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Abstract
Aim: This work explores whether the commonly observed positive range size– niche 
breadth relationship exists for Fagus, one of the most dominant and widespread broad- 
leaved deciduous tree genera in temperate forests of the Northern Hemisphere. 
Additionally, we ask whether the 10 extant Fagus species’ niche breadths and climatic 
tolerances are under phylogenetic control.
Location: Northern Hemisphere temperate forests.
Taxon: Fagus L.
Methods: Combining the global vegetation database sPlot with Chinese vegetation 
data, we extracted 107,758 relevés containing Fagus species. We estimated biotic 
and climatic niche breadths per species using plot- based co- occurrence data and a 
resource- based approach, respectively. We examined the relationships of these 
estimates with range size and tested for their phylogenetic signal, prior to which a 
Random Forest (RF) analysis was applied to test which climatic properties are most 
conserved across the Fagus species.
Results: Neither biotic niche breadth nor climatic niche breadth was correlated with 
range size, and the two niche breadths were incongruent as well. Notably, the wide-
spread North American F. grandifolia had a distinctly smaller biotic niche breadth than 
the Chinese Fagus species (F. engleriana, F. hayatae, F. longipetiolata and F. lucida) with 
restricted distributions in isolated mountains. The RF analysis revealed that cold toler-
ance did not differ among the 10 species, and thus may represent an ancestral, fixed 
trait. In addition, neither biotic nor climatic niche breadths are under phylogenetic 
control.
Main Conclusions: We interpret the lack of a general positive range size– niche 
breadth relationship within the genus Fagus as a result of the widespread distribu-
tion, high among- region variation in available niche space, landscape heterogeneity 
and Quaternary history. The results hold when estimating niche sizes either by fine- 
scale co- occurrence data or coarse- scale climate data, suggesting a mechanistic link 
between factors operating across spatial scales. Besides, there was no evidence for 
diverging ecological specialization within the genus Fagus.

K E Y W O R D S
climatic niche, co- occurrence data, deciduous species, Fagus, geographical range size, niche 
breadth, niche evolution, phylogenetic signal, temperate forest flora, vegetation- plot data

1  |  INTRODUC TION

Geographical range size is generally defined as the 2- dimensional 
extent of the spatial distribution of a species based on latitudinal 
and longitudinal extents (Gaston, 1991), whereas a species’ real-
ized niche is widely understood as the n- dimensional hypervol-
ume (Hutchinson, 1957) defined by the multi- dimensional range 
of abiotic and biotic conditions under which it can sustain natural 
populations (Blonder, 2018). The quantification and comparison 
of niche hypervolumes (hereafter niche breadth) have long been 
of interest to ecologists (e.g. Blonder et al., 2014; Fridley et al., 

2007; Hutchinson, 1957; Junker et al., 2016; Kambach et al., 2019; 
Sexton et al., 2017; Smith, 1982). Properties like species’ niche 
breadths and niche overlaps are proposed to affect co- occurrence 
patterns at the community level (Bar- Massada, 2015), and realized 
niche breadths are often used to define the degree of species spe-
cialization (Devictor et al., 2010). Since specialists (species with a 
narrow niche) are thought to be more vulnerable to current and 
future climate change than generalists (Devictor et al., 2010; but 
see Colles et al., 2009), determining species’ niche breadth can 
help identify priority species for conservation actions (Boulangeat 
et al., 2012).
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A positive relationship between range size and niche breadth 
has been proposed by the “niche breadth hypothesis” (Sheth et al., 
2020). A wide niche allows a species to cope with a wide range of en-
vironmental conditions (Brown, 1984). Mechanistically, a wide niche 
breadth can be brought about either by generalistic genotypes or 
by many different particularly adapted genotypes that replace each 
other in different parts of the geographical range (i.e. geographical 
vicariants) (Sheth et al., 2020). Both mechanisms would be reflected 
in a larger distribution range. Most studies have confirmed such a 
positive correlation (Boulangeat et al., 2012; Brown, 1984; Kambach 
et al., 2019; Slatyer et al., 2013; Sporbert et al., 2019; Zelený & 
Chytrý, 2019). For example, in a study on about 1200 plant species in 
the French Alps, specialist species were found to be more geograph-
ically restricted than generalist species (Boulangeat et al., 2012). The 
same pattern was found in the Czech flora (Zelený & Chytrý, 2019). 
Similarly, Kambach et al. (2019) reported a positive relationship be-
tween niche breadth and geographical range size, both regionally 
(1255 plant species in the European Alps) and globally (180 plant 
species). Recently, a meta- analysis of 64 studies worldwide, found 
widespread convergence between geographical range size and niche 
breadth, even after taking into account differences in niche breadth 
measurements, taxonomic groups, spatial scales and sampling ef-
fects across studies (Slatyer et al., 2013). This has raised concerns 
for specialist species that might be disproportionally affected by 
habitat loss (Staude et al., 2020). However, contrasting patterns have 
also been observed (Kambach et al., 2019; Slatyer et al., 2013), po-
tentially reflecting the multitude of factors affecting range size and 
realized niche breadth, such as dispersal abilities, regional availability 
of suitable niche space and historical events.

One reason why the positive niche breadth– range size relation-
ship is not systematically observed in nature might stem from the 
many ways niche sizes are calculated. Numerous approaches have 
been proposed to estimate the realized niche breadth of species 
(Guisan & Zimmermann, 2000; Sexton et al., 2017). The resource- 
based method (Smith, 1982) determines niche breadth as the range 
of favourable conditions along certain environmental gradients, 
such as temperature, soil moisture and nutrients, and light avail-
ability. It estimates the Grinnellian niche (Grinnell, 1917; Grinnell & 
Swarth, 1913) and it is the most widely applied method. However, as 
the resulting niche breadth depends on the selection of niche axes, 
it will only represent a part of the whole multi- dimensional niche as 
defined by Hutchinson (Devictor et al., 2010).

As large distribution ranges involve a higher probability to in-
clude a higher variation in climatic conditions, a positive relationship 
between range size and climatic niche breadth would not be sur-
prising (Slatyer et al., 2013). However, it is much less clear whether 
range size, as a global distribution characteristic, can be predicted 
from niche breadth estimates derived from the local scale of popula-
tions and the communities in which the populations occur (Kambach 
et al., 2019). Here, we focus on the community approach, which 
relies on the assumption that local- scale environmental conditions 
are reflected in community composition. At this scale, local inter-
actions between species come into play, which can either reinforce 

broad- scale climatically induced patterns or blur them (Sheth et al., 
2020). In the first case, a wider range of communities in which a 
species occurs would not only indicate the existence of higher en-
vironmental variation within the species’ range, but also provide 
evidence that the species is able to compete with many other co- 
occurring species under these conditions. Thus, in this case the niche 
breadth– range size relationship would become clearer because en-
vironmentally unsuitable habitats within the species’ range would 
remain unconsidered. Alternatively, local interactions might weaken 
the niche breadth– range size relationship, as the presence and abun-
dance of the co- resident species might depend on different site fac-
tors than those relevant for the species under consideration.

One method to estimate this niche breadth based on commu-
nity composition uses community turnover rates across plots (the 
taxonomic β- diversity) as a measure of species’ niche breadth 
(Fridley et al., 2007; successively modified by Zelený, 2009 and 
Manthey & Fridley, 2009). The fundamental assumption of the co- 
occurrence- based (biotic) niche concept is that widespread species 
are generalists that should occur with a broader range of commu-
nity compositions (i.e. in a higher number of different communities) 
compared to specialists, given an equal drawn number of plots in 
which the species occurs (Fridley et al., 2007). Overall, this method 
characterizes both the Grinnellian niche and the Eltonian niche 
(Elton, 1927), as it quantifies species’ response to multi- dimensional 
environment gradients and considers species interactions as well 
(Devictor et al., 2010; Fridley et al., 2007). In addition, it can be 
applied where environmental information is unavailable. Resource- 
based and co- occurrence- based approaches differ in the dimensions 
measured and spatial scales, and can serve as complementary meth-
ods to estimate species’ niches. While results based on the two ap-
proaches are not necessarily correlated (Emery et al., 2012; Pannek 
et al., 2016), a positive correlation is expected at broad spatial scales 
(Kambach et al., 2019).

Fagus is a key genus of the northern temperate forest flora. 
While phylogenetic relationships (e.g. Denk, 2003; Renner et al., 
2016; Shen, 1992), climatic limits (Fang & Lechowicz, 2006), biogeo-
graphical history (Denk & Grimm, 2009) and community composi-
tion (e.g. Hukusima et al., 2013; Kavgaci et al., 2012; Willner et al., 
2017) within the genus have been extensively studied, much less 
attention has been given to the range size and niche properties of 
the component species. This knowledge is valuable as it may help 
understand how Fagus species might respond to climate change. 
Increasing temperatures and more frequent extreme events, such as 
repeated heatwaves and summer droughts, have been projected for 
many mid- latitude regions (Booth et al., 2012; Geßler et al., 2007). 
Fagus species such as F. sylvatica and F. grandifolia are sensitive to 
high temperature and repeated drought events (Booth et al., 2012; 
Clark et al., 2011; Silva et al., 2012), and the distribution of European 
beech (F. sylvatica) has been projected to shift northward in a fu-
ture climate (Kramer et al., 2010). Studying the relationship between 
range size and niche breadth could provide valuable information 
for predicting the future distribution of Fagus species (Sheth et al., 
2020).
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Species’ responses to past environment changes could have 
been influenced dramatically by evolutionary processes (Kramer 
et al., 2010; Parmesan, 2006). Species differ in their environmen-
tal niche space because their ancestor populations were adapted 
to different conditions within the ancestral range, or the an-
cestor was sufficiently plastic to cope with different conditions 
(Bromham et al., 2020). In the course of speciation, we would ex-
pect that the descendant species share either a similar adaptation 
to local environment or the generalistic genotypic constitution 
with their ancestors. In both cases, the niche characteristics of 
closely related species should be more similar than those of more 
distantly related species (Losos, 2008). Consequently, it is im-
portant to analyse niche properties in a phylogenetic framework 
(Graham et al., 2004; Kozak & Wiens, 2010). Information as to 
which niche characteristics are more strongly affected by phylo-
genetic control might help establish hypotheses on the underlying 
mechanisms responsible for range dynamics and speciation and 
provide insights into the evolution of different niche axes (Emery 
et al., 2012; Evans et al., 2009). Variation among different Fagus 
species may be expected because of regionally varying palaeocli-
matic forces on range dynamics (Dynesius & Jansson, 2000; Magri 
et al., 2006). In the genus Fagus, the widespread and dominant 
North American F. grandifolia belongs to a more ancestral clade 
compared to the non- dominant, regionally rare and small- ranged 
Chinese species (Oh et al., 2016; but see Renner et al., 2016 and 
Jiang et al., 2020). This phylogenetic pattern could suggest an evo-
lutionary tendency towards ecological specialization.

As mentioned above, because species with larger ecological 
niches occur in a broader range of habitats, they tend to have 
larger distribution ranges and total population sizes. These condi-
tions should provide higher chances for speciation events in quan-
titative and qualitative terms. A broader habitat range provides a 
higher probability for local adaptation processes. Such ecotypes 
have the chance to get isolated from the main population by eco-
logical or spatial vicariance. The quantitative difference to small- 
ranged species provides a stochastically higher chance for such 
events as well as for long- distance dispersal events. This opens 
another possibility for speciation processes due to geographical 
isolation. Testing whether interspecific similarities of niche char-
acteristics and phylogenetic relatedness are positively correlated 
(Blomberg et al., 2003; Losos, 2008; Wiens et al., 2010), could 
provide hints for evolutionary tendencies towards ecological 
specialization. In addition, identifying the key climatic factors for 
evolution and speciation of the Fagus species might also enhance 
our understanding on their response to climate change. So far, 
although several studies have explored the roles of climatic (e.g, 
Evans et al., 2009; Graham et al., 2004; Kozak & Weins, 2006) or 
habitat niche evolution (e.g., Emery et al., 2012) in speciation, this 
approach has rarely been applied to species’ co- occurrence- based 
assessment of niche breadth.

During the last decades, extensive species co- occurrence 
data have been accumulated for forest stands in which the 
genus Fagus occurs. Combining sPlot— the global vegetation plot 

database (Bruelheide et al., 2019)— with an unpublished Chinese 
vegetation database, we extracted 107,758 relevés in which at 
least one Fagus species occurs. Using this unique dataset and the 
distribution data from Chorology Database Halle (http://choro 
logie.biolo gie.uni- halle.de//areal e/), we estimated the range size 
and niche breadth of all extant Fagus species, and explored the 
relationship between them. Accordingly, we tested the following 
hypotheses: (H1) The commonly found positive relationship be-
tween range size and niche breadth applies to the genus Fagus; 
(H2) biotic and climatic niche breadths are correlated; and (H3) 
the Fagus species’ niche similarities are positively correlated 
with phylogenetic relatedness. Although H1 is a general assump-
tion in species distribution modelling, it has rarely been tested 
with different approaches to niche breadth estimation; doing so 
for all species of a key genus of northern temperate forests is, 
therefore, particularly valuable. Confirming H2 would demon-
strate that fine- scale determinants of biotic niche breadth are 
transferable to the broad- scale characteristics represented by 
climatic niche breadth. Finally, the results on H3 would shed light 
on the evolution of Fagus species’ niche properties, and thus 
improve our ability to model potential future changes of Fagus 
distributions.

2  |  MATERIAL S AND METHODS

2.1  |  Study species

The genus Fagus includes widespread as well as relatively rare spe-
cies distributed across the Northern Hemisphere, from eastern 
North America, Europe and western Asia to eastern Asia (Figure 1). 
There are four Fagus species in China (F. engleriana, F. hayatae, F. 
longipetiolata, F. lucida), with F. longipetiolata distributed in north-
ern Vietnam and F. hayatae in Taiwan Island. Two species occur in 
Japan (F. crenata, F. japonica) and one on Ulleungdo Island in South 
Korea (F. multinervis) (Fang & Lechowicz, 2006; Oh et al., 2016). 
European beech (F. sylvatica) occurs in Europe, and F. orientalis in 
western Asia and southeast Europe (Willner et al., 2017). Fagus 
grandifolia is distributed in eastern North America, with F. grandi-
folia subsp. mexicana having a narrow, isolated range in the moun-
tains of Mexico. It is noteworthy that the taxonomic status of the 
three geographically- isolated segregates (F. multinervis, F. orientalis 
and F. grandifolia subsp. mexicana) has been debated for a long time. 
In some studies, F. multinervis and F. orientalis have been treated as 
subspecies (Renner et al., 2016), while there are recent phylogenetic 
hypotheses that recognize F. grandifolia subsp. mexicana as a distinct 
species (Jiang et al., 2020).

2.2  |  Datasets for niche breadth estimation

The data used were mainly obtained from sPlot— the global 
vegetation- plot database— which has a worldwide coverage 

http://chorologie.biologie.uni-halle.de//areale/
http://chorologie.biologie.uni-halle.de//areale/
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and a standardized taxonomic nomenclature (Bruelheide et al., 
2019). As data for Fagus in China were quite limited in sPlot, 219 
additional Fagus plot data from China were added from our own 
unpublished field records. The taxonomic backbone of sPlot was 
used to harmonize the species nomenclature of these additional 
records. Species co- occurrences in the tree, shrub and herba-
ceous layer of each vegetation plot were used for co- occurrence- 
related analyses. Additionally, the spatial coordinates (latitude 
and longitude) of the plots were used to extract climatic attrib-
utes. As we were interested in estimating niche breadth from 
the full range of biotic constellations, we did not apply any mini-
mum threshold for the cover of Fagus species in the plot records. 
Altogether, 107,758 vegetation plots in which at least one Fagus 
tree species occurs were obtained for the analyses (Figure S1, 
Table 1).

2.3  |  Datasets for range size estimation

The geographical distribution of the 10 Fagus species (Figure 1) was 
based not only on the occurrence records described above but also on 
the data collected by the Chorology Working Group at the University 
of Halle- Wittenberg, Germany (Chorology Database Halle, CDH; http://
choro logie.biolo gie.uni- halle.de//areal e/), which has compiled a wide 
range of data sources. For example, distribution data of the Chinese 
Fagus species were primarily collected from ‘Atlas of woody plants in 
China: distribution and climate’ (Fang et al., 2011). The data included pol-
ygon and point features. For methodological details, see Caudullo et al. 
(2017). For each Fagus species, the range size was calculated as the 
geographical area (km2) of the range polygons in an equal- area carto-
graphic projection (Lambert azimuthal equal- area projection). Isolated 
point clusters were converted to minimum convex polygons (MCPs).

F I G U R E  1  Range maps of the 10 
extant Fagus species worldwide. The 
colour spectrum reflects the phylogenetic 
relationships of the 10 species (see Figure 
5). (a) Global distribution of Fagus and 
detail enlargement for (b) North America; 
(c) Europe and West Asia; (d) East 
Asia; and (e) Ulleungdo Island in South 
Korea

(a)

(b) (c)

(d)

(e)

http://chorologie.biologie.uni-halle.de//areale/
http://chorologie.biologie.uni-halle.de//areale/
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2.4  |  Climate data

For the localities of all 107,758 selected plots, we extracted raster 
cell values from grid layers of the 19 bioclimatic variables (BIO01 
to BIO19) provided by the CHELSA database (https://chels a- clima 
te.org/; Karger et al., 2017). The spatial resolution was 30 arc seconds, 
corresponding to about 0.64 km × 0.93 km = 0.6 km2 at the average 
latitude of the plots (46.31°N). For those plots along the coastlines 
resulting to be located in the sea due to coarse location accuracy, we 
extracted the climate information of the closest terrestrial grid cells 
with the recorded elevation using the snap function in ArcGIS.

2.5  |  Estimation of biotic (co- occurrence- based) 
niches from plot data

To estimate co- occurrence- based niche breadth, we generally fol-
lowed the approach proposed by Fridley et al. (2007), which uses 
the taxonomic β- diversity metric among the set of plant communi-
ties (here, vegetation plots) in which a focal plant species occurs. 
To measure plot dissimilarity, we chose the multiple Simpson index 
(Baselga et al., 2007), which can disentangle changes in species 
composition caused by changes in species identities (species turno-
ver) from those caused by species richness differences (nestedness 
effect), whilst being independent of the absolute species richness 
in the plots (Baselga et al., 2007; Manthey & Fridley, 2009). As 
the quantities of plots varied a lot among different Fagus species 
(Table 1), we conducted a resampling procedure to control for pos-
sible sample size effects. For each of the 10 Fagus species we calcu-
lated niche breadth 100 times by randomly drawing 20 plots with 
replacement out of the total number of plots that contain the focal 
species, and then taking the average dissimilarity value of the 100 

iterations (Fridley et al., 2007; Pannek et al., 2016). We then calcu-
lated the variance of the dissimilarity values across the 100 runs. 
Results based on other dissimilarity indices for turnover calculations, 
i.e. the Jaccard and Sørensen index (Manthey & Fridley, 2009), are 
presented in the Supporting Information (Figure S2). The Sørensen 
index is a linear function of the multiplicative Whittaker's β- diversity 
metric (βw), which eliminates possible effects of species pool sizes 
(Manthey & Fridley, 2009; Zelený, 2009).

2.6  |  Estimation of climatic niches from plot data

We applied the method of dynamic range boxes (DRB) to estimate the 
climatic niche breadth since it has proven to be relatively robust to 
sampling effects and outliers, especially at high dimensionality (Junker 
et al., 2016). Accordingly, we calculated the realized climatic niche 
breadth based on the above- mentioned bioclimatic variables, using 
the R package ‘dynRB’ (Schreyer et al., 2018). To avoid bias related 
to inter- correlation, we excluded one of those variables with abso-
lute pairwise correlation r > 0.75 and we thereby limited our selec-
tion to 10 variables as follows: BIO02 (Mean Diurnal Range); BIO03 
(Isothermality); BIO05 (Max Temperature of Warmest Month); BIO06 
(Min Temperature of Coldest Month); BIO07 (Temperature Annual 
Range); BIO08 (Mean Temperature of Wettest Quarter); BIO09 (Mean 
Temperature of Driest Quarter); BIO13 (Precipitation of Wettest 
Month); BIO15 (Precipitation Seasonality); and BIO17 (Precipitation 
of Driest Quarter). Original dimensions of the climatic variables were 
replaced with the first five principal components of a principal com-
ponent analysis (PCA) (accounting for 91.8% of the variation) to avoid 
possible interdependence of predictors (Junker et al., 2016).

To limit pseudo- replication at a given site, in cases where two 
or more plots had identical spatial coordinates, only one plot was 

Species
Plot 
numbera 

Range size 
(km2)

Latitudinal 
range (°N)b 

Longitudinal 
range

F. crenata 4811 1.6 × 105 31.5– 42.7 130.1°E– 142.1°E

F. engleriana 71 2.6 × 105 30.1– 33.8 103.6°E– 118.8°E

F. grandifolia 3574 2.1 × 106 19.6– 46.1 68.2°W– 97.0°W

F. hayatae 50 3.6 × 104 24.5– 33.5 102.4°E– 121.8°E

F. japonica 1187 8.0 × 104 32.4– 40.0 131°E– 141.9°E

F. longipetiolata 58 7.5 × 105 22.9– 32.9 102.4°E– 120.7°E

F. lucida 90 4.4 × 105 24.9– 32.6 103.9°E– 119.7°E

F. multinervis 35 3.7 × 101 37.49– 37.53 130.8°E– 130.9°E

F. orientalis 1316 1.7 × 105 36.0– 50.4 21.5°E– 53.1°E

F. sylvatica 97,045 1.3 × 106 37.7– 57.5 5.3°W– 28.3°E

aThere are some plots with more than one Fagus species. Therefore, the sum of plot numbers in the 
table is greater than the total number of plots, which is 107,758. 
bFor F. grandifolia, the geographical range of plots excluding those in Mexico (19.6– 19.7°N and 
96.9– 97.0°W) is 30.4– 46.1°N and 68.2– 94.3°W. For F. hayatae, the geographical range of plots 
in mainland China is 28.6– 33.5°N and 102.4– 120.7°E, and that of plots on Taiwan Island is 
24.5– 24.7°N and 121.3– 121.8°E. 

TA B L E  1  Geographical range sizes and 
plot information of the 10 extant Fagus 
species

https://chelsa-climate.org/
https://chelsa-climate.org/
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selected randomly. As a result, the sample size for the climatic niche 
estimation was reduced to 61,717 plots. We used two different ag-
gregation functions (‘mean’ and ‘gmean’, both included in the pack-
age ‘dynRB’) to compare the coordinate- wise volumes. Note that the 
‘product’ method was omitted as it was not recommended by the 
authors (Junker et al., 2016). Results based on the ‘mean’ method are 
shown in the Supporting Information (Figure S3).

2.7  |  Phylogenetic analysis

Before using phylogenetic methods to test whether specific mac-
roclimatic traits are species- specific across genera, we ran a 
Random Forest (RF) analysis to select the key bioclimatic variables. 
Specifically, we quantified the discriminability of each bioclimatic 
variable range between the sister species. We employed two widely 
used variable importance measures: the mean decrease accuracy 
and mean decrease Gini index (Breiman, 2001). Only the plot data 
with distinct coordinates (n = 61,717) were used here.

We calculated RF ensembles of recursive classification trees with 
the ‘randomForest’ package in R (Breiman, 2002). As settings, we 
used 10,000 iterations and the ‘tuneRF’ function to identify the ‘opti-
mal’ number of input variables randomly chosen at each node. Since 
the number of plots per Fagus species varied considerably (n = 11 to 
54,397), both a fixed sample size (n = 10) approach and a proportion-
ate stratified sampling procedure (following the species sequence in 
Table 1, n = 3690; 40; 1840; 40; 1030; 50; 60; 10; 270; and 16,300, 
respectively, with replacement) were adopted. For comparison, a con-
servative variant with the fixed sample size of n = 10 was calculated. 
Out- of- bag (OOB) estimation of error rate was used to assess clas-
sification success and a permutation cross- validation test with 20% 
withhold test data was used to control for overfitting.

To assess whether niche breadth estimates as well as the least 
and most discriminating bioclimatic variables identified by the RF 
analysis (taking the 5th and 95th percentiles, respectively) are under 
phylogenetic control or show a random pattern of evolution, phy-
logenetic signals were tested across all 10 Fagus species. For each 
species, we calculated the biotic and climatic niche breadth esti-
mates and the distinctive bioclimatic variables. Blomberg's K value 
is an indicator of the strength of the phylogenetic signal, which in-
dicates strong phylogenetic control of characteristics when greater 
than one, and a random pattern of evolution when close to zero 
(Blomberg et al., 2003; Kembel, 2010). Blomberg's K values were 
calculated based on the phylogenetic trees as provided in Qian and 
Jin (2016) and Oh et al. (2016).

2.8  |  Statistical analyses

We tested for differences in biotic niche breadth between the 10 
Fagus species with a one- way analysis of variance (ANOVA) and 
Tukey's HSD post hoc tests, using an n = 100 random selection of 
plot records as replicates. To test hypothesis H1 (i.e. that range size 

is related to niche breadth) and H2 (i.e. that biotic and climatic niche 
breadths are correlated), we assessed the relationships between the 
different niche traits and range size by performing the phylogeneti-
cally corrected generalized least- squares (PGLS) regression using the 
R package ‘caper’ (Orme et al., 2018). Considering the relatively small 
sample sizes and the outlier species F. multinervis, we further assessed 
the relationships with a Spearman's correlation test. In addition, the 
PGLS regression and Spearman's correlation test were also performed 
when excluding F. multinervis. For hypothesis H3, which proposes that 
biotic and climatic niche breadths are non- randomly associated with 
phylogeny, we calculated the phylogenetic signal, using the ‘picante’ 
package in R (Kembel, 2010). Plotting of the phylogenetic signals 
was done with ‘phylo4d’ from the ‘phytools’ package (Revell & Revell, 
2019). The RF analysis was done using the ‘rf’, ‘rfUtilities’, and ‘ran-
domForestExplainer’ packages. All statistical analyses were conducted 
with R v3.5.1 (R Core Team, 2018), and further graphs were produced 
with the R package ‘ggplot2’ and ArcGIS 10.3.

3  |  RESULTS

3.1  |  Overall patterns of range sizes and niche 
breadths

Geographical range sizes of the 10 Fagus species differed by five orders 
of magnitude, ranging from 37 km2 (F. multinervis) to 2.1 × 106 km2 (F. 
grandifolia) (Table 1). Out of the four Chinese Fagus species (F. longipet-
iolata, F. lucida, F. engleriana and F. hayatae), F. hayatae had the smallest 
range size (3.6 × 104 km2), but also a wide disjunction between the pop-
ulations of mainland China and Taiwan. The ranges of the other three 
Chinese species were intermediate in size, but all were much smaller 
than those of F. grandifolia and F. sylvatica (1.3 × 106 km2). Fagus ori-
entalis (1.7 × 105 km2) and the two Japanese Fagus species had larger, 
but still relatively small range sizes (8.0 × 104 and 1.6 × 105 km2 for 
F. japonica and F. crenata, respectively) (Table 1). Despite some minor 
incongruences among different estimation methods, results obtained 
from the three co- occurrence approaches based on plot data were 
largely aligned, and so were the two climatic niche metrics calculated 
with different aggregation methods (Figures 2, 4g, S2, S3). Regarding 
the co- occurrence- based metric of niche breadth (multiple Simpson 
index), the Chinese Fagus species displayed the broadest biotic niches, 
while the Fagus species in Europe and West Asia had intermediate 
ones, and those in North America, Japan and Korea had relatively nar-
row niches (Figure 2). Similar patterns were observed based on the 
Jaccard and Sørensen index (Figure S2). In terms of climatic niche 
breadth, the Chinese species F. hayatae displayed the largest climatic 
niche breadth, followed by the West Asian and European Fagus spe-
cies (F. orientalis and F. sylvatica). The North American and Japanese 
Fagus species had intermediate climatic niches, while the Korean spe-
cies F. multinervis had the narrowest one (Figure 3). The aggregation 
method ‘mean’ resulted in a similar pattern (Figure S3). A PCA of the 
10 climatic variables also showed that plots of F. hayatae had a wide 
range along the first two axes (Figure S4).
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3.2  |  Relationships between range sizes and 
niche breadths

According to the PGLS regression and Spearman's correlation test, 
neither the biotic nor the climatic niche breadth estimate was related 
to range size (p > 0.05; Figure 4a– b, g). Although log- transformed 
range size exhibited a positive relationship with both biotic and 
climatic niche breadth (R2 ranging from 0.57 to 0.87, p ≤ 0.01; 
Figure 4c– d), these relationships were strongly determined by the 
influential point of F. multinervis. When excluding F. multinervis, the 
relationships were not significant any more (p > 0.05; Figure 4c– d). 
The biotic niche breadth estimates were significantly correlated 
with the climatic niche breadth values based on PGLS regression 
(R2 ranging from 0.43 to 0.72, p < 0.05; Figure 4e– f). However, 
these relationships were also strongly influenced by F. multinervis 
(Figure 4e– f). Both PGLS regression excluding F. multinervis and the 
Spearman's correlation test (Figure 4g) exhibited no significant rela-
tionships between the two niche breadth measures (p > 0.05).

3.3  |  Phylogenetic analyses of climatic 
tolerances and niche properties

The RF analysis successfully classified the species by climate with an 
out- of- bag (OOB) error rate of 11.1% when using a fixed sample size 

(n = 10), but reaching an OOB error rate of 1.95% when using pro-
portional sample sizes. Similar values were obtained with the cross- 
validation approach when withholding 20% test datasets (9.86% and 
2.03%, respectively). For both sampling strategies, the bioclimatic 
variable BIO03 (Isothermality, which is the mean diurnal range of 
temperature divided by the annual range of temperature, i.e. BIO02/
BIO07) had the strongest importance for discriminating the species, 
as it returned the largest decrease in accuracy and increase in Gini 
node impurity when excluded (Figure S5). In contrast, the exclusion 
of the bioclimatic variable BIO06 (Minimum temperature of the 
coldest month) had the lowest importance (Figure S5).

Blomberg's K values were smaller than one for all the biotic and 
climatic niche characteristics as well as the two aforementioned 
bioclimatic variables (BIO03 and BIO06). No biotic or climatic niche 
characteristics were significantly different from a random distri-
bution (p > 0.1; Figure 5), suggesting that we cannot conclude that 
these characteristics are phylogenetically conserved within the 
genus Fagus. Rather, small and large niche breadths are distributed 
randomly among the clades within Fagus.

4  |  DISCUSSION

Contrary to our first hypothesis and the commonly reported posi-
tive relationship between range size and niche breadth (Boulangeat 

F I G U R E  2  Co- occurrence- based niche 
breadths of the 10 extant Fagus species 
using multiple Simpson index for turnover 
calculations. The colour spectrum follows 
the distribution range maps (Figure 1). 
Different letters indicate significant 
differences according to a Tukey's HSD 
post- hoc test (p < 0.05)

F I G U R E  3  Climatic niche breadths of 
the 10 extant Fagus species based on the 
resource- based method of dynamic range 
boxes (DRB). The aggregation method 
used was ‘gmean’ (Junker et al., 2016). The 
colour spectrum follows the distribution 
range maps (Figure 1)
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et al., 2012; Brown, 1984; Kambach et al., 2019; Sheth et al., 
2020; Slatyer et al., 2013), we found no significant relationship 
between range size and the biotic and climatic niche breadth es-
timates for the species in the globally important tree genus Fagus. 

Setting possible methodological issues aside (see Appendix 1 in the 
Supporting Information), there are many biological, geographical and 
historical factors that might affect the niche breadth– range size re-
lationship for these closely related species, such as dispersal ability 

F I G U R E  4  Relationships between 
different niche breadths and range size 
(a– b) or log- transformed range size (c– d), 
and between biotic and climatic niche 
breadth (e– f). Panels a– f are based on the 
phylogenetically corrected generalized 
least- squares (PGLS) regression and panel 
g is based on the Spearman's correlation 
test (p < 0.05). Considering the outlier 
point of Fagus multinervis, fitted lines 
and coefficients of the PGLS regression 
of the 10 Fagus species are not shown 
in panels c– f. Multiple Simpson, Jaccard 
and Sørensen are different indices for 
biotic niche estimation. Mean and gmean 
represent different aggregation methods 
for climatic niche estimation and refer 
to the arithmetic and the geometric 
mean of the different niche dimensions, 
respectively. The acronyms BN and CN 
mean biotic niche and climatic niche, 
respectively
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or biotic interactions with other species, the regional availability of 
suitable niche space or differences in landscape heterogeneity, evo-
lutionary processes or historical events, as well as human impacts 
(Boulangeat et al., 2012; Lambdon, 2008; Sillero, 2011; Slayter et al., 
2013; Wandrag et al., 2019).

The North American species F. grandifolia probably represents a 
member of the oldest clade (Renner et al., 2016). However, its large 
distribution and its relatively low niche breadth may, to a large ex-
tent, represent lower spatial species turnover and environmental 
heterogeneity in eastern North America in comparison to Europe 
and East Asia. It is well- established that the diversity of angiosperms 
in eastern China is larger than in eastern North America (e.g. Qian 
et al., 2005). Fagus hayatae has a very disjunct distribution with two 
subranges in mainland China and Taiwan Island, and thus, covers 
a broad, yet disjunct range of climatic conditions (Hukusima et al., 
2013; Shen, 1992; Shen et al., 2015). Fagus orientalis, although with a 
distinctly narrower range size compared to F. grandifolia and F. sylvat-
ica, covers diverse climatic zones from the Balkan mountain ranges 
to the southern Euxinian, Colchic, Eastern Mediterranean and 
Hyrcanian regions (Crimea, North Turkey, Caucasus, isolated patches 
in southern Turkey and North Iran), in combination with steep el-
evational gradients (Gholizadeh et al., 2020; Kavgaci et al., 2012; 
Shen, 1992). For example, in the Hyrcanian area, F. orientalis grows 

between around 300 to 2700 m a.s.l., covering a broad range of cli-
matic conditions (from warm and humid to cool and dry) (Gholizadeh 
et al., 2020). Similarly, F. sylvatica has a broad ecological amplitude 
and a wide range of habitats in Europe (Magri, 2008; Ujházyová 
et al., 2016; Willner et al., 2017). The Fagus species in Korea (F. mult-
inervis) and Japan (F. crenata and F. japonica) have narrower biotic and 
climatic niche breadth, consistent with these species being limited to 
isolated islands, especially for F. multinervis, endemic to Ulleungdo 
Island (Hukusima et al., 2013).

The distribution of Fagus was severely influenced by the 
Quaternary historical events in the Northern Hemisphere (Huntley 
et al., 1989; Liu et al., 2003; Magri, 2008). Following the early 
Quaternary, the geographical range of Fagus dramatically shrunk 
and shifted southwards during the glacial periods, although the his-
tory of Fagus species during the interglacials before the Holocene 
remains unclear (Hukusima et al., 2013; Huntley et al., 1989; Liu 
et al., 2003; Magri, 2008; Magri et al., 2006). After the Last Glacial 
Maximum, northward or northwestward re- immigration of Fagus 
from the southern refugia happened in North America, Europe and 
Japan (Huntley et al., 1989; Liu et al., 2003; Magri, 2008), despite 
strong dispersal limitations (Saltré et al., 2013). In China, however, 
the northward postglacial migration of Fagus was limited by the 
monsoon climate with early- season aridity, which restricted the 

F I G U R E  5  Different characteristics 
and their phylogenetic signal for the 
10 extant Fagus species, measured by 
Blomberg's K. If K is significantly larger 
than one, the characteristic is regarded 
as phylogenetically conserved (Blomberg 
et al., 2003). Blomberg's K was not 
statistically significant (p > 0.05) for any 
characteristic. The phylogenetic tree is 
based on results provided in Qian and 
Jin (2016) and Oh et al. (2016). The size/
colour of the circle represents the scaled 
and centred value of the corresponding 
characteristic. The acronym MTCM means 
minimum temperature of the coldest 
month
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distribution ranges of the Chinese species to the subtropical region 
only (Liu et al., 2003; Shen et al., 2015).

Human activities might have affected the distribution and com-
munity composition of Fagus forests to a certain degree. For ex-
ample, F. sylvatica forests in Europe have been managed for a long 
time as beech is an important economic tree for wood production, 
especially in northern- central Europe (Magri, 2008). Activities such 
as livestock grazing and disturbance of the preceding forests by fire 
before Fagus became established have promoted the spread of Fagus 
in northern Europe (Bradshaw et al., 2010).

Overall, these idiosyncratic impacts on range dynamics differed 
from those factors affecting niche breadth, as witnessed by the ab-
sence of a significant correlation. Our study, with a sample size of 
10 species, suffers from low statistical power and does not preclude 
finding such a relationship across species within other genera. It 
would be, therefore, interesting to benchmark our finding that dif-
ferent factors drive range size and biotic niche width independently 
on a larger dataset.

Additionally, the lack of relationship between range size and 
niche breadth might also suggest that the prevalent processes of 
community assembly differ across Fagus species. In most communi-
ties, both deterministic and stochastic processes are at work simul-
taneously (Stegen & Hurlbert, 2011). Thus, a low taxonomic turnover 
(β- diversity), such as in F. grandifolia stands in North America, might 
reflect a low impact of stochastic processes, but might also be 
brought about by deterministic processes such as strong environ-
mental filtering under homogeneous climatic conditions. In con-
trast, high β- diversity, such as for the Fagus stands in China, might 
indicate that stochastic processes dominate (Daniel et al., 2019), re-
sulting from the more pronounced geographical isolation and more 
glacial refuge areas in China. However, the same pattern could also 
be caused by deterministic processes with different environmental 
filtering regimes under heterogeneous climatic conditions.

4.1  |  Correlations between niche concepts

The co- occurrence- based biotic niche breadth estimates were uncor-
related with the climatic niche breadth estimates, incongruent with 
our second hypothesis (H2). Although positive relationships have been 
observed in previous studies (Kambach et al., 2019; Pannek et al., 
2016), it has to be admitted that the two adopted niche concepts dif-
fer greatly in dimensions and spatial scales and thus are not necessarily 
correlated (Emery et al., 2012; Pannek et al., 2016). The incongruence 
of results based on different indices of realized niche breadth suggests 
that these indices carry complementary information.

4.2  |  No phylogenetic signal for niche properties 
in Fagus

Our results suggest dynamic development of the biotic and the cli-
matic niches, which does not seem to be related to the rooting depth 

and phylogenetic distance of the respective clades (Losos, 2008; 
Wiens et al., 2010), in contrast with our hypothesis H3. Considering 
the lack of a clear phylogenetic signal towards ecological speciali-
zation, we conclude that the complex phylogeographical history of 
the genus Fagus does not allow us to find support for the stated 
“specialization hypothesis”. In previous studies, both divergent (e.g. 
Evans et al., 2009; Graham et al., 2004) and conserved (e.g. Kozak & 
Wiens, 2006; Peterson et al., 1999) climatic niches have been related 
to speciation processes. For Fagus, factors such as vicariance and 
geographical barriers might have resulted in the evolution of biotic 
and climatic niche properties. For example, the three species in the 
subgenus Engleriana (F. japonica, F. engleriana and F. multinervis) are 
closely related and speciated later than the other Chinese species 
(Renner et al., 2016), probably as a result of limited gene flow be-
tween separated islands (Japan and Ulleungdo Island in South Korea) 
and isolated mountain ranges (Oh et al., 2016). Having evolved from 
a common ancestor species, such geographical separation and dif-
ferences in available niche space may result in the development of 
different biotic and climatic niches.

Cold tolerance has been regarded as a key trait for the geograph-
ical distribution patterns of trees (Hawkins et al., 2014; Wiens & 
Donoghue, 2004). The monthly mean of the minimum daily tempera-
tures (BIO06) has been used to represent the cold tolerance of tree 
species for which large scale physiological data are usually hard to ob-
tain (Hawkins et al., 2014). The RF classification analyses revealed that 
cold tolerance did not discriminate the species, suggesting it might be 
conserved across the whole Fagus- clade, possibly representing an an-
cestral adaptation. Uniform cold tolerance across the genus is consis-
tent with Blomberg's K, revealing the absence of a phylogenetic signal 
within the genus. However, testing for conservatism at the genus level 
would require a broader taxonomic scope, for example, by including 
the whole Fagaceae family. Nevertheless, genus- level conservatism is 
suggested by the consistent association of Fagus with mesic temperate 
climates, relative to the broader distribution of the family.

5  |  CONCLUSIONS

We estimated the biotic and climatic niche breadths of all 10 ex-
tant Fagus species and examined their relationships with range size. 
Biotic and climatic niche breadth were uncorrelated with range size 
and phylogeny, and also incongruent with each other. Furthermore, 
there was no evidence for evolutionary tendencies towards ecologi-
cal specialization in the younger Fagus clades occurring in East Asia. 
We conclude that within widespread groups of related species such 
as in the Fagus genus, general macroecological patterns such as the 
range size– niche breadth relationship might be overridden by dif-
ferent regionally available niche space opportunities, differences in 
landscape heterogeneity and Quaternary histories.
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