaks were integrated between 0.5 and 1.5min andmass

spectra were deconvolved using the MaxEnt1 algorithm.

Fluorescence correlation spectroscopy analysis of IL23-TMR
Solution Fluorescence Correlation Spectroscopy (FCS) was carried out as previously described (Briddon et al., 2004; Kilpatrick et al.,

2017). Briefly samples were imaged in 8 well chambered Nunc Labtek coverglasses (No. 1.0 borosilicate glass bottom; ThermoFisher

Scientific) using a Zeiss LSM 880 microscope with a 40X c-Apochromat 1.2 NA water-immersion objective (Zeiss) at 24�C. Samples

were excited with a Diode pumped solid state (DPSS) 561 nm laser and emission light collected through a 553-695 nm band pass

onto a GaAsP detector using a pinhole set at 1 airy unit. The confocal volume was set to 200 mm above the coverslip surface and

beam paths were calibrated using a solution of 20 nM TAMRA (5-6 carboxy mixed isomers; D = 2.88 x 10-10 m2/s; ) prepared in

high performance liquid chromatography grade water (Chromasolv ). Calibration measurements were collected using ten 10 s

and a one 60 s reads. FCS measurements were performed using a range of IL23-TMR concentrations in PBS with or without

1 mg/ml protease-free BSA . Measurements were recorded at 1 kW/cm2 laser power for four 15 s reads.

Cell culture

Human Embryonic Kidney 293T (HEK293T) cells were purchased from ATCC and cultured in Dulbecco’s Modified Eagle Medium

(DMEM) with 10% Fetal Bovine Serum (FBS) in tissue culture flasks at 37.5�C and 5% CO2. All experimental incubations outlined

in DMEM based media were carried out at 37.5�C and 5% CO2 and incubations in Hanks Balanced Saline Solution (HBSS) based

media were carried out 37.5�C without added CO2.

Transient transfections

For all experiments except those where transfection conditions were varied to induce changes in intra-receptor NanoBRET, cells

were transfected as follows; HEK293T cells were seeded in six well plates and incubated for 4-6 hours followed by addition of

100 ml of a transfection mixture consisting of FuGENE HD at a 3:1 ratio to DNA plasmid in OptiMEM. 2 mg per well total DNA concen-

tration with 1 mg of NL fused receptor construct and either 1 mg of untagged partner receptor or pc3.1 zeocin plasmid to normalise

DNA concentrations was used in all experiments except NL- IL12Rb1 and IL23R binding experiments where a 1:10 ratio was used

with 2.2 mg of total DNA per well cells were then incubated overnight.

In intra-receptor NanoBRET experiments with a range of transfection conditions HEK293T cells were adjusted to 150000 cells/ml

and dispensed at 100 ml into a poly-d-lysine (PDL) coated 96 well white microplate. Cells were then incubated overnight before being
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transfected with 50 ng well NL-IL23R and varying concentrations of SNAP-IL12Rb1 made up to 100ng/well with pc3.1 zeocin vector

and with 0.3 ml FuGENE per well. The transfection mixture was made up to 5 ml per well with OptiMEM. Cells were then incubated

overnight.

For 8 well imaging experiments HEK293T cells were seeded at 200000 cells per well in 300 ml of media into PDL coated 8 well glass

plates. The following day eachwell was transfectedwith a 10 ml transfectionmixmade up of 200 ng cDNA consisting of 100 ng of each

receptor construct and 0.6 ml of FuGENE HD in OptiMEM. 100 ng of pc3.1 zeocin empty vector was included if only one receptor

monomer was to be expressed.

Luminescence imaging

HEK293T cells were transfected as described in the transient transfection section except for their initial seeding into PDL coated

35mm glass bottom plates (Matek) at a density of 150000 cells/ml in 2 ml of DMEM with 10% FBS. After transfection the dishes

were incubated for 2 days before media was replaced with 3 ml of 37�CHBSSwith 5.13 mMFurimizine. The dishes were then imaged

on an LV200 luminescence microscope (Olympus) equipped with a C9100-23B IMAGE EMX2 camera (Hamamatsu) in both bright-

field and luminescence settings using a 60x/1.42NA oil immersion objective lens and 0.5x tube lens. Exposure was adjusted to the

level of expression (2-15 s).

Immuno-cytochemical imaging

HEK293T cells were seeded and transfected in 8 well glass bottom plates as described in the transient transfection section. The

following day cells were washed with PBS and fixed with 3% Paraformaldehyde (PFA) for 15 minutes. The cells were then washed

three times with PBS and incubated with 30 mg/ml BSA and 10 mg/ml Glycine in PBS for 30 minutes. The cells were washed three

times with PBS and then incubated in 10% chicken serum in PBS for 30 minutes. This mixture was then replaced with 1000 fold

diluted rabbit anti-NanoLuciferase antibody in PBS with 10% chicken serum. The plates were then incubated overnight at 4�C.
The following day the cells were washed three times with PBS and a 500 fold dilution of AF488 labelled chicken anti-rabbit antibody

(ThermoFisher Scientific) in PBS with 10% chicken serum was added. Following an hour long incubation, cells were washed three

times with PBS and 2mg/ml Hoechst nuclear stain in PBSwas added. The plates were incubated for 10minutes, washed three times

with PBS and then imaged using a Zeiss LSM 880 microscope fitted with a 63x PlanAprochromat oil objective (1.4 NA, Zeiss), using

an Argon 488 nm laser (2%) and a 405-30 nm diode laser (2%) for excitation. The pinhole was set at 1 Airy Unit and AF488 and

Hoescht imaged on separate tracks using a 488 nm beamsplitter and 495-630 nm band pass or a 405 nm beamsplitter and a

410-495 nm band pass respectively. All images were taken with 1024 x1024 pixels per frame with 8 averages.

NanoBRET IL23-TMR ligand binding and competition experiments

Transfected HEK293T cells were incubated overnight before being re-suspended, adjusted to 200000 cells/ml and added to PDL

coated 96 well white clear bottom assay microplates (Griener Bio-One) at 100 ml per well. The plates were then incubated overnight

before media was removed the following day and replaced with 50 ml per well of IL23-TMR in HBSS with 1 mg/ml BSA either with or

without an excess unlabelled IL-23 to quantify non-specific binding, in ligand binding experiments. The concentration used de-

pended on the potency of the interaction, 50 nM was used in NL-IL23R and IL12Rb1 expression experiments, 100 nM in NL-

IL12Rb1 and IL23R experiments and 1 mM in NL-IL23R or NL-IL12Rb1 experiments. In competition experiments media was replaced

with 50 ml per well of a concentration titration of IL-23 in HBSS with 1 mg/ml BSA and differing concentrations of IL23-TMR. Plates

were then incubated for 1 hour before the addition of 5 ml of 77 mMFurimizine per well a further 2minute incubation before reading the

plate on a Pherastar FS plate reader (BMG labtech) using a 450 nm (30 nm bandpass) and >550 nm filter with gains of 2000 and 3000

respectively.

Intra-receptor NanoBRET

To measure agonist induced changes in intra-receptor NanoBRET with a titration of IL-23, HEK293T cells that had previously been

transfected were re-suspended and adjusted to 200000 cells/ml. Cells that expressed HaloTag fused constructs then had 100 nM

HaloTag 618 ligand added. All cells were then dispensed at 100 ml into PDL coated 96 well white clear bottom microplates.

On the day of the experimental read cells transfected with SNAP-tag fused constructs hadmedia replacedwith 50 ml of DMEMwith

FBS with 0.2 mM SNAP-tag-AF488 membrane impermeant substrate and were then incubated for 30 minutes followed by three

washes with HBSS. The buffer for the labelled cells was then replaced with HBSS with 1 mg/ml BSA with or without varying concen-

trations of IL-23 and incubated for one hour. 5 ml of 77 mMFurimizine per well was then added and a further 2minute incubation before

plates were read using a Pherastar FS. Cells labelled with SNAP-tag AF488 substrate

were read using 475 nm (30 nm bandpass) and 535 nm (30 nm bandpass) filters with gains of 2800 and 3600 respectively. Cells

labelled with Halotag 618 dye were read using 460 nm (80 nm bandpass) and >610 nm longpass filters with gains of 2000 and 3000

respectively.

When a range of transfections was being used to measure constituitive association of IL-23 receptor subunits the protocol was

performed as above except that cells were first read for fluorescent intensity before the addition of Furimizine using excitation at

485 nm and emission at 520 nm measured using a PheraStar FS.

Quantification of STAT3 phosphorylation

Transfected HEK293T cells were plated into a PDL coated 96 well tissue culture microplate and then incubated overnight. The

following day media was replaced with serum free DMEM and the cells incubated for 3 hours. Media was then replaced with
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HBSS containing 1 mg/ml BSA and a concentration titration of IL-23 and the cells incubated for 30 minutes. An AlphaLISA SureFire

Ultra assay was then used to measure STAT3 phosphorylation at residue Tyr705. Assays were performed according to the manu-

facturers’ instructions.

Imaging of SNAP-tag and HaloTag fused constructs

HEK293T cells were seeded and transfected in 8 well glass bottom plates as outlined in the transient transfection section. The

following day cells were washed with PBS and then labelled with 500 nM of either AF488 HaloTag ligand or SNAP-tag AF488 sub-

strate in HBSS and incubated for 30minutes at 37�C. The cells were then washed three timeswith HBSS and fixed by incubation with

3%PFA in PBS for 15minutes. The cells were then washed twice with PBS and then incubated with 2mg/ml Hoechst stain in PBS for

10 minutes. The cells were then washed three times with PBS before being imaged on a Zeiss LSM 880 microscope as previously

described in the immuno-cytochemical imaging section.

NL and SNAP-AF488 substrate standard curves

Serial dilutions of purified NL enzyme or SNAP-AF488 substrate weremade up in 50 ml HBSSwith 0.1%BSA in white clear bottom 96

well microplates. The plate containing the NL titration had 5 ml of 77 mMFurimizine added to eachwell andwas then incubated at 37�C
for 4 minutes. Both plates were then read on the same Pherastar plate reader used in cellular NanoBRET experiments, using the

equivalent settings.

QUANTIFICATION AND STATISTICAL ANALYSIS

The LC-MS data was analysed using UNIFI v1.9.4 (Waters). Mass spectra of multiply charged state species were de-convoluted to

produce mass output using the MaxEnt1 algorithm to the closest Da.

FCS analysis was carried out with Zen Black 2012 software (Zeiss). IL23-TMRautocorrelation datawere fitted to a one-component,

free 3D, Brownian diffusionmodel including a pre-exponential for triple state of the fluorophore (Kilpatrick et al., 2017). IL23-TMRdata

were also fitted to a two component photon counting histogram (PCH) model to derive the ratio of mono to multi-labelled particles. A

20 ms bin time was used for PCH analysis with the first order correction set to the value determined in the calibration measurements

on each experimental day.

Scale bars were added to luminescence imaging data using Fiji version 1.53 (NIH).

Data were exported from a Pherastar plate reader as a BRET ratio, generated by dividing the acceptor signal at 535 ± 30, <550 or

<610 nm by the donor signal at 475 ± 30, 450 ± 30 or 460 ± 80 nm respectively, depending on the filter used.

All further data analysis, including statistical tests, was carried out using Prism 7.02 software (GraphPad). Affinity measures for

IL23-TMR were determined by fitting specific and non-specific binding to the equation:

BRET ratio =
Bmax½B�
ð½B�+KdÞ + ððA½B�Þ + C

�

where Bmax is the maximal specific binding, [B] is the concentration of IL23-TMR, Kd is the dissociation constant, A is the slope of the

non-specific binding component and C is the Y intercept.

IL23-TMR binding comparison and ligand induced N terminal proximal change traces were generated by normalising the data to

background and then fitting with the specific binding equation:

Y =
Bmax½B�
ð½B�+KdÞ

where Bmax is themaximal signal of the curve, [B] is the concentration of the ligand andKd is the dissociation constant of the ligand. In

some experiments the specific binding was fitted to a two-site binding equation:

Y =
Bmax1½B�
ð½B�+Kd1Þ+

Bmax2½B�
ð½B�+Kd2Þ

Where Bmax1, Bmax2, Kd1 and Kd2 are maximal specific binding levels and Kd values of the two components. Comparison of fits

were made by analysis of the residual sum of squares using the partial F-test (GraphPad Prism).

Competition and STAT3 phosphorylation experiments were analysed by fitting the data with the 4 parameter equation:

Y = Bmin +
Bmax � Bmin

1+ 10ðLogXC50�½A�ÞC

where Bmax is themaximal signal, Bmin is theminimum signal, LogXC50 is the log of the compound’s 50% inhibitory concentration for

competition experiments and 50% activating concentration in STAT3 reporter experiments, [A] is the concentration of competing

drug and C is the Hill slope of the curve.
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Ki IL-23 values were generated from a mean of values generated from IC50 IL-23 measures by using the Cheng-Prusoff equation:

Ki =
IC50

1+ ½L�
Kd

where Kd is the dissociation constant calculated for IL23-TMR previously in the ligand binding experiments and [L] is the concentra-

tion of IL23-TMR used.

Linear regression analysis was also performed on the relationship between IC50 and IL23-TMR concentration using a variant of the

Cheng-Prusoff equation:

IC50 = ½L�x Ki

Kd

+Ki

Where a plot of IC50 versus [L] yielded a slope of Ki/Kd and the intercept provided Ki.
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