Supplement to:

Diagnostic accuracy of elastography, and magnetic resonance imaging in patients with NAFLD: a systematic review and meta-analysis

Emmanuel A. Selvaraj^{1,2,3*}, Ferenc E. Mózes^{1*}, Arjun N. A. Jayaswal^{1*}, Mohammad H. Zafarmand⁴, Yasaman Vali⁴, Jenny Lee⁴, Christina K. Levick¹, Liam A. J. Young¹, Naaventhan Palaniyappan⁵, Guruprasad P. Aithal⁵, Manuel R. Gomez⁶, Chang-Hai Liu^{6,7}, M. Julia Brosnan⁸, Theresa A. Tuthill⁸, Quentin M. Anstee⁹, Stefan Neubauer¹, Stephen Harrison¹, Patrick M. Bossuyt⁴, Michael Pavlides^{1,2,3}, on behalf of the LITMUS investigators

*joint first authors

Table of Contents

The LITMUS Investigators	2
Supplementary results	5
Supplementary tables	6
Supplementary figures	
Supplementary references	

The LITMUS Investigators

Newcastle University	Quentin Anstee Ann Daly Katherine Johnson Olivier Govaere Simon Cockell Dina Tiniakos Pierre Bedossa Fiona Oakley Heather Cordell Chris Day Kristy Wonders
AMC Amsterdam	Patrick Bossuyt Hadi Zafarmand Yasaman Vali Jenny Lee
Hôpital Pitié Salpêtrière, Assistance Publique -Hôpitaux de Paris, and Institute of Cardiometabolism and Nutrition, Paris, France	Vlad Ratziu Karine Clement Raluca Pais
University Medical Center Mainz	Detlef Schuppan Jörn Schattenberg
University of Cambridge	Toni Vidal-Puig Michele Vacca Sergio Rodrigues-Cuenca Mike Allison Ioannis Kamzolas Evangelia Petsalaki
Örebro University	Matej Oresic Tuulia Hyötyläinen Aiden McGlinchey
Center for Cooperative Research in Biosciences	Jose M Mato Oscar Millet
University of Bern	Jean-François Dufour Annalisa Berzigotti
University of Oxford	Michael Pavlides Stephen Harrison Stefan Neubauer Jeremy Cobbold Ferenc Mozes Salma Akhtar
Perspectum	Rajarshi Banerjee Matt Kelly Elizabeth Shumbayawonda Andrea Dennis Charlotte Erpicum
Servicio Andaluz de Salud, Seville	Manuel Romero-Gómez Emilio Gómez-González Javier Ampuero Javier Castell Rocío Gallego-Durán Isabel Fernández Rocío Montero-Vallejo

	Martan Karadal
	Morten Karsdal
	Elisabeth Ernardtsen
	Daniel Rasmussen
Nordic Bioscience	Diana Julie Leeming
	Mette Juul Fisker
	Antonia Sinisi
	Kishwar Musa
	Fay Betsou
Integrated Biobank of Luxembourg	Estelle Sandt
5	Manuela Tonini
	Elisabetta Bugianesi
	Chiara Rosso
	Angelo Armandi
University of Torino	Eabio Marra (LINIEI)
	Amalia Castaldalli (CNP)
University Hospital of Angers	Jerome Boursier
Antwern I Iniversity Hospital	Sven Francque
	Luisa Vonghia
	Mattias Ekstedt
Linköping University	Stergios Kechagias
University of Helsinki	Hannele Yki-Jarvinen
,	Panu Luukkonen
UMC Utrecht	Saskia van Mil
National & Kapodistrian University of Athens	George Papatheodoridis
Faculdade de Medicina de Lisboa	Helena Cortez-Pinto
Università degli Studi di Milano	Luca Valenti
Università degli Studi di Palermo	Salvatore Petta
Università Cattolica del Sacro Cuore	Luca Miele
University Hospital Würzburg	Andreas Geier
RW/TH Aachen University Hospital	Christian Trautwein
University of Nottingham	Guru Aithal
Anteres Medical	
University Hospitals Birmingham NHS Foundation Trust	Philip Newsome
IXscient	David Wenn
University of Lisbon	Cecília Maria Pereira Rodrigues
Genfit	Pierre Chaumat
Germa	Rémy Hanf
Intercept Pharma	Aldo Trylesinski
OWL	Pablo Ortiz
Ely-Lilly	Kevin Duffin
	Julia Brosnan
Pfizer	Theresa Tuthill
	Fuan McLeod
	Judith Ertle
Boehringer-Ingelheim	Ramy Younes
	Rachel Ostroff
Somalogic	Loigh Alexander
Nove Newlick	
Ellegaard Göttingen Minipigs	Lars Friis Mikkelsen

	Maria-Magdalena Balp Clifford Brass	
Novartis Pharma AG	Lori Jennings	
	Miljen Martic	
	Juergen Loeffler	
Takeda Development Centre Europe Ltd	Guido Hanauer	
AstraZeneca	Sudha Shankar	
Echosens	Céline Fournier	
Posoundant	Kay Pepin	
Resoundant	Richard Ehman	
Bristol-Myers Squibb	Joel Myers	
HistoIndex	Gideon Ho	
Allergan	Richard Torstenson	
Gilead	Rob Myers	
RTI-HS	Lynda Doward	

Supplementary results

Narrative synthesis of MRI techniques

Two studies assessed cT₁ measured by LMS^{1, 2}, one evaluated deMILI³ and one tested DWI⁴. Amongst the MRI techniques, only DWI was used to assess any stage of fibrosis (\geq F1). DWIderived parameters performed poorly in diagnosing any fibrosis stage (\geq F1); however, the NPV for each parameter was acceptable (>80%). deMILI predicted significant fibrosis with AUC of 0.94 and 0.85 in a training and validation cohort, respectivey. LMS cT₁ was used to predict significant fibrosis (AUC 0.73 and 0.78), advanced fibrosis (AUC 0.73) and cirrhosis (AUC 0.85).

The diagnostic performance of all three MRI-based methods was assessed for distinguishing NASH from simple steatosis. LMS cT₁ had an AUC of 0.69 and 0.80 from two studies^{2, 1}, and deMILI had AUCs of 0.88 and 0.83 in the training and validation cohorts respectively.³ DWI had AUCs of 0.74, 0.68, and 0.61 for the pure molecular diffusion coefficient, perfusion-related diffusion coefficient, and the perfusion fraction.⁴ Forest plots for each target condition and each MRI modality are presented in **Figs. S23-S2**.

Supplementary tables Table S1 PRISMA-DTA checklist

Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #	
TITLE / ABSTRACT				
Title	1	Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.	1	
Abstract	2	Abstract: See PRISMA-DTA for abstracts.	5	
		INTRODUCTION		
Rationale	3	Describe the rationale for the review in the context of what is already known.	7	
Clinical role of index test	D1	State the scientific and clinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for minimally acceptable test accuracy (or minimum difference in accuracy for comparative design).	7	
Objectives	4	Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).	8	
		METHODS		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	9	
Eligibility criteria	6	Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	9-10	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	10	
Search	8	Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be repeated.	Table S2	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	9-10	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	11	
Definitions for data extraction	11	Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other characteristics (e.g. study design, clinical setting).	9	
Risk of bias and applicability	12	Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.	11	
Diagnostic accuracy	13	State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the unit of assessment (e.g. per-patient, per-lesion).	11	

measures			
Synthesis of results	14	Describe methods of handling data, combining results of studies and describing variability between studies. This could include but is not limited to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test readers, d) handling of indeterminate test results, e) grouping and comparing tests, f) handling of different reference standards	12
Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #
Meta-analysis	D2	Report the statistical methods used for meta-analyses, if performed.	12-13
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	12
		RESULTS	
Study selection	17	Provide numbers of studies screened, assessed for eligibility, included in the review (and included in meta-analysis, if applicable) with reasons for exclusions at each stage, ideally with a flow diagram.	14 Fig.1
Study characteristics	18	For each included study provide citations and present key characteristics including: a) participant characteristics (presentation, prior testing), b) clinical setting, c) study design, d) target condition definition, e) index test, f) reference standard, g) sample size, h) funding sources	14-15 Table 1
Risk of bias and applicability	19	Present evaluation of risk of bias and concerns regarding applicability for each study.	14 Figs. S1-S5
Results of individual studies	20	For each analysis in each study (e.g. unique combination of index test, reference standard, and positivity threshold) report 2x2 data (TP, FP, FN, TN) with estimates of diagnostic accuracy and confidence intervals, ideally with a forest or receiver operator characteristic (ROC) plot.	Figs. 2-6 Figs.S6-S21
Synthesis of results	21	Describe test accuracy, including variability; if meta-analysis was done, include results and confidence intervals.	Table 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression; analysis of index test: failure rates, proportion of inconclusive results, adverse events).	18
		DISCUSSION	
Summary of evidence	24	Summarize the main findings including the strength of evidence.	19-22
Limitations	25	Discuss limitations from included studies (e.g. risk of bias and concerns regarding applicability) and from the review process (e.g. incomplete retrieval of identified research).	22-23
Conclusions	26	Provide a general interpretation of the results in the context of other evidence. Discuss implications for future research and clinical practice (e.g. the intended use and clinical role of the index test).	21-22
		FUNDING	
Funding	27	For the systematic review, describe the sources of funding and other support and the role of the funders.	Title page

Adapted From: McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, The PRISMA-DTA Group (2018). Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA. 2018 Jan 23;319(4):388-396. doi: 10.1001/jama.2017.19163. For more information, visit: <u>www.prisma-statement.org</u>

 Table S2 Descriptions of index tests.

Index tests		Details of technique
		Vibration-controlled transient elastography (VCTE; FibroScan®
		(Echosens, Paris, France) measures liver stiffness by measuring
		shear wave velocity. Vibrations of mild amplitude and low
		frequency (50 Hz) are transmitted by a small transducer on the end
	VCTE	of an ultrasound probe, inducing a shear wave that propagates
		through the liver. The probe also has a transducer on the end that
		can measure the velocity of the shear wave (in meters per second).
		The shear wave velocity can then be converted into liver stiffness,
		which is expressed in kilopascals. ⁵
		Acoustic radiation force impulse (ARFI) is a type of shear wave
		elastography (SWE) that is incorporated into a diagnostic
		ultrasound system and is performed using an ultrasound probe to
Ultrasound		emit a single pulse of shear wave using an excitation method
	pSWE	known as ARFI. ⁶ The propagation velocity of the shear waves is
		measured at single point measurement and therefore also known
		as point SWE (pSWE). Only studies that used the Virtual Touch
		Quantification (VTQ) on Siemens platform are included in the
		present study.
		Two-dimensional (2D) SWE uses supersonic shear imaging (SSI)
		technique to measure acoustically-generated tissue shear wave
	2DSWE	propagation speeds to derive estimates of liver stiffness in real-
		time. ⁶ It has the advantage of simultaneous anatomic B-mode US
		imaging, thus allows selection of a larger liver parenchymal region
		of interest devoid of blood vessels and larger than pSWE. Only
		studies that used the Aixplorer ${ m I\!R}$ platform are included in the
		present study.
		Magnetic resonance elastography (MRE; Resoundant, Rochester,
Magnetic resonance		USA) measures liver stiffness. A mechanical shear wave generator
		is installed outside the scanner room which is connected to a
	MRE	plastic circular disc that is attached to the patient in a position
		overlying the liver during the scan. Oscillating signals produced by
		the generator are transmitted to the plastic disc and then through
		the liver as acoustic waves. Specific MR sequences are then used
		to visualise the propagation of these waves through the liver.

		Dedicated software is used to analyse these data and produce
		shear wave elastograms that can be used to measure liver
		stiffness. ⁷
		Liver <i>MultiScan</i> ™ (LMS; Perspectum Diagnostics, Oxford, UK)
		measures multiple MRI parameters $(T_1, T_2^*$ and proton density fat
		fraction (PDFF). Central to this technology is the correction of the
		T1 relaxation time, as measured by the shortened modified Look-
		Locker inversion recovery (shMOLLI) technique ⁸ , for iron. T ₁ is an
	LMS- cT1	intrinsic property of tissues that changes to reflect alterations in
	011	extracellular fluid ⁹ . T_1 is, however, confounded by the presence of
		iron. In LMS, the measured T_1 is corrected for iron (the
		concentration of which is estimated from T_2^*), to produce an "iron
		corrected T_1 (c T_1)", a parameter that has been reported to improve
		diagnostic accuracy. ¹⁰
	DWI	Diffusion weighted imaging (DWI) uses MRI acquisition and
		analysis techniques to track diffusion of water in tissues.
		Quantitative measures of diffusion can be produced by measuring
		the magnitude (apparent diffusion coefficient; ADC) and
		directionality (fractional anisotropy) of diffusion. The accumulation
		of steatosis, inflammation and fibrosis can lead to changes in water
		diffusion ¹¹ and these can be measured using various DWI
		techniques.
		Detection of metabolic liver injury (deMILI) MRI uses optical
		analysis of magnetic resonance images to define the NASHMRI (0-
		1) and FibroMRI (0-1) measures of NASH and liver fibrosis
	deMIL I	respectively. Image acquisition does not require injection of
		intravenous contrast and includes just three sequences: single-shot
		fast spin echo T_2 -weighted (SSFE- T_2), fast short inversion time
		inversion recovery (FAST-STIR), 2D fast-field-echo T1-weighted
		(gradient echo) (2D-FFE-T1). ³

Table S3 Electronic search strategy.

Index test	Search terms
VCTE	((((("transient elastography"[Title/Abstract] OR "liver
	stiffness"[Title/Abstract] OR "vibration controlled transient
	elastography"[Title/Abstract] OR VCTE[Title/Abstract] OR
	fibroscan[Title/Abstract]))) OR "Elasticity Imaging Techniques"[Mesh]))
	AND (("Non-alcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic
	fatty liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR
	"nonalcoholic fatty liver"[Title/Abstract] OR "non-alcoholic
	steatohepatitis"[Title/Abstract] OR "non alcoholic
	steatohepatitis"[Title/Abstract] OR "nonalcoholic
	steatohepatitis"[Title/Abstract] OR steatohepatitis[Title/Abstract] OR
	NASH[Title/Abstract] OR NAFLD[Title/Abstract])))
MRE	((("Non-alcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic fatty
	liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR
	"nonalcoholic fatty liver"[Title/Abstract] OR "non-alcoholic
	steatohepatitis"[Title/Abstract] OR "non alcoholic
	steatohepatitis"[Title/Abstract] OR "nonalcoholic
	steatohepatitis"[Title/Abstract] OR steatohepatitis[Title/Abstract] OR
	NASH[Title/Abstract] OR NAFLD[Title/Abstract])))) AND
	((MRE[Title/Abstract] OR "MR elastography"[Title/Abstract] OR
	"magnetic resonance elastography"[Title/Abstract]))
pSWE	((((("point shear wave elastography" OR pSWE OR "acoustic radiation
	force impulse" OR ARFI))) OR "Elasticity Imaging Techniques"[Mesh]))
	AND (("Non-alcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic
	fatty liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR

"nonalcoholic fatty liver"[Title/Abstract] OR "non-alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "nonalcoholic steatohepatitis"[Title/Abstract] OR steatohepatitis[Title/Abstract] OR NASH[Title/Abstract] OR NAFLD[Title/Abstract])))

- 2DSWE ((((("2D shear wave elastography" OR 2DSWE OR "acoustic radiation force impulse" OR ARFI))) OR "Elasticity Imaging Techniques"[Mesh])) AND (("Non-alcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic fatty liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR "nonalcoholic fatty liver"[Title/Abstract] OR "non-alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "nonalcoholic steatohepatitis"[Title/Abstract] OR "nonalcoholic steatohepatitis"[Title/Abstract] OR steatohepatitis[Title/Abstract] OR NASH[Title/Abstract] OR NAFLD[Title/Abstract])))
- MRI ((("Magnetic Resonance Imaging"[Mesh]) OR ((T1 OR "iron corrected T1" OR "cT1" OR "Liver Inflammation and Fibrosis score" OR LIF OR "multiparametric MR" OR "multi-parametric MR")))) AND (("Non-alcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic fatty liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR "nonalcoholic fatty liver"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "NASH[Title/Abstract] OR steatohepatitis[Title/Abstract] OR NASH[Title/Abstract] OR NAFLD[Title/Abstract])))

((("Non-alcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic fatty liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR "nonalcoholic fatty liver"[Title/Abstract] OR "non-alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic

steatohepatitis"[Title/Abstract] OR "nonalcoholic

steatohepatitis"[Title/Abstract] OR steatohepatitis[Title/Abstract] OR NASH[Title/Abstract] OR NAFLD[Title/Abstract])))) AND ((((("diffusion weighted imaging"[Title/Abstract] OR DWI[Title/Abstract] OR "intravoxel incoherent motion"[Title/Abstract] OR IVIM[Title/Abstract] OR "Diffusion tensor imaging"[Title/Abstract] OR DTI[Title/Abstract]))) OR "Diffusion Magnetic Resonance Imaging"[Mesh])

(((((deMILI OR "detection of metabolic liver injury" OR "NASHMRI" OR "fibroMRI"))) OR "Magnetic Resonance Imaging"[Mesh])) AND (("Nonalcoholic Fatty Liver Disease"[Mesh]) OR (("non-alcoholic fatty liver"[Title/Abstract] OR "non alcoholic fatty liver"[Title/Abstract] OR "nonalcoholic fatty liver"[Title/Abstract] OR "non-alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "non alcoholic steatohepatitis"[Title/Abstract] OR "nonalcoholic steatohepatitis"[Title/Abstract] OR "nonalcoholic steatohepatitis"[Title/Abstract] OR steatohepatitis[Title/Abstract] OR NASH[Title/Abstract] OR NAFLD[Title/Abstract])))

VCTE 25 - Agrawal 2017 (UK) 25 - AlJuboori 2018 (USA) [‡] 60 - Anstee 2019 (UK) F3-4: 1323 - M probe 1.1 - Attia 2016 (Germany) (overweight): 1.1 XL probe (obese): 3.3 Aykut 2014 (Turkey) 88 - Boursier 2016 (France) 452 14.1 Boursier 2019 (France) Training:625 - Validation:313 - - Cardoso 2019 (Brazil) XL probe: 81 0 Cassinotto 2013 (France) M probe: 48 21.3 Chan 2015 (Malaysia) Training: 101 3.8 Chan 2017 (Malaysia) Validation: 46 4.2 Chan 2017 (Malaysia) XL probe: 60 1.7 Clet 2018 (UK) [‡] 176 - Das 2012 (India) 25 9.6 Eddowes 2018 (UK) 50 6.0 Eddowes 2019 (UK) 373 2.7 Ergelen 2016 (Turkey) 63 1.6<	Study ID	Number of patients, n	Technical failure, %
Agrawal 2017 (UK)25-AlJuboori 2018 (USA)*60-Anstee 2019 (UK)F0-2: 284-F3-4: 1323-M probeAttia 2016 (Germany)(overweight): (overweight):1.1XL probe (obese):3.3Aykut 2014 (Turkey)88-Boursier 2016 (France)45214.1Boursier 2019 (France)Training:625Validation:313-Cardoso 2019 (Brazil)M probe: 814.7Cardoso 2019 (Brazil)XL probe: 810Cassinotto 2013 (France)M probe: 22323.4Chan 2015 (Malaysia)Training: 1013.8Validation: 464.2-Chan 2017 (Malaysia)Validation: 464.2Chan 2017 (Malaysia)XL probe: 601.7Clet 2018 (UK)*506.0Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)631.6Forlano 2017 (UK)*238-Gaia 2011 (Italy)72-Gaia 2011 (Italy)581.9Gallego-Durán 2016 (Spain)126-Garg 2018 (India)XL probe: 7612.1Hee 2014 (Australia)*98-Imaio 2016 (Japan)M probe: 14210.6	VCTE	• · ·	
AlJuboori 2018 (USA) [‡] 60 - Anstee 2019 (UK) F0-2: 284 - Anstee 2019 (UK) F3-4: 1323 - Attia 2016 (Germany) M probe (overweight): 1.1 Attia 2014 (Turkey) 88 - Boursier 2016 (France) 452 14.1 Boursier 2019 (France) Training:625 - Validation:313 - - Cardoso 2019 (Brazil) M probe: 81 4.7 Cardoso 2019 (Brazil) M probe: 81 0 Cassinotto 2013 (France) M probe: 48 21.3 XL probe: 49 5.8 - Cassinotto 2016 (France) M probe: 223 23.4 Chan 2015 (Malaysia) Training: 101 3.8 Validation: 46 4.2 - Chan 2017 (Malaysia) XL probe: 60 1.7 Clet 2018 (UK) [‡] 176 - Das 2012 (India) 25 9.6 Eddowes 2019 (UK) 373 2.7 Ergelen 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Ital	Agrawal 2017 (UK)	25	-
Anstee 2019 (UK) F0-2: 284 F3-4: 1323 - Attia 2016 (Germany) M probe (overweight): 1.1 Attia 2016 (Germany) 88 - Aykut 2014 (Turkey) 88 - Boursier 2016 (France) 452 14.1 Boursier 2019 (France) Training:625 - Validation:313 - - Cardoso 2019 (Brazil) M probe: 81 4.7 Cassinotto 2013 (France) M probe: 48 21.3 Cassinotto 2016 (France) M probe: 223 23.4 Chan 2015 (Malaysia) Training: 101 3.8 Validation: 46 4.2 - Chan 2017 (Malaysia) Validation: 46 4.2 Chan 2017 (Malaysia) XL probe: 60 1.7 Clet 2018 (UK) [‡] 176 - Das 2012 (India) 25 9.6 Eddowes 2019 (UK) 373 2.7 Ergelen 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Italy) 72 - Gaia 2015 (Italy) 58 1.9 Gall	AlJuboori 2018 (USA)‡	60	-
Finance 2010 (ON)F3-4: 1323 M probe (overweight):Attia 2016 (Germany)N probe (overweight):1.1XL probe (obese):3.3Aykut 2014 (Turkey)88Boursier 2016 (France)452Boursier 2019 (France)Training:625 Validation:313Cardoso 2019 (Brazil)M probe: 81Cardoso 2019 (Brazil)XL probe: 81Cardoso 2013 (France)M probe: 4821.3XL probe: 49Cassinotto 2013 (France)M probe: 223Cassinotto 2016 (France)M probe: 223Chan 2015 (Malaysia)Validation: 46Chan 2017 (Malaysia)XL probe: 60XL probe: 601.7Clet 2018 (UK) [‡] 176Das 2012 (India)25Eddowes 2018 (UK)50Eddowes 2019 (UK)373Z.7Ergelen 2016 (Turkey)Gaia 2011 (Italy)72Gaia 2015 (Italy)58Gallego-Durán 2016 (Spain)126Garg 2018 (India)XL probe: 76Imaio 2016 (Japan)M probe: 142M probe: 14210.6	Anstee 2019 (LIK)	F0-2: 284	_
$\begin{array}{c c} \mbox{M probe} & 1.1 \\ \mbox{(overweight):} & 1.1 \\ \mbox{XL probe (obese):} & 3.3 \\ \mbox{Aykut 2014 (Turkey)} & 88 & - \\ \mbox{Boursier 2016 (France)} & 452 & 14.1 \\ \mbox{Boursier 2019 (France)} & 10 \\ \mbox{Validation:313} & - \\ \mbox{Validation:313} & - \\ \mbox{Validation:313} & - \\ \mbox{Validation:313} & - \\ \mbox{Cardoso 2019 (Brazil)} & \mbox{M probe: 81} & 4.7 \\ \mbox{XL probe: 81} & 0 \\ \mbox{Cassinotto 2013 (France)} & \mbox{M probe: 48} & 21.3 \\ \mbox{Cassinotto 2013 (France)} & \mbox{M probe: 48} & 21.3 \\ \mbox{Cassinotto 2016 (France)} & \mbox{M probe: 223} & 23.4 \\ \mbox{Chan 2015 (Malaysia)} & \mbox{Validation: 46} & 4.2 \\ \mbox{Chan 2017 (Malaysia)} & \mbox{Validation: 46} & 4.2 \\ \mbox{Chan 2017 (Malaysia)} & \mbox{Validation: 46} & 4.2 \\ \mbox{Chan 2017 (Malaysia)} & \mbox{XL probe: 60} & 1.7 \\ \mbox{Clet 2018 (UK)^{\ddagger} & 176 & - \\ \mbox{Das 2012 (India)} & 25 & 9.6 \\ \mbox{Eddowes 2019 (UK)} & 373 & 2.7 \\ \mbox{Ergelen 2016 (Turkey)} & 63 & 1.6 \\ \mbox{Forlano 2017 (UK)^{\ddagger} & 238 & - \\ \mbox{Gaia 2011 (Italy)} & 72 & - \\ \mbox{Gaia 2015 (Italy)} & 58 & 1.9 \\ \mbox{Gallego-Durán 2016 (Spain)} & 126 & - \\ \mbox{Garg 2018 (India)} & \mbox{XL probe: 76} & 12.1 \\ \mbox{Here 2014 (Australia)^{\ddagger} & 98 & - \\ \mbox{Imaio 2016 (Japan)} & \mbox{M probe: 142} & 10.6 \\ \end{tabular}$		F3-4: 1323	
Attia 2016 (Germany)(Uverweight).XL probe (obese):3.3Aykut 2014 (Turkey)88Boursier 2016 (France)452Boursier 2019 (France)Training:625Validation:313-Cardoso 2019 (Brazil)M probe: 81Cassinotto 2013 (France)M probe: 48Cassinotto 2013 (France)M probe: 49Cassinotto 2016 (France)M probe: 223Cassinotto 2016 (France)M probe: 223Chan 2015 (Malaysia)Validation: 46Chan 2017 (Malaysia)XL probe: 60XL probe: 601.7Clet 2018 (UK) [‡] 176Das 2012 (India)25Soldowes 2018 (UK)50Gaia 2011 (Italy)72Gaia 2011 (Italy)72Gaia 2011 (Italy)58Gallego-Durán 2016 (Spain)126Garg 2018 (India)XL probe: 76Italia29Attin 2016 (Japan)M probe: 142M probe: 14210.6		M probe	1.1
Aykut 2014 (Turkey)88Boursier 2016 (France)452Boursier 2019 (France)Training:625 Validation:313Cardoso 2019 (Brazil)M probe: 81Cardoso 2019 (Brazil)M probe: 81Cassinotto 2013 (France)M probe: 48Cassinotto 2016 (France)M probe: 49Chan 2015 (Malaysia)Training: 101Chan 2017 (Malaysia)XL probe: 60Chan 2017 (Malaysia)XL probe: 60Clet 2018 (UK) [‡] 176Das 2012 (India)25Schowes 2018 (UK)50Gaia 2011 (Italy)72Gaia 2011 (Italy)72Gaia 2015 (Italy)58Sola 2015 (Italy)58Schowes 2018 (Italy)58Schowes 2018 (Italy)58Schowes 2019 (Italy)58Schowes 2019 (Italy)58Schowes 2016 (Italy)	Attia 2016 (Germany)	(Overweight). XI. probe (obese):	33
Boursier 2016 (France)45214.1Boursier 2019 (France)Training:625 Validation:313-Cardoso 2019 (Brazil)M probe: 814.7Cardoso 2019 (Brazil)M probe: 810Cassinotto 2013 (France)M probe: 4821.3Cassinotto 2016 (France)M probe: 495.8Cassinotto 2016 (France)M probe: 22323.4Chan 2015 (Malaysia)Training: 1013.8Validation: 464.2Chan 2017 (Malaysia)XL probe: 601.7Clet 2018 (UK) [‡] 176-Das 2012 (India)259.6Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)631.6Forlano 2017 (UK) [‡] 238-Gaia 2011 (Italy)72-Gaia 2015 (Italy)581.9Gallego-Durán 2016 (Spain)126-Garg 2018 (India)XL probe: 7612.1Hee 2014 (Australia) [‡] 98-Imaio 2016 (Japan)M probe: 14210.6	Avkut 2014 (Turkev)	88	-
Boursier 2019 (France) Training:625 Validation:313 - Cardoso 2019 (Brazil) M probe: 81 4.7 XL probe: 81 0 Cassinotto 2013 (France) M probe: 48 21.3 Cassinotto 2016 (France) M probe: 223 23.4 Chan 2015 (Malaysia) Training: 101 3.8 Validation: 46 4.2 Chan 2017 (Malaysia) Validation: 46 4.2 Chan 2017 (Malaysia) M probe: 60 3.3 XL probe: 60 1.7 176 Clet 2018 (UK) [‡] 176 - Das 2012 (India) 25 9.6 Eddowes 2019 (UK) 373 2.7 Ergelen 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Italy) 72 - Gaia 2015 (Italy) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imaio 2016 (Japan) <	Boursier 2016 (France)	452	14.1
Boursier 2019 (France)Validation:313-Cardoso 2019 (Brazil)M probe: 814.7XL probe: 810Cassinotto 2013 (France)M probe: 4821.3Cassinotto 2016 (France)M probe: 495.8Cassinotto 2016 (France)M probe: 22323.4Chan 2015 (Malaysia)Training: 1013.8Validation: 464.2Chan 2017 (Malaysia)M probe: 603.3XL probe: 601.7Clet 2018 (UK) [‡] 176Das 2012 (India)259.6Eddowes 2018 (UK)506.0Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)631.6Forlano 2017 (UK) [‡] 238-Gaia 2011 (Italy)72-Gaia 2015 (Italy)581.9Gallego-Durán 2016 (Spain)126-Garg 2018 (India)XL probe: 7612.1Hee 2014 (Australia) [‡] 98-Imajo 2016 (Japan)M probe: 14210.6		Training:625	
$\begin{array}{c} \mbox{Cardoso 2019 (Brazil)} & \mbox{M probe: 81} & 4.7 \\ \mbox{XL probe: 81} & 0 \\ \mbox{Cassinotto 2013 (France)} & \mbox{M probe: 48} & 21.3 \\ \mbox{XL probe: 49} & 5.8 \\ \mbox{Cassinotto 2016 (France)} & \mbox{M probe: 223} & 23.4 \\ \mbox{Chan 2015 (Malaysia)} & \mbox{Training: 101} & 3.8 \\ \mbox{Validation: 46} & 4.2 \\ \mbox{Chan 2017 (Malaysia)} & \mbox{XL probe: 60} & 3.3 \\ \mbox{XL probe: 60} & 1.7 \\ \mbox{Clet 2018 (UK)}^{\ddagger} & 176 & - \\ \mbox{Das 2012 (India)} & 25 & 9.6 \\ \mbox{Eddowes 2018 (UK)} & 50 & 6.0 \\ \mbox{Eddowes 2018 (UK)} & 50 & 6.0 \\ \mbox{Eddowes 2019 (UK)} & 373 & 2.7 \\ \mbox{Ergelen 2016 (Turkey)} & 63 & 1.6 \\ \mbox{Forlano 2017 (UK)}^{\ddagger} & 238 & - \\ \mbox{Gaia 2015 (Italy)} & 72 & - \\ \mbox{Gaia 2015 (Italy)} & 58 & 1.9 \\ \mbox{Gallego-Durán 2016 (Spain)} & 126 & - \\ \mbox{Garg 2018 (India)} & \mbox{XL probe: 76} & 12.1 \\ \mbox{Hee 2014 (Australia)}^{\ddagger} & 98 & - \\ \mbox{Imaio 2016 (Japan)} & \mbox{M probe: 142} & 10.6 \\ \end{array}$	Boursier 2019 (France)	Validation:313	-
$\begin{array}{c} \mbox{Cardoso 2019 (Brazii)} & \mbox{XL probe: 81} & 0 \\ \mbox{Cassinotto 2013 (France)} & \mbox{M probe: 48} & 21.3 \\ \mbox{XL probe: 49} & 5.8 \\ \mbox{Cassinotto 2016 (France)} & \mbox{M probe: 223} & 23.4 \\ \mbox{Chan 2015 (Malaysia)} & \mbox{Training: 101} & 3.8 \\ \mbox{Validation: 46} & 4.2 \\ \mbox{Chan 2017 (Malaysia)} & \mbox{Validation: 46} & 4.2 \\ \mbox{Chan 2017 (Malaysia)} & \mbox{M probe: 60} & 3.3 \\ \mbox{XL probe: 60} & 1.7 \\ \mbox{Clet 2018 (UK)}^{\ddagger} & \mbox{176} & - \\ \mbox{Das 2012 (India)} & \mbox{25} & 9.6 \\ \mbox{Eddowes 2018 (UK)} & \mbox{50} & 6.0 \\ \mbox{Eddowes 2019 (UK)} & \mbox{373} & 2.7 \\ \mbox{Ergelen 2016 (Turkey)} & \mbox{63} & 1.6 \\ \mbox{Forlano 2017 (UK)}^{\ddagger} & \mbox{238} & - \\ \mbox{Gaia 2011 (Italy)} & \mbox{72} & - \\ \mbox{Gaia 2015 (Italy)} & \mbox{58} & 1.9 \\ \mbox{Gallego-Durán 2016 (Spain)} & \mbox{126} & - \\ \mbox{Garg 2018 (India)} & \mbox{XL probe: 76} & \mbox{12.1} \\ \mbox{Hee 2014 (Australia)}^{\ddagger} & \mbox{98} & - \\ \mbox{Imajo 2016 (Japan)} & \mbox{M probe: 142} & \mbox{10.6} \\ \end{array}$		M probe: 81	4.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cardoso 2019 (Brazil)	XL probe: 81	0
Cassinutio 2013 (France)XL probe: 495.8Cassinotto 2016 (France)M probe: 22323.4Chan 2015 (Malaysia)Training: 1013.8Validation: 464.2Chan 2017 (Malaysia)M probe: 603.3XL probe: 601.7Clet 2018 (UK) [‡] 176Das 2012 (India)259.6Eddowes 2018 (UK)506.0Eddowes 2018 (UK)3732.7Ergelen 2016 (Turkey)631.6Forlano 2017 (UK) [‡] 238-Gaia 2011 (Italy)72-Gaia 2015 (Italy)581.9Gallego-Durán 2016 (Spain)126-Garg 2018 (India)XL probe: 7612.1Hee 2014 (Australia) [‡] 98-Imajo 2016 (Japan)M probe: 14210.6	Cassingthe 2012 (France)	M probe: 48	21.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cassiliotto 2013 (Flance)	XL probe: 49	5.8
$\begin{array}{c} \mbox{Chan 2015 (Malaysia)} & Training: 101 & 3.8 \\ \mbox{Validation: 46} & 4.2 \\ \mbox{M probe: 60} & 3.3 \\ \mbox{XL probe: 60} & 1.7 \\ \mbox{Clet 2018 (UK)^{\ddagger}} & 176 & - \\ \mbox{Das 2012 (India)} & 25 & 9.6 \\ \mbox{Eddowes 2018 (UK)} & 50 & 6.0 \\ \mbox{Eddowes 2019 (UK)} & 373 & 2.7 \\ \mbox{Ergelen 2016 (Turkey)} & 63 & 1.6 \\ \mbox{Forlano 2017 (UK)^{\ddagger}} & 238 & - \\ \mbox{Gaia 2011 (Italy)} & 72 & - \\ \mbox{Gaia 2015 (Italy)} & 58 & 1.9 \\ \mbox{Gallego-Durán 2016 (Spain)} & 126 & - \\ \mbox{Garg 2018 (India)} & XL probe: 76 & 12.1 \\ \mbox{Hee 2014 (Australia)^{\ddagger}} & 98 & - \\ \mbox{Imajo 2016 (Japan)} & M probe: 142 & 10.6 \\ \end{array}$	Cassinotto 2016 (France)	M probe: 223	23.4
Chan 2017 (Malaysia)Validation: 464.2Chan 2017 (Malaysia)M probe: 603.3XL probe: 601.7Clet 2018 (UK) [‡] 176Das 2012 (India)259.6Eddowes 2018 (UK)Eddowes 2018 (UK)506.06.0Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)63Forlano 2017 (UK) [‡] 238Gaia 2011 (Italy)72Gaia 2015 (Italy)58Gallego-Durán 2016 (Spain)126Garg 2018 (India)XL probe: 76Hee 2014 (Australia) [‡] 98Imajo 2016 (Japan)M probe: 142	Chan 2015 (Malaysia)	Training: 101	3.8
Chan 2017 (Malaysia)M probe: 60 3.3 XL probe: 60Clet 2018 (UK)‡176-Das 2012 (India)259.6Eddowes 2018 (UK)506.0Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)631.6Forlano 2017 (UK)‡238-Gaia 2011 (Italy)72-Gaia 2015 (Italy)581.9Gallego-Durán 2016 (Spain)126-Garg 2018 (India)XL probe: 7612.1Hee 2014 (Australia)‡98-Imajo 2016 (Japan)M probe: 14210.6		Validation: 46	4.2
XL probe: 60 1.7Clet 2018 (UK)‡176Das 2012 (India)25Eddowes 2018 (UK)50Eddowes 2018 (UK)50Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)63Forlano 2017 (UK)‡238Gaia 2011 (Italy)72Gaia 2015 (Italy)58Gallego-Durán 2016 (Spain)126Garg 2018 (India)XL probe: 76Hee 2014 (Australia)‡98Imajo 2016 (Japan)M probe: 142	Chan 2017 (Malavsia)	M probe: 60	3.3
Clet 2018 $(UK)^+$ 176-Das 2012 (India)259.6Eddowes 2018 (UK)506.0Eddowes 2019 (UK)3732.7Ergelen 2016 (Turkey)631.6Forlano 2017 (UK)^+238-Gaia 2011 (Italy)72-Gaia 2015 (Italy)581.9Gallego-Durán 2016 (Spain)126-Garg 2018 (India)XL probe: 7612.1Hee 2014 (Australia)^+98-Imajo 2016 (Japan)M probe: 14210.6		XL probe: 60	1.7
Das 2012 (India) 25 9.6 Eddowes 2018 (UK) 50 6.0 Eddowes 2019 (UK) 373 2.7 Ergelen 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Italy) 72 - Gaia 2015 (Italy) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Clet 2018 (UK)+	176	-
Eddowes 2018 (0K) 50 6.0 Eddowes 2019 (UK) 373 2.7 Ergelen 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Italy) 72 - Gaia 2015 (Italy) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Das 2012 (India)	25	9.6
Eudowes 2019 (0K) 373 2.7 Ergelen 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Italy) 72 - Gaia 2015 (Italy) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Eddowes 2018 (UK)	00 272	0.U 2.7
Ergelein 2016 (Turkey) 63 1.6 Forlano 2017 (UK) [‡] 238 - Gaia 2011 (Italy) 72 - Gaia 2015 (Italy) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Eddowes 2019 (UK)	573	2.7
Gaia 2017 (ltaly) 72 - Gaia 2015 (ltaly) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	England $2017 (LIK)^{\ddagger}$	238	1.0
Gaia 2015 (Italy) 58 1.9 Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Gaia 2011 (Italy)	72	_
Gallego-Durán 2016 (Spain) 126 - Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Gaia 2015 (Italy)	58	19
Garg 2018 (India) XL probe: 76 12.1 Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Gallego-Durán 2016 (Spain)	126	-
Hee 2014 (Australia) [‡] 98 - Imajo 2016 (Japan) M probe: 142 10.6	Garg 2018 (India)	XL probe: 76	12.1
Imajo 2016 (Japan) M probe: 142 10.6	Hee 2014 (Australia) [‡]	. 98	-
	Imajo 2016 (Japan)	M probe: 142	10.6
Inadomi 2020 (Japan) 224 -	Inadomi 2020 (Japan)	224	-
Kao 2020 (Taiwan) Training: 73	K_{22} 2020 (Taiwan)	Training: 73	
Validation: 50	Rau 2020 (Taiwali)	Validation: 50	-
Karlas 2015 (Germany) Bariatric: 41 48.8	Karlas 2015 (Germany)	Bariatric: 41	48.8
Non-bariatric: 45 6.3	Kanas zo to (Contany)	Non-bariatric: 45	6.3
Non-cirrhotic: 120		Non-cirrhotic: 120	
Kumar 2013 (India) Cirrhotic: 85 10.1	Kumar 2013 (India)	Cirrhotic: 85	10.1
(ivi probe) Kwok 2016 (Hong Kong) 94 1.8	Kwok 2016 (Hong Kong)		1 8
Labenz 2018 (Germany) 126 9.4	Labenz 2018 (Germany)	126	9.4

Table S4 Proportion of technical failures of index tests in individual studies.

Lee 2016 (South Korea)	183	1.6
Lee 2017 (South Korea)	94	21.3
Lee 2019 (South Korea)	184	-
Lee 2020 (South Korea)	130	2.5
Leong 2020 (Malaysia)	100	8.0
Loong 2017 (Hong Kong)	215	11.5
Lupsor 2010 (Romania)	M probe: 72	9.7
Mahadeva 2013 (Malaysia)	M probe: 131	8.4
Morrison 2020 (USA) [‡]	162	-
Myers 2012 (Canada)	75	-
Naveau 2014 (France)	100	19.1
, , , , , , , , , , , , , , , , , , ,	Retrospective:	
Naveau 2017 (France)	194	-
	Prospective: 123	
	Training: 96	21.3
Oeda 2020 (Japan)	Validation: 103	14.2
Geda 2020 (Japan)	M probe: 104	14.8
	XL probe: 109	10.7
Okajima 2017 (Japan)	M probe: 163	5.8
Ooi 2018 (Australia)	XL probe: 66	19.5
Pais 2011 (France)	208	10.7
Park 2017 (USA)	97	6.7
Pavlides 2017 (UK)	71	46.5
Petta 2011 (Italy)	M probe: 146	13.6
	Training: 179	12.7
Petta 2015_Liv Int (Italy)	(M probe)	
	(M probe)	23
Petta 2015 Hepatol (Italy)	M probe: 253	17.3
Petta 2017 APT (Italy)	761	-
Petta 2017 Hepatol (Italy)	324	-
Rosso 2016 (Italy)	105	8.3
Seki 2017 (Japan)	171	-
Shen 2015 (China)	M probe: 101	9.7
Shima 2020 (Japan)	M probe: 249	10.4
Staufer 2019 (Austria)	140	6.7
Tapper 2016 (USA)	M probe: 120	26.8
Wona 2010 (Hona Kona)	M probe: 246	10.2
		9.8
Wong 2012 (Hong Kong)	193	M: 10
		XL: 2
Wong 2018 (Hong Kong)	496	M: 21.2
Vanada 2008 (Japan)	M probe: 97	AL. 12.7
Younes 2018 (Italy)	002. 30 202	5 2 /
7iol 2009 (France)	232 12	2. 4
MRF	10	-
Chen 2011 (USA)	58	0.0
		0.0

Costa-Silva 2018 (Brazil)	49	0.0
Cui 2015 (USA)	102	0.0
Cui 2016 (USA)	125	0.8
Imajo 2016 (Japan)	142	0.0
Kim 2013 (USA)	142	-
Kim 2020 (South Korea)	47	-
Lee 2020 (South Korea)	130	1.3
Loomba 2013 (USA) [‡]	52	-
Loomba 2014 (USA)	117	-
Loomba 2016 (USA)	99	0.0
Park 2017 (USA)	104	0.0
pSWE		
Attia 2016 (Cormany)	Overweight: 61	1.0
Alla 2016 (Germany)	Obese: 26	1.0
Cassinotto 2013 (France)	60	1.6
Cassinotto 2016 (France)	236	18.9
Cui 2016 (USA)	125	2.4
Fierbinteanu-Braticevici 2013	Simple steatosis:	
(Romania)	21	0.0
	NASH: 43	0.5
Joo 2018 (South Korea)	315 Deviatria: 44	8.5
Karlas 2015 (Germany)	Bariatric: 41	9.8
	Non-bariatric: 48	0.0
Lee 2017 (South Korea)	83	11.7
Medellin 2019 (Canada)	51	42.6
Paimeri 2011 (USA)	135	21.5
Znang 2014 (China)	67	-
2DSWE	000	20.2
	232	20.3
Lee 2017 (South Kolea)	03 71	20.0
Cature 2020 (USA)	116	2.7
OZIUIK 2020 (OSA)	110	12.1
Eddowoo 2018 (LIK)	50	5.6
Callege Duran 2016 (Spain)	5U 106	0.0
Galleyo-Dulali 2016 (Spail)	120	0.0 17 5
Parente 2013 (Blazil)		5.2
+ Abstracts	/	0.0
⁻ Not reported or unable to derive		

Table S5 Details of pre-defined	d cut-offs for index tests.

Study ID	Lower limit	Upper limit	Single cut-off	Source of pre-defined cut-offs				
VCTE (kPa)								
Any fibrosis (F0 vs F1-4)								
Ooi 2018 (Australia)	-	-	5.25	Kwok R et al. APT 2014 ¹²				
Significant fibrosis	(F0-1 vs I	-2-4)						
Eddowes 2018 (UK)	-	-	5.8, 7.0, 7.9, 9.0	Wong VW et al. Hepatology 2010 ¹³				
Morrison 2020 (USA) [‡]	-	-	8.5	unclear				
Ooi 2018 (Australia)	-	-	7.0	Kwok R et al. APT 2014 ¹²				
Staufer 2019 (Austria)	-	-	8.2	Eddowes PJ et al. Gastroenterology 2019 ¹⁴				
Wong 2018 (Hong Kong)	5.00	-	-	de Franchis R et al. J Hepatol 2015 ¹⁵				
Advanced fibrosis (F0-2 vs F	3-4)						
Anstee 2019 (UK)	9.9	11.4	-	unclear				
Hoo 2014 (Australia)‡	7.9(M)	9.6(M)	-	unclear				
Hee 2014 (Australia)	7.2(XL)	9.3(XL)	-					
Kwok 2016 (Hong Kong)	-	-	9.6-11.4 (M) 9.3-10.9	Wong VW et al. Hepatology 2010 ¹³				
Labenz 2018 (Germany)	-	-	(XL) 12.0	Wong VW et al. AJG 2012 ¹⁶ Vuppalanchi R et al. Hepatology. 2018 ¹⁷				
Loong 2017 (Hong Kong)	7.9	9.6	-	Siddiqui MS et al. CGH. 2018 ¹⁸ Wong VW et al. Hepatology 2010 ¹³				
Morrison 2020 (USA) [‡]	-	-	9.5	unclear				
Ooi 2018 (Australia)	-	-	10.3	Kwok R et al. APT 2014 ¹²				
Pais 2011 (France) [‡]	7.9	9.6	-	Wong VW et al. Hepatology 2010 ¹³				
Petta 2015_Liv Int	7.9	9.6	-	Wong VW et al. Hepatology 2010 ¹³				
Petta 2017_APT (Italy)	7.9	9.6	-	Wong VW et al. Hepatology 2010 ¹³				
Staufer 2019 (Austria)	-	-	9.7	Eddowes PJ et al. Gastroenterology 2019 ¹⁴				
Wong 2018 (Hong Kong) Cirrhosis	10.0	15.0	-	de Franchis R et al. J Hepatol 2015 ¹⁵				
Kwok 2016 (Hong			11.5 (M)	Wong VW et al. Hepatology 2010 ¹³				
Kong)	-	-	11.0 (XL)	Wong VW et al. AJG 2012 ¹⁶				
Morrison 2020 (USA) [‡]	-	-	12.0					

Wong 2018 (Hong Kong)	10.0	15.0	-	de Franchis R et al. J Hepatol 2015 ¹⁵
MRE (kPa)				
Advanced fibrosis				
Cui 2015 (USA)	-	-	3.64	Loomba R et al. Hepatology. 2014 ¹⁹
pSWE (m/s)				
Significant fibrosis				
Medellin 2019		_	1.20	Barr RG et al. Radiology 2015 ²⁰
(Canada)	-	-	1.34	Friedrich-Rust M et al. EJR 2012 ²¹
Advanced fibrosis				
Medellin 2019		_	2.20	Barr RG et al. Radiology 2015 ²⁰
(Canada)			1.55	Friedrich-Rust M et al. EJR2012 ²¹
Cirrhosis				
Medellin 2019	-		2.20	Barr RG et al. Radiology 2015 ²⁰
(Canada)	-		1.80	Friedrich-Rust M et al. EJR2012 ²¹
Iron corrected T1 mea	asured by L	.iver <i>Mult</i>	<i>iScan</i> ™ (ms)	
Significant fibrosis				
	_	_	822	Banerjee R et al. J Hepatol. 2014 ²²
	_		875	Pavlides M et al. J Hepatol. 2016 ²³

‡Abstracts

 Table S6 Details of liver biopsy in individual studies.

	daude. G	lenath. mm	portal tracts. n	
VCTE				
Agrawal 2017 (UK)	16	29	-	
AlJuboori 2018 (USA)	-	-	-	Intraoperative
Anstee 2019 (UK)	-	-	-	
Attia 2016 (Germany)	16	>10	>6	
Aykut 2014 (Turkey)	-	>20	>11	
Boursier 2016 (France)	-	26	-	
Boursier 2019 (France)	-	27	-	
Cardoso 2020 (Brazil)	16	>15	-	
Cassinotto 2013 (France)	-	22.5-26.8	20.9-21.3	
Cassinotto 2016 (France)	-	26.8	-	
Chan 2015 (Malaysia)	18	14.7-15.3	8.3-8.4	
Chan 2017 (Malaysia)	18	14	7	
Clet 2018 (UK)	-	-	-	
Das 2012 (India)	-	27.3	9	
Eddowes 2018 (UK)	16	25	≥11	
Eddowes 2019 (UK)	-	23	-	
Ergelen 2016 (Turkey)	16	>20	>11	
Forlano 2017 (UK)	-	-	-	
Gaia 2011 (Italy)	-	25.2	-	
Gaia 2015 (Italy)	-	>20	-	
Gallego-Durán 2016	_	20	>15	
(Spain)		20	_10	
Garg 2018 (India)	16	>15	>6	
Hee 2014 (Australia)	-	-	-	
Imajo 2016 (Japan)	16	21.3	14.3	
Inadomi 2020 (Japan)	16	-	-	Intraoperative
Kao 2020 (Taiwan)	-	-	-	
Karlas 2015 (Germany)	-	-	>50	
Kumar 2013 (India)	18	-	-	
Kwok 2016 (Hong Kong)	16	20	8	
Labenz 2018 (Germany)	16	-	-	
Lee 2016 (South Korea)	-	>15	-	
Lee 2017 (South Korea)	-	-	-	
Lee 2019 (South Korea)	-	≥15	≥10	
Lee 2020 (South Korea)	18	≥20	-	
Leong 2020 (Malaysia)	18	14	6	
Loong 2017 (Hong Kong)	16	22	-	
Lupsor 2010 (Romania)	14	11	11	
Mahadeva 2013	18	13		
(ivialaysia) Morrison 2020 (LISA)	_	_	_	
Mvers 2012 (Canada)	-	>15	>6	
AlJuboori 2018 (USA) Anstee 2019 (UK) Attia 2016 (Germany) Aykut 2014 (Turkey) Boursier 2019 (France) Boursier 2019 (France) Cardoso 2020 (Brazil) Cassinotto 2013 (France) Cassinotto 2016 (France) Chan 2015 (Malaysia) Chan 2017 (Malaysia) Clet 2018 (UK) Das 2012 (India) Eddowes 2018 (UK) Eddowes 2019 (UK) Ergelen 2016 (Turkey) Forlano 2017 (UK) Gaia 2011 (Italy) Gaia 2015 (Italy) Gallego-Durán 2016 (Spain) Garg 2018 (India) Hee 2014 (Australia) Imajo 2016 (Japan) Inadomi 2020 (Japan) Kao 2020 (Taiwan) Karlas 2015 (Germany) Kumar 2013 (India) Kwok 2016 (Hong Kong) Labenz 2018 (Germany) Lee 2017 (South Korea) Lee 2017 (South Korea) Lee 2019 (South Korea) Lee 2019 (South Korea) Leong 2020 (Malaysia) Loong 2017 (Hong Kong) Lupsor 2010 (Romania) Mahadeva 2013 (Malaysia) Morrison 2020 (USA) Myers 2012 (Canada)	$ \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ 16 \\ - \\ 18 \\ 18 \\ - \\ - \\ 16 \\ - \\ - \\ 16 \\ - \\ - \\ 16 \\ - \\ - \\ 18 \\ 16 \\ 16 \\ - \\ - \\ 18 \\ 16 \\ 16 \\ - \\ - \\ 18 \\ 16 \\ 16 \\ - \\ - \\ 18 \\ 16 \\ 16 \\ - \\ - \\ 18 \\ 16 \\ 14 \\ 18 \\ - \\ - \\ - \\ - \\ 18 \\ 16 \\ 14 \\ 18 \\ - \\- \\- \\- \\- \\- \\- \\- \\- \\- \\- \\- \\$	- >10 >20 26 27 >15 22.5-26.8 26.8 14.7-15.3 14 - 27.3 25 23 >20 - 25.2 >20 20 20 >15 - 21.3 - 21.5 - 21.3 - 21.3 - 21.5 - 21.5 - 21.3 - 21.5 - 21.3 - 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	- >6 >11 - 20.9-21.3 - 20.9-21.3 - 3.3-8.4 7 - 9 ≥111 - >11 - >11 - >15 >6 - 14.3 - >50 - 8 - >50 - 8 - >11 - >50 - 14.3 - >50 - 8 - - 14.3 - >50 - 8 - - - - - - - -	Intraoperativ

Naveau 2014 (France)	14	≥10	≥10	
Naveau 2017 (France)	14	> 10	-	
Oeda 2020 (Japan)	16	≥20	-	
Okajima 2017 (Japan)	16	19.6	> 6	Intraoperative
Ooi 2018 (Australia)	-	-	-	Intraoperative
Pais 2011 (France)	-	25	-	
Park 2017 (USA)	-	-	-	
Pavlides 2017 (UK)	18/19	18	10	Intraoperative
Petta 2011 (Italy)	-	17	>10	-
Petta 2015_Liv Int (Italy)	-	16.4	-	
Petta 2015_Hepatol (Italy)	16	17-20	-	
Petta 2017_APT (Italy)	-	27.3	-	
Petta 2017_Hepatol (Italy)	-	>15	>10	
Rosso 2016 (Italy)	-	-	>11	
Seki 2017 (Japan)	16	≥20	-	
Shen 2015 (China)	18	≥16	≥6	
Shima 2020 (Japan)	16	>20	-	
Staufer 2019 (Austria)	-	≥15	-	
Tapper 2016 (USA)	-	-	-	
Wong 2010 (Hong Kong)	16	21	-	
Wong 2012 (Hong Kong)	16	24	-	
Wong 2018 (Hong Kong)	16	26	11	
Yoneda 2008 (Japan)	18	>20	>7	
Younes 2018 (Italy)	-	-	-	
Ziol 2009 (France)	-	-	-	
MRE				
Chen 2011 (USA)	-	-	-	
Costa-Silva 2018 (Brazil)	-	-	-	
Cui 2015 (USA)	-	-	-	
Cui 2016 (USA)	-	-	-	
Imajo 2016 (Japan)	16	21.3	14.3	
Kim 2013 (USA)	-	-	-	
Kim 2020 (South Korea)	18	-	-	
Lee 2020 (South Korea)	18	≥20	-	
Loomba 2013 (USA)	-	-	-	
Loomba 2014 (USA)	-	23.8	13.7	
Loomba 2016 (USA)	-	23.2	13.7	
Park 2017 (USA)	-	-	-	
pSWE				
Attia 2016 (Germany)	16	>10	>6	
Cassinotto 2013 (France)	-	26.8	-	
Cassinotto 2016 (France)	-	25.4	20.9	
Cui 2016 (USA)	-	-	-	
Fierbinteanu-Braticevici		22	. 0	
2013 (Romania)	-	22	>ŏ	
Joo 2018 (South Korea)	-	26	10	

Karlas 2015 (Germany)	-	-	>50	
Lee 2017 (South Korea)	-	-	-	Intraoperative
Medellin 2019 (Canada)	-	15-20	-	
Palmeri 2011 (USA)	-	-	-	
Zhang 2013 (China)	16	>15	-	
2D-SWE				
Cassinotto 2016 (France)	-	26.8	-	
Lee 2017 (South Korea)	-	-	-	
Takeuchi 2018 (Japan)	16	>20	>7	
Ozturk 2020 (USA)	-	-	-	
MRI				
Eddowes 2018 (UK)	16	25	≥11	
Gallego-Duran 2016 (Spain)	-	17.5	≥15	
Parente 2015 (Brazil)	16	>20	-	
Pavlides 2017 (UK)	18/19	18	10	
Pavlides 2017 (UK)	18/19	18	10	

Table S7 Calculated sensitivities and specificities at cut-offs identified from the literature for the detection of advanced fibrosis by VCTE and their corresponding PPVs and NPVs for different prevalences derived using the multiple-thresholds model

Cut-off,	Se,	95%	Sp,	95%	Prevalence,	PPV,	NPV,	FP*	FN*
kPa	%	CI, %	%	CI, %	%	%	%		
7.1	87.9	81.4-	66.7	58.3-	5	12.2	99.1	32	1
(Eddowes		92.3		74.2	10	22.7	98.0	30	1
2019)					20	39.7	95.7	27	2
					30	53.1	92.8	23	4
					40	63.8	89.2	20	5
					50	72.5	84.6	17	6
7.9	84.7	77.5-	71.6	64.2-	5	13.6	98.9	27	1
(Wong		89.9		78.0	10	24.9	97.7	26	2
2010)					20	42.7	94.9	23	3
					30	56.1	91.6	20	5
					40	66.6	87.5	17	6
					50	74.9	82.4	14	8
9.6	75.7	67.0-	80.5	74.9-	5	17.0	98.4	19	1
(Wong		82.7		85.1	10	30.1	96.8	18	2
2010)					20	49.3	93.0	16	5
					30	62.5	88.6	14	7
					40	72.1	83.3	12	10
					50	79.5	76.8	10	12
9.9	73.8	64.8-	81.8	76.4-	5	17.6	98.3	17	1
(Anstee		81.2		86.2	10	31.1	96.6	16	3
2019)					20	50.4	92.6	15	5
					30	63.5	87.9	13	8
					40	73.0	82.4	11	10
					50	80.2	75.8	9	13
10	73.2	64.1-	82.2	76.9-	5	17.8	98.3	17	1
(Wong		80.6		86.6	10	31.4	96.5	16	3
2019)					20	50.7	92.5	14	5
					30	63.8	87.7	12	8
					40	73.3	82.1	11	11
					50	80.5	75.4	9	13
11.4	62.9	52.8-	87.4	82.9-	5	20.8	97.8	12	2
(Anstee		72.1		90.9	10	35.7	95.5	11	4
2019)					20	55.6	90.4	10	7
					30	68.2	84.6	9	11
					40	76.9	78.0	8	15
	40.0				50	83.3	/0.2	6	19
14.1	40.6	29.9-	93.8	90.5-	5	25.7	96.8	6	3
(Eddowes		52.2		96.0	10	42.2	93.4	6	6
2019)					20	62.1	86.3	5	12
					30	73.8	78.6	4	18
					40	81.4	70.3	4	24
45	00.5		05.0		50	86.8	61.2	<u>3</u>	30
15	33.5	23.3-	95.2	92.2-	5	26.7	96.5	5	3
(vvong		45.5		97.1	10	43.5	92.8	4	1
2019)					∠U 20	03.4 74.0	85.1 77.0	4	13
					30	/4.ð	11.0	<u>১</u>	20
					40	82.2 07.4	68.2 50.0	<u></u> ত	21
					50	87.4	58.9	2	33

*Number of false positives and false negatives for 100 hypothetical cases

Table S8 Probe ty	pe (M or XL) as a c	ovariate of the diag	gnostic performance of
VCTE.			

Fibrosis group	M probe	XL probe	χ ²	p-value
Any fibrosis (F>0)	8	2	2.930	0.231
Significant fibrosis (F>1)	21	6	2.138	0.343
Advanced fibrosis (F>2)	28	6	2.927	0.231
Cirrhosis (F=4)	11	6	1.091	0.579

Fibrosis	Europe	Asia	Australia	America	χ²	p-value
Any fibrosis (F>0)	3	9	1	1	4.449	0.616
Significant fibrosis (F>1)	16	20	1	3	4.400	0.819
Advanced fibrosis (F>2)	22	21	2	2	5.266	0.729
Cirrhosis (F=4)	11	13	0	1	9.764	0.135

Table S9 Study origin as a covariate of the diagnostic performance of VCTE.

	Interva V	l between /CTE <3 mo	biopsy and onths	All studies		
	Se [%]	Sp [%]	sAUC	Se [%]	Sp [%]	sAUC
Any fibrosis (F>0)	77 (72-	71 (61-	0.81 (0.77-	78 (73-	72 (65-	0.82 (0.78-
	82)	79)	0.85)	82)	79)	0.85)
Significant fibrosis	77 (72-	72 (66-	0.81 (0.78-	80 (76-	73 (68-	0.83 (0.80-
(F>1)	82)	77)	0.85)	83)	77)	0.87)
Advanced fibrosis	79 (75-	80 (77-	0.86 (0.84-	80 (77-	77 (74-	0.85 (0.83-
(F>2)	82)	82)	0.88)	83)	80)	0.87)
Cirrhopia (Γ, A)	72 (63-	89 (85-	0.89 (0.82-	76 (70-	88 (85-	0.88 (0.84-
	80)	92)	0.93)	82)	91)	0.93)

Table S10 Sensitivity analysis of the effect allowing less than 3 months' timebetween liver biopsy and VCTE.

		Mnroh	9				
	Se [%]	Sp [%]	sAUC	Se [%]	Sp [%]	sAUC	р
Any fibrosis (F>0)	81 (76- 86)	68 (57- 78)	0.83 (0.78- 0.89)	71 (49- 86)	73 (29- 94)	0.76 (0.64- 0.84)	0.231
Significant fibrosis (F>1)	80 (72- 86)	72 (64- 79)	0.82 (0.78- 0.86)	81 (72- 87)	62 (51-72)	0.78 (0.67- 0.87)	0.343
Advanced fibrosis (F>2)	80 (76- 83)	78 (75- 81)	0.86 (0.81- 0.88)	74 (61- 83)	79 (68- 86)	0.83 (0.80- 0.85)	0.231
Cirrhosis (F=4)	69 (59- 77)	89 (85- 93)	0.85 (0.71- 0.93)	71 (54- 84)	92 (88- 94)	0.93 (0.78- 0.95)	0.579

Table S11 Subgroup analysis for the comparison of diagnostic performance of VCTEperformed by M probe and XL probe.

	Studios			F0	F0-1	F0-2	F0-3
	included (n)	Patients (n)		VS	VS	VS	VS
				F1-4	F2-4	F3-4	F4
VCTE							
	≥F1: 14	1064	sAUC	0.82	0.82	0.85	0.89
Present study	≥F2: 37	2763	Se	78	80	80	76
r rooont olddy	≥F3: 44	4219	Sp	72	73	77	88
	F4: 22	337					
			sAUC	0.82	0.87	0.84	0.84
Hsu 2019 ²⁴	3	230	Se	66	76	77	80
			Sp	67	80	78	81
	≥F2: 10		sAUC	-	0.85	0.92	0.94
Jiang 2018 ²⁵	≥F3: 11	1735	Se	-	77	79	90
·	F4: 11		Sp	-	80	89	91
	≥F2: 21	3165	sAUC	-	-	-	-
	M ≥F3: 22	3090	Se	-	68-92	69-89	78-97
Vian 2017 ^{26†}	F4: 20	2692	Sp	-	57-84	66-78	78-91
	≥F2: 4	654	sAUC	-	-	-	-
	XL ≥F3: 3	579	Se	-	76	75	88
	F4: 4	654	Sp	-	65	75	82
	≥F1: 3	199	sAUC	-	-	-	-
Hashemi 2016 ²⁷	≥F2: 6	567	Se	84	88	94	96
	≥F3: 7	698	Sp	78	78	91	92
	F4: 4	546					
	≥F2: 7	800	sAUC	-	-	-	-
Kwok 2014 ¹²	≥F3: 8	854	Se	-	79	85	92
1105	F4: 6	639	Sp	-	75	85	92
MRE	5 5 4 . 0	004		0.07	0.04	0.00	0.00
	≥F1:6	391	SAUC	0.87	0.91	0.92	0.90
Present study	2F2: 6	209	Se	71	/8	83	81
	2F3:10	214	Sp	85	89	89	90
	F4. J	41	- ALIC	0.90	0.02	0.02	0.05
Liona 2020 ²⁸ **	10	010	SAUC	0.89	0.93	0.93	0.95
Liang 2020-	12	910	30 Sp	00	01	09	94 75
				90	00	04	75
Hou 201024	2	220	SAUC	0.07	0.92	0.93	0.94
HSU 2019-1	3	230	30 Sin	71	00	00	00
	NE0: 2	NED: 204		13	CO	03	00
Vian 201726t	2FZ. 3 >F2: 5	2FZ. 304	SAUC	-	72	86	97
	≤1 3. 3 ⊑4: 3	E1.381	Sn	-	01	00	07
	14.5	14.004			0.87	0.00	0.01
Singh 2016 ²⁹	0	232	5400	75	70	0.90	88
Singi 2010	9	252	Sn	77	81	86	00 87
nSWE			<u> </u>		01	00	01
POIL	>F1·4	276	SALIC	0.77	0.86	0.91	0.90
_	≥F2· 9	805	5, (00 Se	64	69	80	76
Present study	≥F3: 11	1209	Sp	76	85	88	88
	F4: 8	759	~r~				
	-						

 Table S12 Comparison of our results with previously published meta-analyses.

	≥F2: 6		sAUC	-	0.86	0.94	0.95
Jiang 2018 ^{25‡}	≥F3: 9	982	Se	-	70	89	89
	F4: 7		Sp	-	84	88	91
			sAUC	-	0.90	-	-
Liu 2015 ^{30‡}	7	723	Se	-	82	-	-
			Sp	-	85	-	-

[†]This study included some patients with viral hepatitis, and some children

[‡]This study included data from cohorts of patients that included some children (Osaki et al. 2010) and a duplicate cohort to Zhang et al. 2014 (Li et al. 2016)

*This study included data from cohorts of patients with mixed liver disease aetiologies, data from biopsies reported with histological scores other than the NASH CRN, and data from a cohort of patients that included some children (Osaki et al. 2010)

**This study included data from biopsies reported with histological scores other than NASH CRN (e.g. METAVIR)

sAUC - summary area under the curve, Se - sensitivity, Sp - specificity. Sensitivity and specificity are reported as %.

Supplementary figures

		Risk	of bias		Appli	cability co	oncerns
Study ID	Patient	Index	Reference	Flow and	Patient	Index	Reference
Study ID	selection	test	test	timing	selection	test	test
Agrawal 2017	+	•	+	-	+	+	+
AlJuboori 2018	?	?	+	?	+	+	+
Anstee 2019	+	?	+	?	+	+	+
Attia 2016	+	•	+	-	+	+	+
Aykut 2014	?	?	?	?	+	÷	+
Boursier 2016	+	-	+	-	+	Ŧ	+
Boursier 2019	?	Ŧ	+	+	Ŧ	Ŧ	+
Cardoso 2019	÷	-	+	+	÷	÷	+
Cassinotto 2013	+	-	+	-	+	÷	+
Cassinotto 2016	+	-	+	-	+	÷	+
Chan 2015	+	+	+	-	+	+	+
Chan 2017	-	-	+	-	+	÷	+
Clet 2018	?	•	•	?	+	÷	+
Das 2012	?	-	+	?	+	÷	+
Eddowes 2018	?	?	+	-	+	÷	+
Eddowes 2019	+	-	+	-	+	÷	+
Ergelen 2016	+	-	+	-	+	+	•
Forlano 2017	?	-	?	?	+	•	+
Gaia 2011	+		+	?	+	+	+
Gaia 2015	-	-	•	-	+	+	+
Gallego-Durán 201	6 ?	+	•	+	+	+	+
Garg 2018	+	-	+	-	+	+	+
Hee 2014	?	?	?	?	+	+	-
Imajo 2016	?		?	-	+	+	+
Inadomi 2020	?		-	-	-	-	*
Kao 2020	-	-	*	-	-	-	-
Karlas 2015	~	2	-		-	-	-
Kumar 2013	-	-	-		-	-	-
KWOK 2016	-	-	-		-	E.	-
	-	-			-	-	
Lee 2016	<u> </u>	-	T I		-	-	-
Lee 2017	2	-	4	-	-	-	4
Lee 2019	2	-	4	4	4	Ă	4
Leona 2020	<u> </u>	-	4	Ť.	4	Ť.	4
Loong 2017	Ť.	-	- A	—	Ă.	Ă	-
Lupsor 2010	?	ě	ě	-	ě.	Ť	ě.
Mahadeva 2013	•	ě	H	?	Ť	Ť	H
Morrison 2020	Ť	?	?	?	Ť.	Ť	Ť
Myers 2012	?		+		Ť	Ť	+
Naveau 2014	•				+	+	•
Naveau 2017	+	•	+	+	+	+	+
Oeda 2020	+	•	+	-	+	+	+
Okajima 2017	÷	•	?		•	÷	+
Ooi 2018	÷	?	+	+	+	+	+
Pais 2011	?	?	?	?	+	+	+
Park 2017	+	•	+	-	+	+	+
Pavlides 2017	+	•	+	-	+	+	+
Petta 2011	+	-	+	-	+	+	+
Petta 2015 Liv Int	+	+	+	-	+	+	+
Petta 2015 Hepato	ı 🕂	-	+	-	+	÷	+
Petta 2017 APT	+	-	+	?	+	÷	+
Petta 2017 Hepato	ı 🕂	Ŧ	+	+	+	÷	+
Rosso 2016	?	-	+	-	÷	÷	+
Seki 2017	Đ	•	?	+	+	+	+
Shen 2015	÷	-	÷	-	÷	÷	+
Shima 2020	?	-	•	-	÷	+	+
Staufer 2019	Ŧ	+	÷	•	÷	÷	+
Tapper 2016	÷	-	+	-	÷	+	+
Wong 2010	+	-	+	-	+	+	+
Wong 2012	+	-	+	-	+	÷	+
Wong 2018	Đ	Ð	+	-	+	+	+
Yoneda 2008	?	-	?	-	+	+	+
Younes 2018	?	+	÷	+	+	•	+
Ziol 2009	+	-	?	+	+	+	+

Figure S1 Methodological quality summary of VCTE studies. Red circles – high risk of bias, yellow circles – unclear risk of bias, green circles – low risk of bias

		Risk	of bias		Applicability concerns					
Study ID	Patient	Index	Reference	Flow and	Patient	Index	Reference			
Study ID	selection	test	test	timing	selection	test	test			
Chen 2011	?	-	+	+	+	+	+			
Costa-Silva 2018	+	-	+	+	+	+	+			
Cui 2015	+	+	+	+	+	+	+			
Cui 2016	+	-	+	-	+	+	+			
Imajo 2016	-	-	?	+	+	+	+			
Kim 2013	-	-	?	-	+	+	+			
Kim 2020	?	-	+	+	+	+	+			
Lee 2020	?	-	+	+	+	+	+			
Loomba 2013	?	-	?	?	+	+	+			
Loomba 2014	+	-	+	?	+	+	+			
Loomba 2016	+	-	+	+	+	+	+			
Park 2017	+	-	+	+	+	+	+			

Figure S2 Methodological quality summary of MRE studies. Red circles – high risk of bias, yellow circles – unclear risk of bias, green circles – low risk of bias

		Risk	ofbias		Applicability concerns				
Study ID	Patient selection	Index test	Reference test	Flow and timing	Patient selection	Index test	Reference test		
Attia 2016	+	-	+	•	+	+	+		
Cassinotto 2013	+	-	+	-	+	+	+		
Cassinotto 2016	+	-	+	-	+	+	+		
Cui 2016	+	-	+	-	+	+	+		
Fierbinteanu 2013	+	-	+	+	+	+	+		
Joo 2018	+	-	-	-	+	+	+		
Karlas 2015	?	?	+	-	+	+	+		
Lee 2017	+	-	+	-	+	+	+		
Medellin 2019	?	?	+	-	+	+	+		
Palmeri 2011	?	-	?	-	+	+	+		
Zhang 2013	+	•	+	•	÷	÷	+		

Figure S3 Methodological quality summary of pSWE studies. Red circles – high risk of bias, yellow circles – unclear risk of bias, green circles – low risk of bias

Figure S4 Methodological quality summary of 2DSWE studies. Red – high risk of bias, yellow – unclear risk of bias, green – low risk of bias

Figure S5 Methodological quality summary of MRI studies.

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% Cl)	Sensitivity (95% CI)	Specificity (95% CI)
Cassinotto 2013 M	8.95	30	0	з	15	66.7 [51.0-80.0]	100.0 [31.0-100.0]		
Cassinotto 2013 XL	7.00	28	0	3	18	60.9 [45.0-75.0]	100.0 [31.0-100.0]	_ . _	
Chan 2015	5.60	63	18	13	7	90.0 [79.0-95.0]	41.9 [25.0-61.0]		
Gaia 2011	5.50	41	10	13	8	83.7 [70.0-92.0]	56.5 [35.0-76.0]		
Garg 2018	6.00	48	7	9	12	80.0 [67.0-89.0]	56.3 [31.0-79.0]		
Kumar 2013	6.10	69	10	22	19	78.0 [68.0-86.0]	68.0 [50.0-83.0]		
Lee 2016	6.70	71	11	65	36	66.4 [57.5-75.2]	84.9 [77.9-92.0]		
Leong 2020	7.68	70	3	13	14	83.3 [73.3-90.3]	81.3 [53.7-95.0]		
Lupsor 2010	5.30	44	5	20	3	93.5 [82.1-98.6]	78.3 [56.3-92.5]		
Okajima 2017	8.20	72	13	49	29	71.6 [61.2-79.6]	79.0 [66.5-87.9]		
Ooi 2018	7.00	12	21	30	3	78.6 [51.4-94.7]	59.6 [44.2-72.1]	·	
Park 2017	6.10	34	15	28	17	66.7 [52.0-78.9]	65.1 [49.0-78.5]		
Seki 2017	7.20	86	13	49	23	78.8 [69.8-85.9]	78.3 [66.4-87.9]		
Shima 2020	7.20	124	17	74	34	78.5 [71.1-84.5]	81.3 [71.5-88.4]		
Yoneda 2008	5.90	68	2	16	11	86.1 [76.0-92.5]	88.9 [63.9-98.1]	20 40 50 80 100 0	20 40 60 80 100

Figure S7 Forest plots of all included studies for the diagnosis of any fibrosis (≥F1) using MRE.

Figure S8 Forest plots of all included studies for the diagnosis of any fibrosis (≥F1) using pSWE.

Study	Threshold	TP	FP	FN	TN	Se (95% Ci)	Sp (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Attia 2016	6.70	10	3	2	11	87.0 [51.0-97.0]	76.0 [48.8-94.3]		
Aykut 2014	7.90	33	3	11	41	75.0 [59.0-86.0]	93.1 [80.0-98.0]		
Cardoso 2019 M	8.20	14	24	1	42	93.3 [68.1-99.8]	63.6 [50.9-75.1]		
Cardoso 2019 XL	8.20	11	15	4	51	73.3 [44.9-92.2]	77.2 [65.3-86.7]		
Cassinotto 2013 M	8.10	35	1	2	10	94.6 [80.0-99.0]	90.9 [57.0-100.0]		
Cassinotto 2013 XL	7.20	25	1	10	13	71.4 [53.0-85.0]	92.9 [64.0-100.0]		
Cassinotto 2016	9.80	93	7	63	60	59.6 (51.5-67.3)	89.6 (79.1-5.3)		·
Chan 2015	6.65	25	42	0	34	100.0 [83.0-100.0]	44.7 [33.0-57.0]	· · · · · · · · · · · · · · · · · · ·	
Eddowes 2019	8.20	159	45	66	103	70.7 (64.0-77.0)	69.6 (62.0-77.0)		
Gaia 2011	7.00	25	8	8	31	75.8 (57.0-88.0)	79.5 (63.0-90.0)		
Garo 2018	7.25	21	19	9	27	70.0 [50 0-85 0]	58 7 [43 0-73 0]		
Inadomi 2020	8 95	91	24	34	75	72 8 [64 0-80 2]	75 8 (65 9-83 6)	12110	
Kap 2020	7.00	23	8	6	36	79.3 [59.7-91.3]	81 4 [66 8-91 3]		
Karlas 2015	7.60	1	4	0	15	100.0 [5.0-100.0]	78 9 [54 0-93 0]		121
Kumar 2013	7.00	42	15	12	51	78.0 (64.0-88.0)	77.0 (65.0-86.0)		
Lee 2017	7 40	29	4	17	44	62 5 147 5-76 41	91 7 (79 1-97 3)		
Lee 2016	8.00	38	21	8	116	82 6 [71 7-93 6]	84 7 [78 3-91 0]		
Lee 2019	8.95	58	36	22	68	72 5 (61 2-81 6)	65 4 [55 3-74 3]		
Leono 2020	9.13	36	20	5	39	87 8 [73 0-95 4]	66 1 [52 5-77 6]		
Loong 2017	9.00	45	18	24	128	65 2 [53 5 75 4]	87 7 [81 4.02 1]		
Lupsor 2010	6.80	12	8	6	46	66 7 (41 1-86 8)	84 3 [71 4-93 0]		
Mahadawa 2012	6.75	50	22	25	22	66 2 [64 7 76 0]	50 6 [/ T.4-33.0]		
Nanaueva 2013	7.60	16	47	20	61	72 7 (40 6 99 2)	79.2 (67.1.96.4)		
Naveau 2014	7.00	45	21	5	25	00.0 (77.4.06.3)	FA 2 [20 2 69 8]		
Oeda 2020 tr M	7.00	45	21	5	20	90.0 [77.4-96.3]	54.5 [59.2-00.6]		
Oeda 2020 tr XL	6.70	41	14	9	32	82.0 [68.1-91.0]	69.6 [54.1-81.8]		
Oeda 2020 val M	7.00	52	21	4	26	92.9 [81.9-97.7]	55.3 [40.2-69.5]		
Oeda 2020 val XL	6.70	51	1/	5	30	91.1 [79.6-96.7]	63.8 [48.5-76.9]		
Okajima 2017	9.30	40	28	5	90	88.9 [75.2-95.8]	/6.3 [6/.4-83.4]		
Ooi 2018	9.00	4	16	0	46	100.0 [39.6-100.0]	74.2 [61.3-84.1]		
Park 2017	6.90	23	10	6	55	79.3 [59.7-91.3]	84.6 [73.1-92.0]		
Pavlides 2017	3.80	24	10	2	2	92.3 [73.4-98.7]	16.7 [2.9-49.1]		•
Petta 2015 Hep	6.90	80	44	33	96	70.8 [61.4-78.8]	68.6 [60.1-76.0]		Sector and
Petta 2011	7.25	47	23	21	55	69.0 [56.6-79.5]	70.0 [59.0-80.0]	· · · · · · · · · · · · · · · · · · ·	
Petta 2017 Hep	8.50	139	36	48	101	74.3 [67.3-80.3]	73.7 [65.4-80.7]		
Rosso 2016	6.80	44	8	18	35	71.0 [57.9-81.4]	81.0 [66.1-91.1]		
Seki 2017	8.60	51	11	13	106	79.7 [67.4-88.3]	90.6 [83.4-95.0]		
Shima 2020	9.10	81	15	20	133	80.2 [70.8-87.2]	89.9 [83.6-94.0]		
Wong 2018 M	5.00	222	121	4	44	98.2 [95.2-99.4]	26.7 [20.2-34.2]		
Wong 2018 XL	5.00	234	107	23	69	91.1 [86.7-94.1]	39.2 [32.0-46.9]		
Wong 2012 M	7.00	52	32	14	58	79.0 [69.0-89.0]	64.0 [54.0-74.0]		
Wong 2012 XL	6.20	60	35	22	67	73.0 [64.0-83.0]	66.0 [57.0-76.0]		
Wong 2010	7.00	80	35	21	110	79.2 [69.8-86.4]	75.9 [67,9-82.4]		(
Yoneda 2008	6.65	45	12	6	34	88.2 [75.4-95.1]	73.9 [58.6-85.2]		
Ziol 2009	10.20	4	0	6	3	40.0 [14.0-73.0]	100.0 [31.0-100.0]		
								0 20 40 60 80 100 0	20 40 60 80 100

Figure S9 Forest plots of all included studies for the diagnosis of significant fibrosis (≥F2) using VCTE.

Study	Threshold	ТР	FP	FN	TN	Se (95% Ci)	Sp (95% Cl)		Sensitivity (95% CI)				Specificity (95% CI)						
Costa-Silva 2018	4.14	11	1	1	36	91.7 [61.5-99.8]	97.3 [85.8-99.9]												
Cui 2016	3.62	22	4	11	88	66.7 [48.0-81.0]	95.7 [89.0-99.0]												
Imajo 2016	3.40	67	10	10	55	87.3 [77.0-93.0]	85.0 [73.0-92.0]					-	-						-
Kim 2020	3.13	19	0	1	27	95.0 [73.1-99.7]	100.0 [84.5-100.0]					2							-•
Loomba 2014	3.58	23	7	12	75	65.7 [48.0-80.0]	91.5 [83.0-96.0]				- •							-	+
Park 2017	2.86	25	13	7	58	79.3 [60.0-90.0]	81.8 [70.0-90.0]				1		-					-	-
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S10 Forest plots of all included studies for the diagnosis of significant fibrosis $(\geq F2)$ using MRE.

Figure S11 Forest plots of all included studies for the diagnosis of significant fibrosis (≥F2) using pSWE.

Study	Threshold	тр	FP	FN	TN	Se (95% CI)	Sp (95% CI)	Sen	sitivity	(95%	GCI)		;	Specif	icity	95%	CI)	
Cassinotto 2016	8.70	116	7	48	61	70.7 [63.0-77.4]	89.7 [79.3-95.4]			-	•						-	•
Lee 2017	8.30	27	17	4	21	87.1 [69.2-95.8]	55.3 [38.5-71.0]				-	-						
Ozturk 2020	8.40	23	29	7	57	76.7 [57.3-89.4]	66.3 [55.2-75.9]			1	•	-				-	-	
Takeuchi 2018	11.57	24	14	22	11	52.2 [37.1-68.9]	44.0 [25.0-64.7]		-	•				-				
							0	20	40	60	80	100	0	20	40	60	80	100

Figure S12 Forest plots of all included studies for the diagnosis of significant fibrosis (≥F2) using 2DSWE.

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Agrawal 2017	9.20	5	1	2	17	71.4 [30.0-95.0]	94.4 [71.0-100.0]		
Anstee 2019	9.90	1099	108	224	176	83.1 [80.9-85.0]	62.0 [56.0-67.6]		+
Attia 2016	9.30	9	3	1	13	91.0 [54.1-99.5]	80.0 [53.7-95.0]		
Boursier 2016	8.70	152	104	20	176	88.4 [82.0-93.0]	62.9 [57.0-68.0]		
Boursier 2019 D	8.00	233	137	26	229	90.0 [85.5-93.2]	62.6 [57.4-67.5]		
Boursier 2019 V	8.00	112	20	12	113	90.3 [83.4-94.7]	85.0 [77.5-90.4]		
Cassinotto 2013 M	11.75	20	3	6	19	76.9 [56.0-90.0]	86.4 [64.0-96.0]		
Cassinotto 2013 X	L 10.15	16	4	6	23	72.7 [50.0-88.0]	85.2 [65.0-95.0]		
Cassinotto 2016	8.20	83	51	9	80	90.2 [81.8-95.2]	61.1 [52.1-69.3]		
Chan 2015	8.00	18	28	1	54	94.7 [72.0-100.0]	65.9 [54.0-76.0]		
Eddowes 2019	9.70	99	59	41	174	70 7 (62.0-78.0)	74 7 [69.0-80.0]		
Fraelen 2016	9 80	29	3	3	28	90 6 174 0-98 01	90 3 [73 0-97 0]		2 <u></u>
Gaia 2011	8.00	11	11	6	44	64.7 [39.0-85.0]	80.0 [67.0-89.0]		
Gara 2018	12 50	7	8	4	57	63 6 [32 0-88 0]	87 7 177 0-94 01		
Hee 2014	>9.6	17	40	0	41	100 0 [77 0-100 0]	50.6 [39.0-62.0]		
Inadomi 2020	11.45	57	28	24	115	70 4 /59 0-79 71	80 4 [72 8-86 4]	and the second	
Kumar 2013	9.00	23	11	4	82	85.0 (65.0-95.0)	88.0 (79.0-93.0)		Second Second
Kwok 2016	9.60	44	31	3	16	94.0 [81.0-98.0]	34 0 [21 0.49 0]		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Labenz 2018	10.00	16	21	5	84	76.0 [52.0.91.0]	80.0 (71.0-87.0)		
Lao 2016	0.00	27	22	1	122	DE A 190 E 100 DI	95 9 (70 0 01 7)		
Lee 2010	9.00	27	10	5	57	91 5 (61 3 03 0)	95 4 [77 0 03 3]		
Lee 2017	0.00	20	24	2	42	00.0 [74.5.07.6]	64.0 (FA E 7E 0)		
Leong 2020	9.20	30	24	3	43	90.9 [74.5-97.6]	64.2 [51.5-75.3]		
Loong 2017	9.60	30	23	2	149	03.7 [70.0-91.9]	00.0 [00.7-90.9]		
Lupsor 2010	10.40	0	2	0	00	100.0 [48.0-100.0]	ap'a [ga'1-aa'2]		
Manadeva 2013	7.10	20	34	9	68	70.4 [49.0-84.0]	00.0 [00.0-/0.0]		
Naveau 2014	7.60	9	24	0	67	100.0 [62.9-100.0]	73.6 [63.2-82.0]		
Oeda 2020 tr M	10.80	22	14	1	53	75.9 [56.1-89.0]	/9.1 [67.1-87.7]		
Oeda 2020 tr XL	8.20	24	20	5	47	82.8 [63.5-93.4]	70.1 [57.6-80.4]		
Oeda 2020 val M	10.80	20	23	13	47	60.6 [42.2-76.6]	67.1 [54.8-77.6]		
Oeda 2020 val XL	8.20	27	26	6	44	81.8 [63.9-92.4]	62.9 [50.4-73.9]		
Okajima 2017	10.00	21	39	1	102	95.5 [75.1-99.8]	72.3 [64.1-79.4]		
Ooi 2018	10.30	2	12	1	51	66.7 [12.5-98.2]	81.0 [68.7-89.4]		
Park 2017	7.30	14	17	4	59	77.8 [51.9-92.6]	77.6 [66.4-86.1]		
Pavlides 2017	6.80	14	8	1	15	93.0 [66.0-99.7]	65.0 [42.8-82.8]		
Petta 2011	8.75	25	25	8	88	76.0 [57.4-88.3]	78.0 [68.9-84.9]		
Petta 2017 Hep	10.10	89	45	26	164	77.6 [68.5-84.4]	78.4 [72.2-83.7]		
Petta 2015 Hep	8.40	41	48	12	152	77.4 [63.5-87.2]	76.0 [69.4-81.6]		
Petta 2015 S	7.9-9.6	29	23	5	101	85.3 [68.2-94.5]	81.4 [73.3-87.6]		· · · · · ·
Petta 2015 T	7.9-9.6	17	13	8	83	68.0 [46.4-84.3]	86.4 [77.6-92.3]	· · · · · · · · · · · · · · · · · · ·	
Petta 2017 APT	9.60	174	100	61	426	74.0 [67.9-79.4]	81.0 [77.3-84.2]		
Rosso 2016	6.80	32	24	6	43	84.2 [68.1-93.4]	64.0 [51.5-75.3]		
Seki 2017	10.00	38	16	4	113	90.5 [76.5-96.9]	87.6 [80.4-92.5]		
Shen 2015 SCD<2	5 8.70	5	14	2	46	71.0 [60.0-95.0]	77.0 [58.0-82.0]		
Shen 2015 SCD>2	512.90	5	3	1	25	83.0 [37.0-99.0]	89.0 [71.0-97.0]		
Shima 2020	9.90	56	31	9	153	86.2 [74.8-93.1]	83.2 [76.8-88.1]		
Tapper 2016	9.90	20	23	1	76	95.0 [74.1-99.8]	77.0 [67.0-84.4]		
Wong 2010	8.70	47	32	9	158	83.9 [71.1-91.9]	83.2 [76.9-88.0]		
Wong 2012 M	8.70	35	25	7	89	83.0 [72.0-95.0]	78.0 [70.0-86.0]		
Wong 2012 XL	7.20	49	60	5	70	91.0 [83.0-99.0]	54.0 [45.0-62.0]		
Wong 2018 M	10.00	109	48	34	200	76.2 [68.2-82.8]	80.6 [75.1-85.3]		
Wong 2018 XL	10.00	85	25	76	247	52.8 [44.8-60.7]	90.8 [86.6-93.8]		
Yoneda 2008	9.80	23	13	4	57	85.2 [65.3-95.1]	81.4 [70.0-89.4]		
Younes 2018	9.60	47	35	26	184	64.4 [52.2-75.0]	84.0 [78.3-88.5]		1.1
Ziol 2009	11.75	2	1	1	9	66.7 [13.0-98.0]	90.0 [54.0-99.0]		
								0 20 40 60 60 100 0	20 40 00 80 100

Figure S13 Forest plots of all included studies for the diagnosis of advanced fibrosis (≥F3) using VCTE.

Study	Threshold	тр	FP	FN	TN	Se (95% CI)	Sp (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Costa-Silva 2018	4.39	10	1	1	37	90.9 [58.7-99.8]	97.3 [86.2-99.9]		
Cui 2015	3.64	17	8	1	75	92.2 [71.0-100.0]	90.4 [81.0-95.0]		
Cui 2016	3.62	19	7	2	97	90.5 [68.0-98.0]	93.3 [86.0-97.0]		
Imajo 2016	4.80	34	13	11	84	74.5 [60.0-87.0]	86.9 [78.0-92.0]		
Kim 2013	4.15	39	7	7	89	85.0 [71.0-93.0]	92.9 [85.0-97.0]		
Kim 2020	4.34	8	3	0	36	100.0 [59.8-100.0]	92.3 [78.0-98.0]		
Loomba 2014	3.64	19	9	3	86	86.4 [64.0-96.0]	90.5 [82.0-95.0]	·	-
Loomba 2013	3.20	6	8	0	38	100.0 [54.0-100.0]	83.0 [69.0-92.0]		
Park 2017	2.99	16	16	5	66	77.8 [52.0-91.0]	80.3 [70.0-88.0]		
								0 20 40 60 80 100	0 20 40 60 80 100

Figure S14 Forest plots of all included studies for the diagnosis of advanced fibrosis (≥F3) using MRE.

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Attia 2016	1.47	25	2	2	68	92.6 [74.2-98.7]	97.0 [89.1-99.5]		
Cassinotto 2013	2.03	20	6	11	23	64.5 [45.0-80.0]	79.3 [60.0-91.0]		
Cassinotto 2016	1.53	55	15	38	128	59.1 [48.4-69.1]	89.5 [83.0-93.8]		-
Cui 2016	1.34	20	27	1	77	95.2 [74.1-99.8]	74.0 [64.4-81.9]		
Fierbinteanu 2013	1.48	19	2	3	40	86.4 [64.0-96.4]	95.2 [82.6-99.2]	· · · · · ·	
Joo 2018	1.40	39	22	16	238	70.9 [56.9-82.0]	91.5 [87.3-94.5]		
Lee 2017	1.36	18	6	2	57	90.5 [66.9-98.2]	90.0 [79.8-96.1]		-+-
Medellin 2019	1.55	9	4	1	13	90.0 [54.1-99.5]	76.5 [49.8-92.2]		
Palmeri 2011	4.24	36	9	4	86	90.0 [75.4-96.7]	90.0 [82.3-95.3]	_	
Zhang 2013	1.36	11	9	5	42	68.8 [41.0-88.0]	82.4 [69.0-91.0]		
								0 20 40 60 80 100	0 20 40 60 80 100

Figure S15 Forest plots of all included studies for the diagnosis of advanced fibrosis (≥F3) using pSWE.

Study	Threshold	тр	FP	FN	TN	Se (95% CI)	Sp (95% CI)	Se	nsitivi	ty (95	% CI)		S	pecifi	city (95% (CI)	
Cassinotto 2016	10.70	71	13	29	119	71.0 [60.9-79.4]	90.2 [83.4-94.4]			-	•							
Lee 2017	10.70	18	19	2	30	90.0 [66.9-98.2]	61.2 [46.2-74.5]	46.2-74.5]			_	•			3		-	
Ozturk 2020	9.30	16	29	3	68	84.2 [59.5-95.8]	70.1 [59.8-78.8]			-	•					-	-	
Takeuchi 2018	13.07	20	17	12	22	62.5 [43.7-78.3]	56.4 [39.8-71.8]			•	-						2	
							0	20	40	60	80	100	0	20	40	60	80	100

Figure S16 Forest plots of all included studies for the diagnosis of advanced fibrosis (≥F3) using 2DSWE.

Figure S17 The performance of VCTE in detecting advanced fibrosis (≥F3) (A) Multiple-threshold ROC curves and (B) multiple-threshold sROC curve based on the multiple-thresholds model using homogenized thresholds. Circles represent information on sensitivity and specificity. AUC: 0.85 (0.80, 0.89). Max Youden-index results: cut-off: 8.7 kPa, sensitivity: 81% (73%, 87%), specificity: 76% (70%, 82%).

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Agrawal 2017	35.30	1	0	0	24	100.0 [5.0-100.0]	100.0 [83.0-100.0]		
Attia 2016	11.70	8	3	0	15	100.0 [57.8-100.0]	83.0 [57.7-95.6]		
Aykut 2014		9	19	0	60	100.0 [63.0-100.0]	76.3 [65.0-85.0]		
Cassinotto 2013 M	18.60	12	3	2	31	85.7 [56.0-97.0]	91.2 [75.0-98.0]		
Cassinotto 2013 XL	12.65	11	5	1	32	91.7 [60.0-100.0]	86.5 [70.0-95.0]		
Cassinotto 2016	16.10	24	18	13	168	64.9 [47.4-79.3]	90.3 [84.9-94.0]		
Chan 2015	17.00	3	6	0	92	100.0 [31.0-100.0]	93.9 [87.0-97.0]		-
Chan 2017	15.10	3	3	0	73	100.0 [31.0-100.0]	96.1 [88.0-99.0]		
Eddowes 2019	13.60	29	72	5	267	85.3 [69.0-95.0]	78.8 [74.0-83.0]		
Gaia 2011	10.50	7	3	2	60	77.8 [40.0-96.0]	95.2 [86.0-99.0]		
Kumar 2013	19.40	8	2	2	108	80.0 [44.0-96.0]	98.0 [93.0-100.0]		-
Lee 2017	11.70	10	8	4	72	71.4 [42.0-90.4]	90.0 [80.7-95.3]		
Lee 2016	11.00	17	17	0	149	100.0 [77.1-100.0]	89.8 [84.9-94.6]		
Leong 2020	13.45	4	23	0	73	100.0 [39.6-100.0]	76.0 [66.0-83.9]		
Mahadeva 2013	11.95	6	11	2	112	75.0 [35.6-95.5]	91.2 [84.2-95.2]		
Oeda 2020 tr M	16.80	5	9	0	82	100.0 [46.3-100.0]	90.1 [81.6-95.1]		
Oeda 2020 tr XL	14.30	5	8	0	83	100.0 [46.3-100.0]	91.2 [82.9-95.9]		
Oeda 2020 val M	16.80	3	16	1	83	75.0 [21.9-98.7]	83.8 [74.8-90.2]		
Oeda 2020 val XL	14.30	3	10	1	89	75.0 [21.9-98.7]	89.9 [81.8-94.8]		
Park 2017	6.90	5	29	3	57	62.5 [25.9-89.8]	66.3 [55.2-75.9]		
Pavlides 2017	14.70	4	3	0	31	100.0 [39.6-100]	91.0 [75.2-97.7]		
Shima 2020	10.30	12	69	0	168	100.0 [69.9-100.0]	70.9 [64.6-76.5]		-
Wong 2018 M	15.00	32	25	27	307	54.2 [40.8-67.1]	92.5 [88.9-95.0]		
Wong 2018 XL	15.00	33	17	37	346	47.1 [35.2-59.4]	95.3 [92.5-97.2]		
Wong 2012 M	10.30	13	24	3	116	81.0 [62.0-100.0]	83.0 [77.0-89.0]		
Wong 2012 XL	7.90	21	38	3	122	88.0 [74.0-100.0]	76.0 [69.0-82.0]		
Wong 2010	11.50	19	20	6	201	76.0 [54.5-89.8]	91.0 [86.2-94.2]		
Yoneda 2008	17.50	9	3	0	85	100.0 [62.9-100.0]	96.6 [90.0-99.1]	0 20 40 60 80 100	0 20 40 60 80 100

Figure S18 Forest plot of all included studies for the diagnosis of cirrhosis (F4) using VCTE.

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% CI)		Se	nsitivity	y (95% C	CI)			S	pecificit	y (95%	CI)	
Costa-Silva 2018	5.37	3	5	0	41	100.0 [29.2-100.0]	89.1 [76.4-96.4]						-						-
Cui 2016	4.15	8	10	1	106	88.9 [57.0-99.0]	91.4 [86.0-97.0]				_							-	-
Imajo 2016	6.70	10	7	1	124	90.9 [57.0-100.0]	94.5 [89.0-98.0]				5		•						•
Loomba 2014	4.67	8	6	2	101	80.0 [44.0-96.0]	94.4 [88.0-98.0]			-								2	•
Park 2017	3.35	6	18	2	77	75.0 [36.0-96.0]	81.4 [71.0-88.0]												
								0	20	40	60	80	100	0	20	40	60	80	10

Figure S19 Forest plot of all included studies for the diagnosis of cirrhosis (F4) using MRE.

Figure S20 Forest plot of all included studies for the diagnosis of cirrhosis (F4) using pSWE.

Study	Threshold	тр	FP	FN	TN	Se (95% CI)	Sp (95% CI)		Sens	itivity	(95%	CI)			Speci	ficity	(95%	CI)	
Cassinotto 2016	14.40	22	20	174	16	57.9 [40.9-73.3]	89.7 [84.3-93.4]			-		-						-	•
Lee 2017	15.10	9	13	46	1	90.0 [54.1-99.5]	78.0 [64.9-87.3]	-87.3]										•	
Takeuchi 2018	15.70	5	12	54	0	100.0 [46.3-100.0]	81.8 [70.0-89.9]			1			•						-
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S21 Forest plot of all included studies for the diagnosis of cirrhosis (F4) using 2DSWE.

Figure S22 Forest plot of MRE studies for the diagnosis of NASH.

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% Cl)		Ser	sitivity	(95% 0	CI)			Spee	cificity	(95% C	I)	
Parente 20151	0.73	9	14	7	29	56.3 [30.6, 79.2]	67.4 [51.4, 80.5]					-							
Parente 2015 ²	37.75	10	13	6	30	62.5 [35.9, 83.7]	69.8 [53.7, 82.3]												
Parente 20153	34.83	9	12	7	31	56.3 [30.6, 79.2]	72.1 [56.1, 84.2]												
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S23 Forest plots of all included studies for the diagnosis of any fibrosis (≥F1) using MRI methods. (¹pure molecular diffusion, ²vascular fraction, ³perfusion-related diffusion)

Study	Threshold	ТР	FP	FN	TN	Se (95% CI)	Sp (95% Cl)		Ser	sitivity	(95% 0	CI)			Spe	cificity	(95% 0	CI)	
Eddowes 20181	822.00	33	10	1	6	97.1 [82.9, 99.8]	37.5 [16.3, 64.1]						-		<u>s</u>				
Eddowes 2018 ²	875.00	33	8	1	8	97.1 [82.9, 99.8]	50.0 [25.5, 74.5]					-			<u></u>		•	_2	
Gallego-Duran 2016	³ 0.50	25	8	6	48	80.6 [61.9, 91.9]	85.7 [73.2, 93.2]				0	-	-						_
Gallego-Duran 2016	4 0.50	24	11	7	45	77.4 [58.5, 89.7]	80.4 [67.2, 89.3]				<u> </u>						<u></u>		
Pavlides 2017	1.20	42	16	4	9	91.3 [78.3, 97.2]	36.0 [18.7, 57.4]						-		<u> </u>				
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S24 Forest plots of all included studies for the diagnosis of significant fibrosis (≥F2) using MRI methods. (^{1, 2}different cut-offs from literature, ³estimation cohort, ⁴validation cohort)

Study	Threshold	ΤР	FP	FN	TN	Se (95% CI)	Sp (95% Cl)		Ser	nsitivity	(95% 0	CI)			Spe	cificity	(95% C	I)	
Pavlides 2017	1.70	24	27	2	18	92.3 [73.4, 98.7]	40.0 [26.1, 55.6]	· · · · ·					•				_		
														-					10
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S25 Forest plots of all included studies for the diagnosis of advanced fibrosis (≥F3) using MRI methods.

Study	Threshold	ΤР	FP	FN	TN	Se (95% CI)	Sp (95% Cl)		Ser	nsitivity	(95% (CI)			Spe	cificity	(95% 0	CI)	
Pavlides 2017	3.00	10	16	1	44	90.1 [57.1, 99.5]	73.3 [60.1, 83.5]										_		
										- E				÷					12
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S26 Forest plots of all included studies for the diagnosis of cirrhosis (F4) using MRI methods.

Study	Threshold	TP	FP	FN	TN	Se (95% CI)	Sp (95% Cl)		Ser	sitivity	(95% 0	CI)			Spee	cificity	(95% C	1)	
Gallego-Duran 2016	1 0.50	18	5	3	13	85.7 [62.6, 96.2]	72.2 [46.4, 89.3]						-			-			
Gallego-Duran 2016	2 0.50	38	17	6	26	86.4 [72.0, 94.3]				<u></u>			_		-				
Parente 2015 ³	0.76	15	13	7	24	68.2 [45.1, 85.3]	64.9 [47.4, 79.3]			<u>s</u>	-					8		<u></u> 23	
Parente 20154	41.45	15	11	7	26	68.2 [45.1, 85.3]	70.3 [52.8, 83.6]												
Parente 2015 ⁵	34.23	11	11	11	26	50.0 [28.8, 71.2]	70.3 [52.8, 83.6]		-		-								
Pavlides 2017	1.40	42	12	4	13	91.3 [78.3, 97.2]	52.0 [31.8, 71.7]										-		
								0	20	40	60	80	100	0	20	40	60	80	100

Figure S27 Forest plot of MRI studies for the diagnosis of NASH. (¹estimation cohort, ²validation cohort, ³pure molecular diffusion, ⁴vascular fraction, ⁵perfusion-related diffusion)

Supplementary references

- 1. Pavlides M, Banerjee R, Tunnicliffe EM, et al. Multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease severity. Liver Int 2017;37:1065-1073.
- 2. Eddowes PJ, McDonald N, Davies N, et al. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2018;47:631-644.
- 3. Gallego-Duran R, Cerro-Salido P, Gomez-Gonzalez E, et al. Imaging biomarkers for steatohepatitis and fibrosis detection in non-alcoholic fatty liver disease. Sci Rep 2016;6:31421.
- 4. Parente DB, Paiva FF, Oliveira Neto JA, et al. Intravoxel Incoherent Motion Diffusion Weighted MR Imaging at 3.0 T: Assessment of Steatohepatitis and Fibrosis Compared with Liver Biopsy in Type 2 Diabetic Patients. PLoS One 2015;10:e0125653.
- 5. Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 2008;48:835-47.
- 6. Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015;41:1126-47.
- 7. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 2013;37:544-55.
- 8. Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12:69.
- 9. Nakamori S, Dohi K, Ishida M, et al. Native T1 Mapping and Extracellular Volume Mapping for the Assessment of Diffuse Myocardial Fibrosis in Dilated Cardiomyopathy. JACC Cardiovasc Imaging 2018;11:48-59.
- 10. Tunnicliffe EM, Banerjee R, Pavlides M, et al. A model for hepatic fibrosis: the competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1 (shMOLLI-T1) in the liver. J Magn Reson Imaging 2017;45:450-462.
- 11. Bonekamp S, Torbenson MS, Kamel IR. Diffusion-weighted magnetic resonance imaging for the staging of liver fibrosis. J Clin Gastroenterol 2011;45:885-92.
- 12. Kwok R, Tse YK, Wong GL, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther 2014;39:254-69.
- 13. Wong VW, Vergniol J, Wong GL, et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010;51:454-62.
- 14. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019;156:1717-1730.
- 15. de Franchis R, Baveno VIF. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J Hepatol 2015;63:743-52.
- 16. Wong VW, Vergniol J, Wong GL, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol 2012;107:1862-71.
- 17. Vuppalanchi R, Siddiqui MS, Van Natta ML, et al. Performance characteristics of vibrationcontrolled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology 2018;67:134-144.
- 18. Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2019;17:156-163 e2.

- 19. Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology 2014;60:1920-8.
- 20. Barr RG, Ferraioli G, Palmeri ML, et al. Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2015;276:845-61.
- 21. Friedrich-Rust M, Nierhoff J, Lupsor M, et al. Performance of Acoustic Radiation Force Impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J Viral Hepat 2012;19:e212-9.
- 22. Banerjee R, Pavlides M, Tunnicliffe EM, et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014;60:69-77.
- 23. Pavlides M, Banerjee R, Sellwood J, et al. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol 2016;64:308-315.
- 24. Hsu C, Caussy C, Imajo K, et al. Magnetic Resonance vs Transient Elastography Analysis of Patients With Non-alcoholic Fatty Liver Disease: a Systematic Review and Pooled Analysis of Individual Participants. Clin Gastroenterol Hepatol 2018.
- 25. Jiang W, Huang S, Teng H, et al. Diagnostic accuracy of point shear wave elastography and transient elastography for staging hepatic fibrosis in patients with non-alcoholic fatty liver disease: a meta-analysis. BMJ Open 2018;8:e021787.
- 26. Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017;66:1486-1501.
- 27. Hashemi SA, Alavian SM, Gholami-Fesharaki M. Assessment of transient elastography (FibroScan) for diagnosis of fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Caspian J Intern Med 2016;7:242-252.
- 28. Liang Y, Li D. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy. BMC Gastroenterol 2020;20:89.
- 29. Singh S, Venkatesh SK, Loomba R, et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis. European Radiology 2016;26:1431-1440.
- 30. Liu H, Fu J, Hong R, et al. Acoustic Radiation Force Impulse Elastography for the Non-Invasive Evaluation of Hepatic Fibrosis in Non-Alcoholic Fatty Liver Disease Patients: A Systematic Review & Meta-Analysis. PLoS One 2015;10:e0127782.