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MULTISCALE ANALYSIS OF NUTRIENT UPTAKE BY PLANT
ROOTS WITH SPARSE DISTRIBUTION OF ROOT HAIRS:
NONSTANDARD SCALING *

JOHN KINGT, JAKUB KORY#, AND MARIYA PTASHNYK?

Abstract. In this paper we undertake a multiscale analysis of nutrient uptake by plant roots,
considering different scale relations between the radius of root hairs and the distance between them.
We combine the method of formal asymptotic expansions and rigorous derivation of macroscopic
equations. The former prompt us to study a distinguished limit (which yields a distinct effective
equation), allow us to determine higher order correctors and provide motivation for the construction
of correctors essential for rigorous derivation of macroscopic equations. In the final section, we
validate the results of our asymptotic analysis by direct comparison with full-geometry numerical
simulations.

Key words. sparse root hairs, nutrient uptake by plants, homogenization, perforated domains
by thin tubes, parabolic equations
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1. Introduction. An efficient nutrient uptake by plant roots is very important
for plant growth and development [2, 4]. Root hairs, the cylindrically-shaped lateral
extensions of epidermal cells that increase the surface area of the root system, play a
significant role in the uptake of nutrients by plant roots [10]. Thus to optimize the
nutrient uptake it is important to understand better the impact of root hairs on the
uptake processes. Early phenomenological models describe the effect of root hairs
on the nutrient uptake by increasing the radius of roots [28]. Microscopic modelling
and analysis of nutrient uptake by root hairs on the scale of a single hair, assuming
periodic distribution of hairs and that the distance between them is of the same order
as their radius were considered in [20, 29, 33].

In contrast to previous results, in this work we consider a sparse distribution of
root hairs, with the radius of root hairs much smaller than the distance between them.
We consider two different regimes given by scaling relations between the hair radius
and the distance between neighboring hairs. Applying multiscale analysis techniques,
we derive macroscopic equations from the microscopic description by applying both
the method of formal asymptotic expansions and rigorous proofs of convergences of
sequences of solutions of microscopic (full-geometry) problems. Due to non-standard
scale relations between the size of the microscopic structure and the periodicity, the
homogenization techniques of two-scale convergence, the periodic unfolding method,
I'- or G-convergences, see e.g. [13, 24, 25, 27], do not apply directly and a different
approach needs to be developed. The construction of inner and outer layer approxima-
tion problems constitutes the main idea in the derivation of the macroscopic problems
using formal asymptotic expansions. This approach allows us also to obtain equations
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2 J. KING, J. KORY, AND M. PTASHNYK

for higher-order approximations to the macroscopic solutions. To show convergence
of solutions of the multiscale (microscopic) problems to those of the corresponding
macroscopic problems, we construct appropriate correctors to pass to the limit in
the integrals over the boundaries of the microstructure given by root hairs. We also
compare numerical solutions of the multiscale problems with solutions of macroscopic
problems and higher (first and second) order approximations, derived for different
scale-relations between the size of the hairs and the size of the periodicity.

Similar results for elliptic equations and variational inequalities were obtained
in [14, 15, 16] using the monotonicity of the nonlinear function in the boundary
conditions and a variational inequality approach. The construction of correctors near
surfaces of very small holes was considered in [6, 9] to derive macroscopic equations
for linear elliptic problems with zero Dirichlet and given Robin boundary conditions.
The extension of the periodic unfolding method to domains with very small holes
was introduced in [5] to analyze linear wave and heat equations posed in periodically
perforated domains with small holes and Dirichlet conditions on the boundary of the
holes.

The paper is organized as follows. In Section 2 we formulate a model for nutrient
uptake by plant roots and root hairs. In Section 3 we derive macroscopic equations
and equations for the first- and second-order correctors, for different scale-relations
between the radius of root hairs and the distance between them, by using formal
asymptotic expansions. The proof of the convergence of a sequence of solutions of
the multiscale problem to those of the macroscopic equations via the construction of
corresponding microscopic correctors is given in Section 4. The linear and nonlinear
Robin boundary conditions depending on solution of the microscopic problem con-
sidered in this manuscript require new ideas in the construction of the corresponding
correctors. Numerical simulations of both multiscale and macroscopic problems are
presented in Section 5 and we conclude in Section 6 with a brief discussion.

2. Formulation of the problem. We consider diffusion of nutrients in a do-
main around a plant root and its uptake by root hairs and through the root surface.
The representative length of the root is chosen to be R = 1 cm and the model is
subsequently formulated in dimensionless terms (see the Supplementary materials for
comments on the non-dimensionalization and on parameter values). The root surface
is treated as planar, which approximates the actual (curved) geometry well enough,
provided that the distance between hairs measured at the root surface is comparable
to the distance between hair tips, as discussed in [20]. A generalization that addresses
root curvature is investigated in [18].

Consider a domain Q = G x (0, M) around a single plant root, with M > 0 being
representative of the half-distance between neighboring roots, where the Lipschitz
domain G C R? represents the part of the root surface under consideration. We
assume that the root hairs are circular cylinders (of dimensionless length L, with
L < M, and radius r.) orthogonal to the (planar) root surface, on which they are
periodically distributed, see Figure la. A single root hair can be described as

B,. x (0,L), where B, = {(z1,25) € R* : 2% + 23 < r2}.

Denoting by Y = (—1/2,1/2)? the unit cell, and taking ¢ to be the small parameter
(the representative distance between the root hairs being small compared to the root
length), the set of root hairs belonging to the root surface can be written as

o= B +e) x(0,L), with =5 ={{ecZ’ : (Y +¢) CG},

{c=e
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(a) Multiscale domain (b) Periodicity cell

Fig. 1: Problem geometry

i.e. we only include the root hairs whose base is fully contained in G. The solution
domain is then defined by Q° = Q\ Qf ;.

We assume the root hairs to be sparsely distributed, i.e. r. < ¢ < 1, define
a. = r./e < 1, and assume that M = O(1) and L = O(1). The surfaces of the root
hairs are given by

r°= | J @B, +¢¢) x (0,L).
geze

We shall also use the notation Q;, = G x (0, L) corresponding to the range of x3
occupied by root hairs.

Outside the root hairs we consider the diffusion of nutrients

(2.1) Opue =V - (D, Vu) in QFfF, t>0,

with constant (dimensionless) diffusion coefficient D,, > 0, and assume that nutrients
are taken up on the root surface according to

(2.2) D,Vu. -n=—pFu, on TI%, t>0,

where '3, = Q¢ N {z3 = 0} defines the surface of the root (excluding the root hairs)®,
and on the surfaces of the root hairs

(2.3) D, Vu. -n=—cK(a:)g(ue) on I t>0,

where n denotes the outer-pointing unit normal vector to 9Q¢, 5 > 0 is an uptake
rate, g(n) is smooth (continuously differentiable) and monotone non-decreasing for
N € [—<,00), with some ¢ > 0, and g(n) = g1(n) + g2(n), where g1(n) > 0 for n > 0,
with ¢1(0) = 0, and go is sublinear, with ¢g2(0) < 0. The monotonicity of g ensures
existence of a unique solution h of h + og(h) = ¢, with ( > 0 and ¢ > 0, important
for the derivation of macroscopic equations for (2.1)-(2.3), (2.6), (2.7). In Section 5
we will consider the Michaelis-Menten type function

(2.4) glu) = —

T

IEven though the analysis for a nonlinear boundary condition would be straightforward, we
consider linear uptake here, as the emphasis will be on the derivation of sink terms resulting from
the boundary conditions applied on the hair surfaces, which often are dominant in nutrient uptake.
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4 J. KING, J. KORY, AND M. PTASHNYK

often used in modelling uptake processes by plant roots, e.g. [8, 11], for which all
of the above assumptions are satisfied, with go = 0. The scaling factor K(a.)
in (2.3) is set to be

K

(2.5) K(a.) = —,

€

with some positive constant k = O(1) (see the Supplementary materials for the jus-
tification of this scaling). On other parts of the boundary 9Q2° we consider

(2.6) D,Vu:, - n=0 on 00\ (IT*UTR), t>0.
The initial nutrient concentration is given by
(2.7 ue(0,2) = ujn(x)  for x € Q°,

where we assume that uy, € H2(2) and 0 < uj (1) < Upax for o € Q.
First we consider the definition of a weak solution of (2.1)—(2.3), (2.6), and (2.7).
We shall use the notations Q5. = (0,7) x Q¢, I'5. = (0, 7) xI'*, and 'y, » = (0, T) xI'%.

DEFINITION 2.1. A weak solution of problem (2.1)—(2.3), (2.6), (2.7) is a function
ue € L?(0,T; HY(QF)), with yu. € L*((0,T) x QF), satisfying

(2.8) /QE (Orucd + Dy Vue - Vo) dadt = —a/ aig(ua)gﬁ d~edt — / Buspdyedt

1
Irs.%e FR’T

for ¢ € L2(0,T; H*(Q°)) and u.(t) — win in L?(QF) ast — 0.

Standard results for parabolic equations, together with the above assumptions on g,
ensure the existence of a unique weak solution of problem (2.1)—(2.3), (2.6), (2.7) for
any fixed € > 0, see e.g. [19, 21].

3. Derivation of the macroscopic equations using the method of formal
asymptotic expansions. To derive the macroscopic equations from the multiscale
problem (2.1)—(2.3), (2.6), (2.7) we first apply the method of the formal asymptotic
expansions. We shall consider different scalings for a. and derive equations for zero,
first and second orders of approximation for solutions. Apart from the macroscopic
variables x = (z1,22,x3), we further introduce y = (y1,y2) = (21/¢,22/¢) and z =
(21,22) = (x1/re,x2/r:) = (y1/0e,y2/ac). Since there is no microscopic variation
in the z3 direction, we do not include any dependence on y3 (or z3). Notice that
due to the assumed scale separation between the radius of the root hairs and the
distance between them, three scales are present: an inner microscopic scale, ||z| =
/22 + 22 = O(1), corresponding to the radius of root hairs, an outer microscopic
scale, [ly]| = O(1), given by the distance between them and a macroscopic scale,
|z]] = O(1), corresponding to a representative length of a plant root (for simplicity,
we assume that the typical distance between two neighboring roots is of the same
order as the representative root length).

In the derivation of macroscopic equations we consider two cases. In the first, we
take the limits in the order € — 0 then a. — 0, with no relationship assumed between
these two parameters and, in the second, we study a distinguished limit motivated by
the analysis in the first section. Note that in the first case, instead of a., we suppress
the subscript to recall that a and € are independent small parameters therein.

This manuscript is for review purposes only.
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NONSTANDARD SCALING 5

3.1. Derivation of the macroscopic equations in the case of complete
scale separation between ¢ and a. In this section, we assume complete scale
separation between € and a (i.e. we take the limit ¢ — 0 followed by a — 0). We
adopt the ansatz

(31) us(t,x,a) = uo(t,x,ﬁ/s,a) + Eul(tvmvj/sa a‘) + 52“2(157‘%):2/870’) + e

forx € Qp,t> 0,2 = (z1,22), and u;(¢, z, -, a) being Y-periodic (cf. [3, 17]). We first
fix 0 < a < 1/2, then perform a separate a — 0 analysis at each order in . Note that
for the simplicity of presentation, we will consider linear boundary condition in (2.3),
i.e. g(u) = u; the same calculations have also been performed for a nonlinear function
g(u) by Taylor expanding of g(u) about ug (see the Supplementary materials).

3.1.1. a = O(1). Even though this problem has already been analyzed in [20, 29],
to set up for the sublimit ¢ — 0 in the next section, we briefly recall the main outcomes
of this analysis. The terms of order e~2 in (2.1) and of order ! in (2.3) yield

(3.2) Vy-(DyVyup)=0 inY,, D,Vyuo-n=0 onl,, wupis Y-periodic,

where Y, =Y\ By, 'y = 0B,. The existence and uniqueness theory for linear ellip-
tic equations with zero-flux and periodic boundary conditions implies that solutions
of (3.2) are independent of y, i.e. ug = ug(t,x,a). For the terms of order e~ in (2.1)
and of order €° in (2.3) we then have

(33)  V, (DuVyu)=0 inYs,  DyVyur-fi=-D,Viug-n only,
and u; is Y-periodic, where & = (x1, z2). The solution reads
(3.4) ui(t,x,y,a) = U (t, z,a) + Vzuo(t, z,a) - v(y,a),

where U; consists of contributions to w; that do not depend on the microscale and
the vector function v(y,a) = (v1(y, a), v2(y,a)) is a solution of

(35) V,-(D,Vyr)=0 inY,, Vyy-ii=-n onl,, v is Y-periodic.
Finally, collecting the terms of order €% in (2.1) and of order ¢ in (2.3) yields

Vy . (DuVyug): 8tu0 — Vm . (Duvxug) — Vj; . (Duvyul) — Vy . (Duviul) in Ya,
(36) DuvaQ -0 = —K(CL)UO — DuViul ‘N on Fa.

Integrating (3.6) over Y, and using the divergence theorem (for more details see [18])
gives as the leading-order macroscale problem

2raK (a)

(37) (9,5“0 = Vz . (DuDeﬁ(a,)va()) —
1 — ma?

ug,

where Deg(a) = I+ B(a)/(1 — ma?), I is the identity matrix and

foey o0 o

(3.8) B(a) = 0 /. v (y,@) g0
Y, Jy2 Yy

0 0 0
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6 J. KING, J. KORY, AND M. PTASHNYK

3.1.2. a < 1. Now, we analyze (3.5) and (3.7) in the limit a — 0. Because of
the large scale difference between the periodicity of the microscopic structure and the
radius of the root hairs, in the analysis of the asymptotic behavior of the solution
we can distinguish between the behavior in a region characterized by ||z|]| = O(1),
which will correspond to an inner solution (denoted using a superscript /) and the
behavior in a region characterized by ||y|| = O(1), corresponding to an outer solution
(denoted using a superscript @), see [18] for more details. Thus each term in (3.1)
requires its inner and outer analysis, some of which will involve expanding in § =
1/In(a™!) < 1. These logarithmic relationships arise due to the two-dimensional
microstructure, reflecting the fact that the Green function of the Laplace operator in
R? is proportional to In(r), as will become obvious at O(g?). Note that for any n > 2,
we have

LKL KA LALLM d=1/In(a"Y) < 1,
due to the assumption of the complete scale separation between a and €. We expand
(3.9) uo(t,z,8) = upo(t, ) + o(1).

The macroscopic behaviour of up ¢ will be determined via Fredholm alternative at
O(£?) (see (3.23)). Proceeding to O(e), we should not aim to satisfy the boundary
condition from (3.5) on I', in the ||y|| = O(1) region (this part of the boundary
degenerates to a point in the limit a — 0) and we have an expansion

(3.10) vO(y,a) =vg (y) +av?(y) + -

with ¢ being Y-periodic and satisfying Laplace’s equation. Setting z = y/a in (3.5)
yields

(3.11) V. (D,V.r)=0  inYy, V.-h=-ah  ondB,
where Y/, = a~'Y \ B;. This suggests an inner expansion of the form
(3.12) vi(z,a) =vi(z) +avi(z) +---

It follows that v} is independent of z and

1
(3.13) vl() = ~[afr+ 1) H}M’
r r
where r = ||z||, and o = —1 is required to match with the outer region. Hence
(3.14) vi(z) = (T|1)|’|222)
z

To match the inner v7 and outer v?, (3.10) has to contain terms of the form

a(ZhZQ) — a2 (ylaQQ)

Bl lyl?

as |ly|| = 0. Noting that the solution of

Ayv(y) =27V, 0(y), v is Y-periodic,
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where §(y) is the Dirac delta, has the behavior

(1/1 yz)T
v(y) ~ HyT as |yl — 0,

we infer that v§ = v. In order to uncover the effective behavior at the macroscale,
we need to analyze (3.6) in the inner and outer regions and matching between these
will eventually lead us to the homogenized equation (3.23). Using the information on
the inner and outer behavior of uy, see (3.4) and (3.14), problem (3.6) becomes

Vy - (DyVyus) = Owug — Vy - (D, Vyug) + O(a) in Y,

(3.15) ’ )
D,V us -1 =—K(a)ug — D,V (U1 + Vzup - V) - on I'y.

Rescaling by z = y/a and using (2.5), we obtain

Vz . (DuVZUQ) O(a2) in le/a,
D,V.us - =—ruy+O(a) on dBy,

Recalling (3.9), we infer the following ansatz for us

(3.16) ug(t, z,y,0) = Us(t, x,0) + uo(t,x,0)Y(y, ),

where the inner (z = y/a = O(1)) expansion for ¢ reads

(3.17) ¥!(2,6) = g (2) + O(8)

and at the leading order we get

(3.18) V.- (D.V.4)=0 in Yo, D,V bt -0 =~k on OBy,

where Y., = R? \El, the solution of which reads

(3.19) ¥(2) = (k/Dy) In (12]))-
Rewriting this in the outer variables y, we obtain
(3.20) (r/D) (1n (lyl)) +57).

In the |ly|| = O(1) region, the ansatz (3.16) (rescaled to y variables) together with
(3.20) results in an outer expansion for ¢ of the form

(3:21) ¥0(y,0) = v )a~! +uf (y) + 0),
which means that the substitution of (3.16) into (3.15) gives at the leading order
(3.22) Vy - (DuV, %) =0 inY, 99 is Y-periodic

implying that 1%, is independent of y. At the next order in the outer expansion, we
need to capture the logarithmic contribution from (3.20) (required for matching with
the inner solution), and we thus conclude

UO’ovy . (Duvy%o) = atuO,o — VL . (DUVIUQQ) — 27THU070(5(y) n Y,
1/100 is Y-periodic.

This manuscript is for review purposes only.
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8 J. KING, J. KORY, AND M. PTASHNYK

Due to the Fredholm alternative this problem admits a solution if and only if
(3.23) 8,5’11,070 =V,- (DUVIUO)()) — 27K 0,0 for x € Qp, t > 0.

We have thus obtained an outer approximation

te = [uoo(t,@) + -+ | +e[Uro(t,2) + v§ (4) - Vauoo(t,2) + -+
(3.24) +22 [Uno(t @) + 0 oot )90y (y) + -+ | + -+
Note as a consistency check that we could have also arrived at (3.23) more directly via

the a — 0 limit in (3.7) (for details, see section 4.2 in [18]). However, in general, as
we have 71 > 1, the 26! term could be promoted to O(g) or even O(1), depending
on the specified limit behavior of § with respect to ¢ — 0, thereby identifying the
distinguished limit that we consider below.

3.2. Derivation of macroscopic equations: distinguished limit. In the
asymptotic analysis in Section 3.1 we first took the limit € — 0, and then a. — 0.
Motivated by the €26~! term (with 6=1 = In(1/a.)) from (3.24), in this section we
consider the situation where ¢ and In(1/a.) are dependent and analyze two cases,
eln(1/a.) = O(1) (section 3.2.1) and 2In(1/a.) = O(1) (section 3.2.2). Note that
even though the case In(1/a.) = O(1) does not give us a distinguished limit, the
O(e) balance changes and thus this case is still worth studying. In both cases we set
K(a.) = k/a. and use the formal asymptotic expansion

(3.25) u(t,z,e) = ug(t, =, @/e) +eur(t, o, &/e) +*us(t, o, & /e) +3us(t,x, & /e) +- -

to derive the macroscopic equations, u; being Y-periodic with respect to the outer
microscopic variables y = Z/¢. The convergence of solutions of the multiscale prob-
lems to solutions of the derived macroscopic equations will subsequently be confirmed
via rigorous analysis in Section 4 and numerical simulations in Section 5.

We consider a linear function g(u) = w in the boundary condition (2.3), the
details on derivation of the macroscopic equations for nonlinear boundary conditions
are given in the Supplementary materials. In the next two subsections, A is an O(1)
quantity, with a different meaning in each subsection.

3.2.1. Derivation of macroscopic equations in the case cIn(1/a.) = A.
Observe first that the 26! term from (3.24) becomes O(¢g) here and therefore we do
not expect it to impact on the leading order. The ansatz (3.25) yields

1 1
3t(u0+5u1 Jr) = <7A0 + *Al +A2)(UQ+€U1 +) in QL X Yae,
(3.26) . € € .
Du(gVerVi) (up+euy +--+) - n=—-reelug+euy+---) onQp xT,,
where
Agv =V, - (D, Vyv), Aiv =V, (D,Vz0) + Vi - (D, Vyv), Asv =V, - (D, V,v).

On the root surface we have

1
Du(gvy+vl>(uo+au1+62m+-~-)-n: —B(up+euy +---) on {x3 :0} xY,..

This manuscript is for review purposes only.
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254 As in Section 3.1 we analyze the behavior of solutions for ||z|| = O(1) and ||y|| = O(1)
255 successively. The scaling z = y/a. =y e implies
2 o2
Orug + e0puq + -+ = (TBO + —B; +.AQ)(U0 “+ euq -l—) in Qf, x Yl/aga
256 (3.27) R < c
Du(%vz +V£>(u0 +eup+---) A= —mae%(uo +eu;+--+) on Qp x 0By,
257 where
258 (3.28) Bov =V, (D,V,v), Biw=V, -(D,Vzv)+ Vs (D,V,v).

259 The inner approximations satisfy

(3.20) V. (DuV.u}) =0 in Yy, D,V.ul-A=0 on 9By, j=0,1,
260 .
V. (DuV.ul) =0 in Yo, D,V.ul-n=-rul 5, ondBy, j=234,

261  which imply
ué(t’x7z) :Ué(t,x), U/{(t,$72) zu{(t,x),
kT

262 (330) ujl‘(taxa Z) = Euj_Q(t’ I) In (”Z”) + Uf(t>$)a for j =23,

K
ua(t,z,2) = 5-Us (t2) In(|[2]) + UL (¢, ).

263 Note that in this section we expand up to O(g*), because we wish to find a two-
264 scale approximation valid up to O(g?) and compare it with full-geometry numerical
265 simulation results in Section 5. The outer approximations satisfy

266 (3.31) Vy - (D,Vyul)=0 inY, ud Y — periodic,

so uf (t,2,y) = u§ (t,z) and therefore uf (¢, z,y) = uf(t,x) holds similarly. Since in
the outer microscopic variables we have

ub(t.,) = B [ub(t,o) n (L) + ub(t.0) 2] + U 1. 2),
267 to match logarithmic terms in outer and inner approximations we consider
268 (3.32) V, - (DuV,ul) = 0ul — V- (DuVaud) + 2rkul §(y)  in Y
260 and u§ is Y-periodic. The solvability condition for (3.32) yields

270 (3.33) ol =Vu - (DuVeul) — 2rkul  for € Qp, t>0,

271 and substituting this result into (3.32) gives

272 (3.34) Vy - (DuVyus) =27k (6(y) — )uf  in Y.

273 Therefore

274 (3.35) u§ (t,x,y) = UL (t,x) + 27m(k/ Dy )ud (t, 2)(y)  for x € Qp, t >0,

This manuscript is for review purposes only.
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10 J. KING, J. KORY, AND M. PTASHNYK

where 1(y) is a solution (unique up to a constant) of
(3.36) Ayp=46(y)—1 inY, P Y -periodic.
For similar reasons

(3.37) Vy (D Vyu§) + 47Vt - Vaud
=0l — V- (D,V,uf) + 2rruld(y) inY

and ug) is Y-periodic. Due to the periodicity conditions imposed on v, we conclude
(3.38) ouf =V, - (D, Vaul) — 2nkul for z€Qp, t>0.

At the next order, we obtain

Vy - (D,Vuf) +V, - (DuViud) + Vi - (D, V,us)

3.39
(3:39) =0 UL -V, (D,V.UD) + 27rDi [Opud — Vo - (DL V2ud)] v (y),

and u§ is Y-periodic, and to match the contribution from the inner solution we require

Vy - (DuVyul) +Vy - (D Viu§) + Vi - (D, V,us) = U — V- (D, V,US)
(3.40) +2(r/Dy) [Ouul — Vi - (DuVud)|(y) + 27 Us6(y)  in Y.

The solvability of (3.40) implies

K

[Opul — V- (Dquué)]][ Y(y)dy —2nk Ud
Y

in 7, and for ¢ > 0. Thus we obtain the outer approximation

(342)  uf(t,2) +euf (t,2) + (U (t.2) + 2n(/ Du)ub (b, 2)(y) ) + -+

and the inner approximation

u(t, ) + eui (t, @) + U3 (t,2) + €% (w/Du)ug (8, @) In (|[2]]) + U3 (¢, )

(343) 3 I 477l 4 I
+e(k/Du)ur (8, 2) In ([[2]) + e Uy (¢, 2) + & (5/Du)Us (8, 2) In ([l 2]]) + - - .

Writing the latter in terms of the outer microscopic variables y = a.z gives

ud(t,z) + s(u{(t, x) + )\iué(t, x))
D,

(3.44) ol ko ko

+2 (U4t 2) + Al (6 2) + poud (b i (lyl)) + -

Comparing (3.42) with (3.44) at O(1) and O(e) yields matching conditions

ul (t,x) = uf(t,z) = uo(t, ),

(3.45) ulo(t,iv) =l (t,2) + )\(n/Du)ué(t,x) =l (t,2) + Mk/Dy)uo(t, z).

Matching the inner and outer solutions at O(g?) yields

(3.46) U9(t,z) = UL(t,z) + ADi [u?(t, z) — ADiuo(t, x)},

u u

This manuscript is for review purposes only.
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where we have fixed the degree of freedom in the 1, satisfying (3.36), by setting
(3.47) lim {2my(y) — n ([ly])} = 0.

Since there are no root hairs in 2\ ,, in this part of the domain the macroscopic
problem is given by the original equations. Thus, due to the continuity of concentra-
tion and fluxes on the interface 9Qp \ 92 between the domain with root hairs and the
domain without, we substitute (3.45) into (3.33) and obtain the macroscopic problem

Opug = Vi - (DyVaeug) — 21k ug Xa, 1n ), t>0,

up(0, ) = uiy(x in Q,

a0 =@
D,V ug-n=0 on 9N\ Tg, t >0,
D, Viug-n = —pug onI'g, t >0,

where T'r = QN {23 = 0} and yq, denotes the characteristic (or indicator) function
of set 1. Notice that we obtain the same macroscopic equation as for ug o in (3.23).
This is because with eIn(1/a.) = O(1), the term 25~ ug o(t, z)p%; from (3.24) is
promoted to O(g) but does not affect the leading order.

Substituting the second relation in (3.45) into (3.38) implies the following problem
for the first order term w; (¢, x) = uf (¢, z):

Oruy = Vg - (DyVauy) — 27‘(/1{161 — /\(H/Du)uo} in Qp, t >0,

0,2)=0 in Q,,

(349 (00 L
D,Viur-n=0 on 0Qp \Tg, t >0,
D,V ui -n=—pFu; onI'r, t > 0.

Finally, we substitute (3.46) into (3.41) and obtain
2
QUL =V, - (D, V,US) + 4772% uo][ Y(y)dy
w o Jy

— 27m<U20 = {ul(t,x) — )\iuo(t,x)}) inQp, t>0,

D, D,
Gy US0m) = —2n(e/Dyun(@f vedy o,
D,V U - n= 21V uq - n][ D(y)dy on 09y, \ 99,
D,V U -n=-pUuf ' on T'g,
DV, U - mn=0 on (99, N9Q) \ I'z.
Then
(3.51) us(t, ,y) = Us (t,x) + 27 (k/ Dy uo(t, 2)¢(y),

where ¢ is the solution of the ‘unit cell’ problem (3.36) satisfying (3.47).

For the nonlinear boundary condition (2.3) on the surfaces of root hairs, together
with the scaling assumption (2.5), we follow the same calculations as above and obtain
Opug = Vg - (DyVaug) — 21k g(ug) xa, in €, ¢ >0,
uo(0, ) = uin () in Q,

D,Viuyg-n=0 on N\ TR, t >0,
Dy, Viug-n=—pFug onT'gr, t >0,

(3.52)
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see the Supplementary materials for the derivation. Equations for higher order ap-
proximations can be obtained in the same way as in the case of linear boundary
conditions on the hair surfaces.

3.2.2. Derivation of macroscopic equations in the case ¢%In(1/a.) = .

The relation £2In(1/a.) = A is equivalent to a. = e~*¢". The formal asymptotic
expansion (3.25) used in equations (2.1)—(2.3) yields

1 1 .
(3.53) Oug + edpuy + -+ = L—QAO + gAl + A2i| (up +euy +--+)in Qp x Yy,

1
gDuVy—l—DuV@}(uo—i—sul—}—nJ~f1:—/ies%s(uo—i—eul—i—'--) on Qp xT'y_.

The rescaling z = y/a. implies

62/\/52

/&2
at(uo+su1+~-)=[ =

eMe
By + - 81+A2:| (u0+6u1+-~~) inQnyl/aaa

(3.54) {eﬁ’a_lDuvz + Duvi’] (uo +eur +---)- R

A
2

=—ckeZ (ug+eu+---) on Qp x OBy.

Then for the inner approximation we again obtain (3.29). Following the same calcu-
lations as in subsection 3.2.1, we obtain the outer approximation (3.42) and the inner
approximation (3.43); writing the latter in terms of the outer variables y yields

<u6(t, x) + )\Diué(t, x)) + 5(u{(t, x) + )\Diu{(t, x))

(3.55) . !
2( "™ 1 I VoI
+ 2 (Foub(t.a) n (Iyl) + U (1.2) + AF-UJ (1)) +---

Matching (3.42) to (3.55) at O(1) gives

(3.56) ul (t,z) = (1 + A\e/Dy)ud(t, z).
Substituting (3.56) into (3.33) yields the macroscopic problem for ug(t, ) = u$ (¢, r):
2Tk .
8tU0 = vx . (Duvx'U;()) - m”o XQr mn Q, t> O,
(3.57) uo(0, ) = uin () in €,
D,V,up-n=—LFug onIT'g, t >0,

Duvxuo -n=0

onﬁﬂ\FR, t> 0.

Notice that (3.57) differs from the macroscopic equation in (3.23), because the term
£20 ug o (t, 2)y9; from (3.24) becomes O(1) with the present scaling; for A = 0 we
recover equation (3.23), as expected.

Comparing (3.42) with (3.55) at O(g) gives

(3.58) uQ(t,z) = (1 + As/Dy)ul(t, ).
Substituting (3.58) into (3.38) implies that uy(t,z) = u$ (¢, r) satisfies:
21K
= Vg -© Du T I E=— in Q ) t )

8tu1 Vv ( \V4 ul) 1+ /\/Q/Du U1 mn §27, >0
(3.59) u1(0,2) =0 in Qp,

D, V,ui -n=—pFu onI'g, t >0,

D,Viur-n=0 on 9N \T'g, t >0,
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and we see that ui(¢t,z) = 0 (for all t > 0 and x € Q) solves this problem. Similarly,
(3.60) UP(t,z) = (14 A\x/D,) Ul(t, x),
together with condition (3.47) on function . Using (3.60) in equation (3.41) yields

A7k u 21K
O _v, . (D,V,U) + =2 0 ][ O inQ
Uy = Ve (DuVaUz) + 5 (1+ A(#/Dw)) vy T TFaR/Dy 2
2m(k/Du) )
16) _
U2 (va)* 1+)\H/D zn ][7/) dy 1nQL7
2TK
O . -_————— .
(3.61) D,V,Uy -n 1+/\(H/Du)vzu0 n]{/ P(y)dy on 08, \ 092,

DV, U? n=-pUY on Tr, D,V,UJ n=0 on (00, NIN)\Tg,
for t > 0. Hence for us(t,x,y) = u$ (¢, z,y) we obtain

27k/D,

_ 770 _ZT e
(362) Ug(t,ﬂf,y) - U2 (t,l’) + 1 + )\H/Du

uo(t, ) P(y),

where 1 is the solution of ‘unit cell’ problem (3.36) satisfying (3.47).
For the nonlinear boundary condition (2.3) (with the scaling assumption (2.5)),
using the Taylor expansion of g(u.) and following the same procedure as above gives

Opug = Vg - (DyVug) — 21k g(h(ug))xa, inQ, t>0,

(3.63) D, Viug-n=—pug onT'g, t>0
' D,Viug-n=20 on 0N\ g, t >0,
uO(va) = uin(x) in Q7

where h = h(ug) is the solution of ug = h + A (k/Dy)g(h), see the Supplementary
materials for the derivation. Similar result for an elliptic problem is obtained in [14,
15, 16]. Note that by choosing g(u) = u we recover the effective equation from (3.57).
Assuming boundary condition (2.4), we obtain the effective equation
[V(uw—F—1)2+4ug +ug — & — 1]

3.64) Owug = Vg - (D,Vzug) — 27K o
(3:64) o ( ) 2+ [ % 12 T dug tug— A 1]

forz € Q,t > 0, and & = A\x/D, (see the Supplementary materials for the derivation).

4. Rigorous derivation of macroscopic equations. In this section we give a
rigorous derivation of the macroscopic equations for (2.1)—(2.3), (2.6), (2.7). To prove
the convergence of solutions of multiscale problem to the solution of the corresponding
macroscopic equations we first derive a priori estimates for u., uniform in €. Due to
the non-standard scale-relation between the size and the period of the microscopic
structure considered here, i.e. ac = r./e < 1, we need to derive modified trace esti-
mates and extension results, taking into account the difference in the scales between &
and r.. In the derivation of the trace estimates and extension results we follow similar
ideas as in [9] with small modifications due to the cylindrical microstructure of Q°.

We define the following domains, for some 0 < p < 1/2,

0= JeB,+9x(0,L), F=0\05 05 =0,\05 Q=00
feEe
I5=J @B, +& x(0,L), Aj= |J (0B, +9).

{e=e £eke

This manuscript is for review purposes only.
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LEMMA 4.1. For v € WYP(QF), with 1 < p < oo, we have the following trace
inequality

2
(A1) ey < (I}, ey + IV, | - independent of =, r..

Proof. For v € WhP(Y, x (0, L)) using a trace inequality [12] in Y, = Y\ B, (and
an approximation of v by smooth functions) yields

(42) | wlrdsg < [ (o + V50 ds,
dB, Y.
with § = (y1,42) and for a.a. y3 € (0,L). Scaling by r./p in the boundary integral
and by ¢ in the volume integral in (4.2) we obtain

1
L] rdr <z [ (o erVaop)de
Te JOB,. €% Jev,

for z3 € (0,L), where & = (x1,x2), ©1 = €y1, T2 = €Yz, x3 = y3. Adopting the
changes of variables x; — x; + €£ in the integral over €Y, and z; — z; + &£ in the
boundary integral, with j = 1,2, and multiplying by 2, implies
2
€

e T
TE

OB, +€& eYi+e€

P)di

Integrating the last inequality with respect to z3 over (0,L) and summing up over
¢ € Z¢ imply the estimate (4.1). 0

LEMMA 4.2 (Extension). Forv € H'(QF) there exists an extension P-v € H(Q)
such that

(4.3) [Pevl[z2) < pllvllrze),  IVPvllrz) < plVollzz:),

with a constant p independent of €.

Proof. Consider S = Bs,, S =S\ B,, S, =S5 x (0,L), and S, = S x (0,L). By
a standard extension result for v € H'(S x (0, L)) there exists ¢ € H'(S x (0,L)):

||17HL2(SX(0 L) = HIHUHL?(Sx(O L)) HVUHLz(SX(o L)) < ,U1||VU||L2 x(0,L))»

(4.4)

IVa0(, 23)ll 25 < mllVav(s, 23)llp2s)y  for as € (0,L) and & = (z1,22),

see e.g. [7]. Then for v € HY(Y?), where Y7 = €Y \ B,_, consider an extension
P. : HY(YE x (0,L)) — H'(eY x (0,L)) such that P.v = v in YF x (0,L) and
ng( ) =0(pi/re,x3) in By, x (0,L). The estimates (4.4) then give

2
/ | P2z = T2 / |Pool2dy < T2 / | P.o]?dy
B,..x(0,L) P” JB,x(0,L) p=Js,

7"2
> M1 V|| ay > 11 V|| aT > (1 V|| axr
<is [PoPay<m [ Pelfde<m [ PP
P~ Jsy, L= 9%(0,L) YEx(0,L)

and

[ VPP =z [ 9Pty < [ 9Py
B, x(0,L) B, x(0,L) Sr

< / IV PelPdy < oy / Vs Po|Pde < oy / V2 Poo| P,
St = 8x(0,L) Yex(0,L)
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where the constant 4 is independent of r. and €, and z; = (r./p)y; for j = 1,2,
x3 = y3. For the derivative with respect to x3 we have

T2 7"2
/ 10, Pool2dz = == / 18,, Pov|2dy < = / 18, Pov|2dy
B,.. x(0,L) P B, x(0,L) P

SL
2

!
<lE / IV, Pl 2dy < / Vo Pe|Pde < iy / Vo Poo| P
p=Jsy e 5%(0,L) Yex(0,L)

Combining the estimates above with the fact that P.v = v in Y, x (0, L) yields

[ PevllL2(ey x(0,)) < pllvllevexo.nys  VPll2eyxo.0)) < #llVollLz(vex(o,1))-

Considering the last inequalities for Y,F + £ and summing up over £ € =¢ imply the
extension and estimates stated in lemma. |

LEMMA 4.3. Assume g is continuously differentiable on [—S,00) for some ¢ > 0,
and g(n) = g1(n) + g2(n), where g1(n) > 0 for n > 0, with g1(0) = 0, and g> is
sublinear, with g2(0) < 0, initial condition uy, € HY (), with 0 < ujp < Umax,
K(a:) = k/ae, with k > 0, and > 0. Then solutions u. of (2.1)-(2.3), (2.6), (2.7)
satisfy the following a priori estimates

||Us||2Loo(o,T;L2(Qs)) + ||VU5||2L2((0,T)xQe) + 5\\%”%2((0,@@;)

52

(4.5) +- 91(uc)ue dyedt + [|Ovuc 220 myx0sy < s
e JI'g,
[ (ue — M€Mt)+”2L2((O,T)><QE) < pe,
where M, m > 0 and the constant u is independent of € and of r. = € a..
Proof. Using assumptions on ¢g and initial data and employing the theorem on
positive invariant sets, [31, Theorem 2], we obtain u. > 0 in Q5. Taking u. as a test
function in (2.8) and using the nonnegativity of u. and assumptions on g(u.) ensure

e ()72 0y + 2Dull Vel 72 (0,0 x 00y + 25”“5”%2((0,5)@;)

4.6 2
(4.6) L ofE

2
g

. /r 91 (ue)ue dy*dt < NeruEH%?((O,s)XFE) + 2 + [[uc(0)[|72 (0
g € g

for s € (0,T]. Notice that if g(n) > 0 forn > 0, i.e. g2 = 0, we have u1 = ug = 0. Then
using (4.1) with p = 2 and ||v||2Lz(§£) < ||UH%2(QE), applying Gronwall’s inequality, and
taking supremum over s € (0,7, yield the first four estimates in (4.5).

Taking (ue —Me™) T with M > upa, and some m > 0, as a test function in (2.8),

and using assumptions on ¢ and inequality (4.1), with p = 2 and p = 1, yield
(ue(s) = Me™) | Zaqe) + 2DullV (ue — Me™)¥||72 (o)
+2m|| Me™ (ue — Me™) |11 (qe) < puall(1 4+ Me™ ) (ue — Me™) |11 (qs)
T il (e = Me™) 3y + (1 4+ Me™) (sl Ve — Me™)* |20y + pua)-
Choosing m such that p1(1+ M) < 2mM and € such that euz(1 + Me™T) < 2D,

and applying Gronwall’s inequality imply the last estimate in (4.5).
Taking Opue as a test function in (2.8) we obtain

2[10pue 122 (az) + Dull Ve (s)72 ey + Bllue(s)ll72(rs,)

4.7 2
(4.7) L ohE

2
c e

G1(ue(s)) dy" < pn—lue(s) ey + 2 + palluinl| 3 os),
Te Te Te
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16 J. KING, J. KORY, AND M. PTASHNYK
for s € (0,T] and G1(n) = [ g1(£)d¢ for n > 0. Here we used that

1
/ Ue Oy dyedt = §/ (|u€(s)|2 — |u5(0)|2)d'ye, / |u5(0)|2d'ye < ulufnax,
r rs, re,

[ st ariar= [ [Glun(o) - GluO))ar®, where 6l = [ gtepd,

and that g1(n) > 0 implies G1(n) > 0 for n > 0, whereas the sublinearity of go yields
|G2(n)] < p2(In]? + 1), with Ga(n) = ) g2(§)d€. Since uin € H'(Q) is bounded we
obtain that u;, is bounded on I'* and I'S, and the continuity of g ensures that G(uin)
is bounded on I'®. Using (4.1) with p = 2, in (4.7) implies the estimate for dyu.. 0O

First we prove convergence of a sequence of solutions of the microscopic problem
for g(u) = u. The case of a nonlinear function g(u) will be considered in Theorem 4.5.

THEOREM 4.4. Consider K = k/a. and €2In(1/a.) = X for some X > 0, k > 0,
B >0, and initial condition uy, € H* (), with 0 < Uiy < Umax. Then a sequence {u.}
of solutions of (2.1)~(2.3), (2.6), (2.7) converges to a solution ug € L*(0,T; H(2))
of the macroscopic problem (3.57). If K = k/a. and €ln(1l/a:) = X\ for A > 0,
then a sequence {uc.} of solutions of (2.1)-(2.3), (2.6), (2.7) converges to a solution
ug € L2(0,T; HY(Q)) of the macroscopic equations (3.48).

Proof. The a priori estimates (4.5) and extension Lemma 4.2 imply

[uell 20,301 () + [10kue | L2 0,1y %) < 1
with a constant p independent of €, where u,. is identified with its extension. Hence
there exists a function ug € L?(0,T; HY(Q)), with dyug € L?((0,T) x ), such that
ue — ug weakly in L?(0,T; H'(Q)), Oyu. — dyug weakly in L*((0,7) x Q),

4.8
(4.8) ue — ug strongly in L2(0,T; H*(Q)), for s < 1, (up to a subsequence),

where the strong convergence is ensured by the compactness of H'(Q) C H?*(Q)
for s < 1 and the Aubin-Lions Lemma [22].

To pass to the limit as € — 0 in the weak formulation of (2.1)—(2.3), (2.6), (2.7)
we need to construct an appropriate corrector to compensate the boundary conditions
on I'°. Define w® to be the solution of
V@ . (Duvfwe) =0 in Bsp \Ere,

(4.9) R )
D,Vi;w® -n=—k(e"/r.)w® ondB,_, w®=1 ondB,,

where # = (1, ¥2), which can be solved explicitly to obtain for & € B., \ B,.

el Kke? \/ﬁ D, + (XA —£21n(e))
(4.10) wi(#) = D, + k(A +¢£21n(p)) In ( it xQ) + D, + k(A +¢e2In(p))’
We extend we in a trivial way to (B:, \ B;.) x (0, L) and denote it by 0 (z) = w®(%).
Then we extend ¢ (z) periodically with period €Y into Q¢ N QF and by 1 into Q.
Using ¢ = w1 + 1y as a test function in (2.8), where ¢; € C1([0,T]; C*(Qyr)),
o € CH([0,T]; CHQ\ Q1)) with 1 (t, 2, L) = a(t, 2, L) = 0, and extended by zero
into Q.7 = (0,T) x (2\ Q) and Q7 = (0,T) x Q, respectively, yields

J

e
L

2
{&ug W1 + DuquV(wwl)]dde / E R e it dycdt

e
re e

+ | Bucitrdridt + / [atusw n Duv%w@} dadt = 0.
Qym—rL,7

€
1_‘R,T
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Notice that the assumptions on 1, and 1 and the construction of w® ensure that
¢ € L*(0,T; HY(QF)). The second term in the last equality can be rewritten as

Do Vu Vibydedt + | Dyt VueVifdedt = | Dyt Vu. Vo dadt
Q5 1 5 5 1

+ [ Dyt1Vu Vafdedt + | Dyu.Va© - niydy dt + DyuVu® - nidyede

a5 ¢ rs 5o
/ / WV )y + Duungsvzbl]dxdt.
0 € \QE
By the definition of @¢, we have V - (D, Vi®) = 0 in 5 \ Q5 and Va® = 0 in Q5.
The definition of w*® also implies
VS || 2z ) < @,

with some constant p independent of €. Since @w° is bounded in 5, [Qz \ Q5| — 0
as ¢ — 0, and w° =1 in QEL, we obtain that w® — 1 in L?(Qz) strongly, where w* is
the extension of @ by zero into Qf \ Q7. Thus strong convergence of the extension
of ue in L?((0,T) x Q) and weak convergence of Vio® — 0 in L?(2;), using the same
notation for w® and its extension, ensure

T
lim / / DyuVw*Vidxdt = 0.
==0Jo Jag\ag
Using [|Vue|[2(p) < C and [Q\ QF| — 0, @° — 1 in L*(Qy), as € — 0, yields

/ [Brucd® Py + Dy Vu Vi |dadt — | [Byuo 1 + Do VugVe | dadt,

Qr, T
/ [&ug o + DUVUEV’(/)Q} dxdt — [@uo P9 + DuVUOV’QbQ] dxdt,
Qv_r,T Qv_r,T
B ue Wy dyEdt — B ug 1y d2dt, as € — 0,
I'ar Cr,T

where the strong convergence of u. in L2(0,7T; H*(f2)), for % < s < 1, ensures its

strong convergence in L?((0,T) x T'g). Computing Vi° yields

Duvweni DUHE/p _ K}E/p

= Dot Rt etn(p) 14 (/DA + 2la(p) MO

135 Applying the two-scale convergence on I'§ = A§ x (0, L), with a test function 1 €
136 CY([0,T);CH(L)), see e.g. [1, 26], and using liH(l) el|lus — u0||%2(1,5 ) = 0, ensured by
e— 0,7

137 the strong convergence of u. in L2(0,T; H*(Q)) for % < s <1, see e.g. [29], yields

. ) . (1/p) (ue —uo) ¥1
1 Dy Vi* - nug rdydt = 1 dre dt
B Jp, DeV mueiady QL%E/FE TF (5/Du)0 + 22In(p))
. (k/p) uo Y1 .
55 (411 1 d5° d 5 dt
¢+ (A1) ili%E///AEH (k/Du) (X + e2In(p)) " | “2

(K/p) uo 1 / 27k U Y1
———————dAydxdt = dxdt.
/QL T/BB 1+ Mr/Dy) o2 L+ A(k/Dy)
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18 J. KING, J. KORY, AND M. PTASHNYK

Notice that uo and ¢, are independent of y € 0B, and the e-scaling in the boundary
integrals in (4.11) is essential for the two-scale convergence on oscillating surfaces.
Using the trace inequality 5”””%2(1“5) < NHUH%I(QL)’ see e.g. [29], we have

(k/p) (ue —up) Py
dyfdt] < - ,
‘ / 1+ (5/Dy)(A+ €2 1n(p)) gl “152”“5 uo|L2(rg ||¢1HL2(0TH1(QL))

(r/p) ug 2
’ < polluol|F2o.rsm (00 )) < 135

HH (/D)3 + 2 (p)) laxcrs )

for 0 < & < &g, such that A + &2 1In(p) > 0 with 0 < p < 1/2.

Combining all the calculations from above, in the limit as € — 0, we obtain the
equation and boundary conditions in (3.57). Standard arguments, see e.g. [30], ensure
that wug satisfies the initial condition in (3.57) and is a unique solution of (3.57). Hence
the whole sequence {u.} converges to ug as € — 0.

If eIn(1/a.) = A then the solution of problem (4.9) is given by

Kke? / D, + k(e — €21n(e))
1 2 2 u
Wiy w2) = Dy + k(eX +€21n(p)) . ( Tt xg) + Dy + k(e +€21n(p))’

e K/p .
D, ‘n= Ie.
Vit m=e g (k/Da)(er + 21n(p)) 0 0

(4.12)

In this case the boundary integral converges to

T T
/ D Vo -nupy dyEdt — / / 2mk ug Y1 dedt  as e — 0,
o Jre o Ja.

and we obtain the macroscopic equation as in (3.48). d
Now we consider the nonlinear condition (2.3) on the boundaries of the microstructure.

THEOREM 4.5. Consider K = r/ac, for k > 0, and *In(1/a.) = X\ for some
A >0, let g be continuously differentiable and monotone non-decreasing on [—¢, 00),
for some ¢ > 0, and g(n) = g1(n) + g2(n), where g1(n) > 0 for n >0, with g1(0) =0,
and go is sublinear, with g2(0) < 0, initial condition uy, € HY(Q) with 0 < Uiy < Umax,
and B> 0. Then a sequence {u.} of solutions of (2.1)—(2.3), (2.6), (2.7) converges to
a solution ug € L*(0,T; H*(Q)) of the macroscopic problem (3.63). If K = k/a. and
eln(1/ac) = A for A > 0 then a sequence {uc} of solutions of (2.1)-(2.3), (2.6), (2.7)
converges to a solution ug € L?(0,T; H*(Q)) of the macroscopic equations (3.52).

Proof. In the same way as in the proof of Theorem 4.4, using a priori esti-
mates (4.5) and extension Lemma 4.2 we obtain following convergence results

ue — ug weakly in L*(0,T; H*(Q)), Ou. — dyug weakly in L*((0,T) x Q),

4.13
(4.13) u. — ug strongly in L2(0,T; H*(Q)), for s <1, (up to a subsequence),
(

where ug € L*(0,T; H*(2)) N H*(0,T; L*(€2)). Since u. > 0 for all € > 0 we have
ug > 0, whereas the last estimate in (4.5), together with the strong convergence of u.,
implies ug € L ((0,T) x ).

As in the proof of Theorem 4.4, the main step is to construct an appropriate
corrector to pass to the limit in the integral over the boundaries of the microstructure.
In a similar way as in [14, 16], we define w® to be the solution of

(4.14) Aw®=0 in B.,\B,., w* =1 on 8B,, w =0 on dB,.
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Then we extend w® by 1 into B,_, in a trivial way into the x3-direction for z3 € (0, L),
by w®(2)[1+ (L —x3)/e] for z3 € [L, L+¢), and then eY-periodically into Q5UQG 1, .,
where QF 1. = Ugcz- e(B,+&) x [L,L+e¢), and by 0 into QL+€ = \NQG Ly We
denote this extension of w® again by w®. Then w®(z) = In(|2|/(cp))[In(re/(ep))]

for x € Q° N QG and w(z) = 0 for « € §~25L+E. The assumption on the relation
between e and a. = 7. /e implies

1 1 2 L P d
/ |Vw5|2dx:72/ ﬁdxﬁ%/ lS,Ua
AL In(ep/re)? Jos \a- 2| e?ln(ep/r:)? J, 7

M2
| 190Pde < el V0 gy + 20 g ey <

0,L+e

for some constant x> 0 independent of . This, together with similar arguments as in
Theorem 4.4, implies that w® — 0 weakly in H*(£2) and strongly in H*(f2) for s < 1.

To prove convergence of solutions of problem (2.1)—(2.3), (2.6), (2.7), by using
the monotonicity of g, we rewrite its weak formulation (2.8) as variational inequality

2

/QE [@ug((;ﬁ —u) + Dy VoV (e — ue)] dadt + i’”“ / 9(0) (6 — uo)dredt
(4.15) 7 Cor

+ B (¢ —ue)dy dt >0
Thr

for any ¢ € L%(0,T; HY(QF)) N L>=((0,T) x QF), with ¢(t,z) > —< in (0,7) x QF.
Notice that the last condition on ¢ is not needed if g is monotone on R.

Considering ¢ = 9 — kg(h)w®, for ¢ € C*([0,T]; C1(Q)) with 9 (t,x) > —< in
[0,7] x Q, as a test function in (4.15), where & = Ax/D,, and h is the solution of
h+ kg(h) = ¢, and using the weak and strong convergence of w® and of extension of
Ue, in the corresponding spaces, together with |\ Q¢ — 0 as e — 0, we obtain

hII(l) Opus (W — Rg(h)w® — ue)dxdt = Opuo (v — ug)dxdt,
e=0Jas, Qr
lim . ﬁ(w — kg(h)w®) (¥ — kg(h)w® — ue)dy dt = g B — ug)didt.

Here and in what follows we use the same notation for u. and its extension. For the
second term in (4.15), the weak convergence of Vu, and |Q\ Q| — 0, as € — 0, yield

lim D, V() — kg(h)w®)V (¢ — Rg(h)w® — ue)dzdt = D, VYV (¢ — ug)dxdt

e—0 Q; Qp

- hr% D,&(Vg(h)w® + g(h)Vw®)V (¢ — kg(h)w® — u.)dzdt.
E—r QE

For the first part of the last term the strong convergence of w® and weak convergence
of Vw® and Vu, in L?(Q7) ensure

lim D&V g(h)w*V (¢ — kg(h)w® — u.)dxdt = 0,

e—0 Qs
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and the second part can be rewritten as
o Dyi[VwV (g(h)[ — Rg(h)w® — u.]) — Vw*Vg(h)(v — kg(h)w® — u.)]dzdt
T =1 + Iy,

where liH(l) Iy = 0, due to weak convergence of Vw® and strong convergence of u. and
E—r

w® in L*(Qr). Using that Aw® = 0 in Q° N Q§ and Vw® = 0 in Q°\ (QU QG 1, )
and integrating by parts in I yield

I =

Ak g2 5 _ c )
A+e2In(p) [75 /;g(h)(¢_”g(h)_“€)dW dt= /S)Tg(h)(w—ug)dv dt] 1,

where, due to lim [|Vw®| z2(qs = 0, we have
e—0

0,L+5)

I = / / D, &VwV (g(h)[¢p — Rg(h)w® — uc])dzdt -0 as e — 0.

0 L+e

Similar as in the proof of Theorem 4.4, using the two-scale convergence on I'j, see
e.g. [1, 26], and that lin%sﬂug - uo||2L2(p8 ) =0,seeeg. [29], we obtain
E—r s

ey +(g2/1f1)( ) /af(h)('/’ ~ ue)dy*dt = limy H(;/li)()
i P (x/p)

=0 A+ 62 In(p)

6/ g(h)(ug — ue)d~edt
Qp,r

5/5 g(h) (Y — ug)dv*dt = 27m/ g(h) (Y — ug)dxdt.

Notice that the regularity g(h) € C1([0,T]; C*(Q)), ensured by the regularity of g
and 1, and the trace estimate 5”“”%2(1“5) < /‘”U”%P(QL)’ see e.g. [29], yield

Ak 1
)\—I-(&“?/lfl)() 5/89T(h)(uo - Ue)d’Yadt’ < pae? |lug — tellL2(rg ) |l9(P) | L2 0,711 (2))
A(k/p) 2 2 2
H Nt e2n(p) (¥ — UO)‘ LT ) < pa[llwollZz2 (0 751 02)) + Hw”L?(O,T;Hl(Q))} < us,

for 0 < e < g, with A +21In(p) > 0 and 0 < p < 1/2. It remains to show that

Ke2 A

" /E (g(w —kg(h)) — mg(h)) [ — Rg(h) — uc]dy®dt — 0 as e — 0.

Since h is the solution of A + Eg(h) = ¢ and ¢ is monotone and continuous we have

Ke?

[ tatw = rg(h) - g0l kg(t) — wlarvae = .

Te

The trace estimate (4.1) yields

A 1} ke2

_ - _ £
X+2n(p) /T lg(M)|[Y — Rg(h) — uc|dy=dt < ;U'{Hh”L2 0.7:H (%))

Te
A

+||¢HL2(OTH1 QE +||U€||L2 OTHl(QE) +1:| [M—Thl(p)il} *)O, ass%O.
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Collecting all calculations from above, taking the limit as € — 0 in (4.15), with
¢ =1 — kg(h)w®, and employing a density argument, we obtain

/ [Oruo (Y — ug) + Dy VUV (¢ — ug)] dadt + / 2kg(h) (¢ — ug)dxdt
Qr Q.7
(4.16)
+ [ Bw W —up)didt >0
Tr,T
for any ¢ € L?(0,T; H'(2)) N L>=((0,T) x Q). By choosing ¢ = ug & o, for ¢ > 0
and ¢ € L%(0,T; H*(2)) N L>=((0,T) x Q), and letting ¢ — 0 we obtain that ug
is a solution of the macroscopic problem (3.63). Since ug > 0 we have p > —¢ for
sufficiently small o. Standard calculations ensure uniqueness of a solution of (3.63).
If K = k/a. and eln(l/a.) = A, we again rewrite (2.1)—(2.3), (2.6), (2.7) as
variational inequality (4.15). The convergence, as ¢ — 0, of the first two terms and

of the last integral in (4.15) follows directly from the weak convergence u. — ug in
L2(0,T; HY(Q)) N HY(0,T; L3(2)) and |2\ Q] — 0 as € — 0. To show

2
(4.17) lim = /
e—=0 7e r

we consider the solution of the following problem

9(0)(¢ — uc)drdt = 2mk / 9(¢) (¢ — up)dadt

T Qr, T

ek

V- (D,V@°) =01in B, \ B,., D, Vi -v= on 0B,,, w° =0 on 0B,

Te

given by @° = €%(x/D,) In(|£|/(ep)), extended in a trivial way to (Be, \ B,.) x (0, L)
and then Y- periodically into Q° N QF. Notice |w¢(x)| < (k/Dy)e?In(ep/re) < pe,
for all z € Q° N QF, and

Ep 1
/ |V |2dr < ,u1<€2/ —dr < pe,
QeNQs re T

€

with a constant g > 0 independent of €. Then

T T
0=-— /0 /Q Y (DuV@7)g(6) (¢ — ue)ddt = /0 Dy ViV [9()(d — ue) | dwdt

Q=nQg
2K
_|_
Te T

Hence taking in the last equality the limit as ¢ — 0 and using weak convergence of
ue in L2(0,T; HY(Q)) and two-scale convergence on I'§, together with the fact that
gi_r)r(l)HV'ZDEHLZ(QEQQE) = 0, imply (4.17). By choosing ¢ = uy & o, for o > 0 and
o € L*0,T; HY(Q)) N L>=((0,T) x ), and letting ¢ — 0 we obtain that ug is the
solution of the macroscopic problem (3.52). Notice that in the case eln(1/a.) = A
we can also show convergence of solutions of (2.1)—(2.3), (2.6), (2.7) directly, without
rewriting it as a variational inequality and using monotonicity of g. O

9(®) (¢ — uc)drdt — 6% / (@) (¢ — ue)drEdt.

£ £
T L8,

5. Numerical simulations for multiscale and macroscopic models. In
this section we present numerical simulations of (2.1)-(2.3), (2.6), (2.7) and of the
zero, first and second order approximations of solutions of the macroscopic problems,
see (3.57), (3.59), (3.61). All simulations in this section were performed using standard
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Parameter ¢ L M g D, k
Value 05 05 1.0 00 1.0 1.0

Table 1: Default dimensionless parameter values used in numerical simulations.

finite element methods as implemented in FEniCS [23], with meshed domains gener-
ated using NETGEN [32]. Steady-state (elliptic) problems were solved directly, while
for time-dependent (parabolic) problems, backwards Euler discretization in time was
used and the solution at time t + At was calculated using the stationary solver with
the solution at time ¢ entering the right-hand side of the weak formulation as a given
forcing term (as described in [23]). Since the scale-relation e2In (1/a.) = A for small
€ results in a very small value for a., which is numerically challenging, we consider
(only) e = 0.5 and observe that a. = 0.01 with such e gives A = ¢?In (1/a.) ~ 1.15.
Continuous Galerkin finite element method of degree 1 was used and tetrahedral
meshes for the full-geometry simulations were created using in-built NETGEN gener-
ators with automatic mesh refinement close to the root hair, so that the size of any
tetrahedron does not exceed 0.03, which in the case of a. = 1073 (see below) yielded
O(7 x 10°) tetrahedra. For the macroscopic problems in our two-scale expansions (i.e.
ug, u; and Us), we generated meshes with the maximum mesh size of 0.05, which
yielded O(14000) tetrahedra for the mesh for domain 2, and O(7000) for the mesh
for domain Q.

We first consider the steady-state problem for equation (2.1), imposing a constant
level of nutrient at the cut-off distance

(5.1) ue(t,z) =1 on x3 =M, t>0,

and a zero-flux boundary condition on 9Q \ {x3 = M}, i.e. 5 = 0. Then in the
corresponding macroscopic problem we have

up(t,z) =1 on z3=M, D,Vup(t,z) n=0 ondQ\{xs=M}, t>0.

Notice that the choice of boundary condition on x3 = M does not affect the derivations
of macroscopic equations in Sections 3 and 4. The symmetries of the full-geometry
problem and the periodicity of the microstructure ensure that the solution of this
problem has the same behavior in each periodicity cell e(Y + &) x (0, M), for £ € Z2,
see Figure SM1 in the Supplementary materials. Hence it is sufficient to determine
the solution within a single periodicity cell €Y x (0, M).

To illustrate the differences in the behavior of the multiscale solutions and those
of the corresponding macroscopic problems (3.48) and (3.57) for two different scale-
relations between ¢ and a., we vary a. from 107! to 1072, see Figure 2. The default
parameter values used throughout this section are summarized in Table 1.

For a. = 107! (Figure 2(b)), the steady-state solution of problem (3.48) (Fig-
ure 2(a)) gives a good averaged approximation to that of (2.1)—(2.3), (2.6), (2.7),
whereas for a. = 1072 and a. = 1072 (Figure 2(c,d)) the differences between the so-
lution of the macroscopic problem (3.48) and those of (2.1)—(2.3), (2.6), (2.7) become
more significant and, as £%1In (1/a.) approaches 1, the steady-state solution of the
macroscopic problem (3.57) provides a better approximation to solutions of the full
model, as predicted. The analysis in Section 3.2.1 implies that for any scale relations
satisfying a. > e~1/2* as e — 0 the same macroscopic equation (3.48) pertains.
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-0.25
£0.10 rlﬂ 0 Nutrient concentration
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Nutrient concentration

5
-0.10 z;
0.10 1.0000

=0.8000 =0.8000

| —0.6000 | -0.6000

_0.4000

E0.2000

——0.4000

E(1.2000

(a) ug for eln (1/ac) = O(1) (b) ue for ac = 107! (¢21n (1/ac) ~ 0.58)

0.25
-0.10 "o10 Nutrient concentration

~1.0000
E

0.25 -
~0.10 1o Nufrient concentration z -0.10

0000 } 025
~=0.8000

z, -0.10

—0.8000
| =0.6000 | C0.6000

-~0.4000

E0.2000

(c) ue for az = 1072 (¢2In(1/ac) ~ 1.15) (d) ue for ae = 1073 (¢21In(1/a.) ~ 1.73)

Fig. 2: Steady-state solutions of the macroscopic problem (3.48), (a), and of the full
model (2.1)-(2.3), (2.6), (2.7), for (b) a. = 1074, (¢) ac = 1072 and (d) a. = 1073,
with Dirichlet boundary condition (5.1), g(u.) = u,, all other parameters as in Table 1.

We now compare these solutions at a fixed distance from the root surface. First,
we fix z3 = 0 and plot the solutions along a diagonal joining the opposite corners
of this plane. This way, we study behavior at the root surface, and the results for
decreasing a. are shown in Figure 3(a,c,e). Solutions of the full problem (2.1)—(2.3),
(2.6), (2.7), (blue) show nutrient depletion zones close to the hair surface with increas-
ingly sharp concentration gradients for a decreasing value of a. due to the scaling of
the uptake constant (2.5). Numerical simulations reveal that the steady-state solution
of the macroscopic problem (3.48) underestimates, and that of the macroscopic prob-
lem (3.57) overestimates, the averaged behavior of steady-state solutions of the full
problem (2.1)—(2.3), (2.6), (2.7). While the solution of (3.48) provides us with a better
approximation to the full-geometry behaviour than that of (3.57) for a. = 107!, the
opposite is true for a. = 1073, which confirms the validity of our asymptotic analysis
results. Leading-order approximations (i.e. homogenized solutions) naturally cannot
capture large depletion gradients present in full-geometry simulations near root hair
surfaces. Comparison with higher-order approximations will be discussed later (see
Figure 5).

Simulation results at 3 = 0.75, i.e. outside the root hair-zone, see Figure 3(b,d,f),
demonstrate that as a. decreases and approaches the scale relation e2In (1/a.) =
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Fig. 3: Steady-state solutions at the root surface {z3 = 0} (figures (a), (c) and (e))
and outside of the root-hair zone {x3 = 0.75} (figures (b), (d) and (f)) for (2.1)-
(2.3), (2.6), (2.7) (blue solid line), the problem (3.48) (red crosses) and the problem
(3.57) (green dashed line), with boundary condition (5.1), g(u) = u, and all other
parameters as in Table 1. a. is decreased from 107! to 1073. Figures (g) and (h)
show comparisons for the nonlinear problem (with g(u) = u/(1 + u)) to the problem
(3.63) (green dashed line; for the full form of the continuity equation, see (3.64)), and
the problem (3.52) (red crosses), using the same parameters and boundary conditions.
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(c) 3 = 0.0, g(u) = u/(1 +u) (d) 23 = 0.0, glu) = u/(1 +u)

Fig. 4: Numerical solutions for (2.1)—(2.3), (2.6), (2.7) (blue solid line), the problem
(3.63) (green dashed line; for the full form of the continuity equation, see (3.64)) and
the problem (3.52) (red crosses), with g(u) = u/(1+ u) (figures (a), (b), (c) and (d)),
and initial condition w;; = 1, all other parameters as in Table 1. The time derivative
is discretized using the backwards Euler method, with the time step of 0.01.

O(1), the steady-state solution of the macroscopic model (3.57) provides a better
approximation to the full model (2.1)—(2.3), (2.6), (2.7) than that of (3.48).

Numerical solutions to the steady-state problem for (2.1)—(2.3), (2.6), (2.7) with
a nonlinear boundary condition on I'®, i.e. with g(u.) = u./(1+u.), and to the corre-
sponding macroscopic problems (3.52) and (3.63) are also presented in Figure 3(g,h).
All model parameters are as in Table 1 and Picard iteration was used to solve the
nonlinear problem (as described in [23]). Similar differences between solutions of the
full model and the two macroscopic problems are observed in time-dependent solu-
tions, see Figure 4 (note that we used a zero-flux boundary condition at x3 = M in
this case, modelling competition with a neighboring root at z3 = 2M).

Numerical solutions for the first and second order corrections, given by (3.49),
(3.51), (3.59) and (3.62), for the two different scale relations between € and a. are
presented in Figure 5. The differences between these illustrate the importance of the
correct approximation. Since we chose our parameters so that €2 In (1 / ag) =0(1) we
have that solutions of (3.57)-(3.62) provide better approximations to those of the full
problem (2.1)—(2.3), (2.6), (2.7) than solutions of (3.48)-(3.51).

6. Discussion. The analysis in Section 3.1.2 using two independent small pa-
rameters € and a uncovered the term 2 In(1/a)ug o(t, )1?;, which causes problems
relating to commutation of the two limits under consideration (see (3.24)). Based
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Fig. 5: Figures (a) and (b) show comparison at the root surface {z3 = 0} for the linear
problem (2.1)—(2.3), (2.6), (2.7) (blue solid line) with the problem (3.57) (brown dia-
monds), the problem (3.48) (yellow squares), the second-order approximation (3.48)
- (3.51) (red crosses), and with the second-order approximation (3.57) - (3.62) (green
dashed line), using the same initial condition and parameters as in Figure 4.

on this observation, we then studied two scale relations given by eIln(1/a.) = O(1)
and e2In(1/a.) = O(1). In the eln(1/a.) = O(1) case, the mentioned term becomes
O(g), and thus it does not affect the leading-order problem (3.48), but the O(g) prob-
lem (3.49). In the e21In(1/a.) = O(1) case, the same term becomes O(1), affects the
leading-order problems and thus leads to distinguished limits, see (3.57) for the linear
boundary condition and (3.63) for the nonlinear boundary condition. Notice that the
sink term in the distinguished limit (3.57) is obtained by dividing the sink term in the
standard limit (3.48) by 14 Ax/D, > 1, implying weaker effective nutrient uptake in
the hair zone. This is because assuming 2 In(1/a.) = O(1), the uptake rate per unit
hair surface area becomes large, causing very sharp nutrient depletion near hairs so
that the diffusion is not fast enough to keep the concentration profile uniform. Under
these circumstances, the difference between the nutrient concentration at the hair sur-
face (used in the full-geometry model) and the averaged nutrient concentration (used
in the sink terms) becomes significant and this gives rise to the new limit. Subse-
quently, we rigorously proved the convergence of solutions of the multiscale problem
to solutions of the macroscopic equations for both the linear and nonlinear bound-
ary conditions at surfaces of root hairs and confirmed the applicability of the two
limit equations (as well as higher-order correctors) in different parameter regimes via
numerical simulations.
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