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Abstract. In this paper we undertake a multiscale analysis of nutrient uptake by plant roots,5
considering different scale relations between the radius of root hairs and the distance between them.6
We combine the method of formal asymptotic expansions and rigorous derivation of macroscopic7
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1. Introduction. An efficient nutrient uptake by plant roots is very important16

for plant growth and development [2, 4]. Root hairs, the cylindrically-shaped lateral17

extensions of epidermal cells that increase the surface area of the root system, play a18

significant role in the uptake of nutrients by plant roots [10]. Thus to optimize the19

nutrient uptake it is important to understand better the impact of root hairs on the20

uptake processes. Early phenomenological models describe the effect of root hairs21

on the nutrient uptake by increasing the radius of roots [28]. Microscopic modelling22

and analysis of nutrient uptake by root hairs on the scale of a single hair, assuming23

periodic distribution of hairs and that the distance between them is of the same order24

as their radius were considered in [20, 29, 33].25

In contrast to previous results, in this work we consider a sparse distribution of26

root hairs, with the radius of root hairs much smaller than the distance between them.27

We consider two different regimes given by scaling relations between the hair radius28

and the distance between neighboring hairs. Applying multiscale analysis techniques,29

we derive macroscopic equations from the microscopic description by applying both30

the method of formal asymptotic expansions and rigorous proofs of convergences of31

sequences of solutions of microscopic (full-geometry) problems. Due to non-standard32

scale relations between the size of the microscopic structure and the periodicity, the33

homogenization techniques of two-scale convergence, the periodic unfolding method,34

Γ- or G-convergences, see e.g. [13, 24, 25, 27], do not apply directly and a different35

approach needs to be developed. The construction of inner and outer layer approxima-36

tion problems constitutes the main idea in the derivation of the macroscopic problems37

using formal asymptotic expansions. This approach allows us also to obtain equations38
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2 J. KING, J. KÖRY, AND M. PTASHNYK

for higher-order approximations to the macroscopic solutions. To show convergence39

of solutions of the multiscale (microscopic) problems to those of the corresponding40

macroscopic problems, we construct appropriate correctors to pass to the limit in41

the integrals over the boundaries of the microstructure given by root hairs. We also42

compare numerical solutions of the multiscale problems with solutions of macroscopic43

problems and higher (first and second) order approximations, derived for different44

scale-relations between the size of the hairs and the size of the periodicity.45

Similar results for elliptic equations and variational inequalities were obtained46

in [14, 15, 16] using the monotonicity of the nonlinear function in the boundary47

conditions and a variational inequality approach. The construction of correctors near48

surfaces of very small holes was considered in [6, 9] to derive macroscopic equations49

for linear elliptic problems with zero Dirichlet and given Robin boundary conditions.50

The extension of the periodic unfolding method to domains with very small holes51

was introduced in [5] to analyze linear wave and heat equations posed in periodically52

perforated domains with small holes and Dirichlet conditions on the boundary of the53

holes.54

The paper is organized as follows. In Section 2 we formulate a model for nutrient55

uptake by plant roots and root hairs. In Section 3 we derive macroscopic equations56

and equations for the first- and second-order correctors, for different scale-relations57

between the radius of root hairs and the distance between them, by using formal58

asymptotic expansions. The proof of the convergence of a sequence of solutions of59

the multiscale problem to those of the macroscopic equations via the construction of60

corresponding microscopic correctors is given in Section 4. The linear and nonlinear61

Robin boundary conditions depending on solution of the microscopic problem con-62

sidered in this manuscript require new ideas in the construction of the corresponding63

correctors. Numerical simulations of both multiscale and macroscopic problems are64

presented in Section 5 and we conclude in Section 6 with a brief discussion.65

2. Formulation of the problem. We consider diffusion of nutrients in a do-66

main around a plant root and its uptake by root hairs and through the root surface.67

The representative length of the root is chosen to be R = 1 cm and the model is68

subsequently formulated in dimensionless terms (see the Supplementary materials for69

comments on the non-dimensionalization and on parameter values). The root surface70

is treated as planar, which approximates the actual (curved) geometry well enough,71

provided that the distance between hairs measured at the root surface is comparable72

to the distance between hair tips, as discussed in [20]. A generalization that addresses73

root curvature is investigated in [18].74

Consider a domain Ω = G× (0,M) around a single plant root, with M > 0 being
representative of the half-distance between neighboring roots, where the Lipschitz
domain G ⊂ R2 represents the part of the root surface under consideration. We
assume that the root hairs are circular cylinders (of dimensionless length L, with
L < M , and radius rε) orthogonal to the (planar) root surface, on which they are
periodically distributed, see Figure 1a. A single root hair can be described as

Brε × (0, L), where Brε = {(x1, x2) ∈ R2 : x2
1 + x2

2 < r2
ε}.

Denoting by Y = (−1/2, 1/2)2 the unit cell, and taking ε to be the small parameter
(the representative distance between the root hairs being small compared to the root
length), the set of root hairs belonging to the root surface can be written as

Ωε1,L =
⋃
ξ∈Ξε

(Brε + εξ)× (0, L), with Ξε = {ξ ∈ Z2 : ε(Y + ξ) ⊂ G},
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Fig. 1: Problem geometry

i.e. we only include the root hairs whose base is fully contained in G. The solution75

domain is then defined by Ωε = Ω \ Ωε1,L.76

We assume the root hairs to be sparsely distributed, i.e. rε � ε � 1, define
aε = rε/ε � 1, and assume that M = O(1) and L = O(1). The surfaces of the root
hairs are given by

Γε =
⋃
ξ∈Ξε

(∂Brε + εξ)× (0, L).

We shall also use the notation ΩL = G × (0, L) corresponding to the range of x377

occupied by root hairs.78

Outside the root hairs we consider the diffusion of nutrients79

(2.1) ∂tuε = ∇ · (Du∇uε) in Ωε, t > 0,80

with constant (dimensionless) diffusion coefficient Du > 0, and assume that nutrients81

are taken up on the root surface according to82

(2.2) Du∇uε · n = −β uε on ΓεR, t > 0,83

where ΓεR = Ωε ∩ {x3 = 0} defines the surface of the root (excluding the root hairs)1,84

and on the surfaces of the root hairs85

(2.3) Du∇uε · n = −εK(aε) g(uε) on Γε, t > 0,86

where n denotes the outer-pointing unit normal vector to ∂Ωε, β ≥ 0 is an uptake87

rate, g(η) is smooth (continuously differentiable) and monotone non-decreasing for88

η ∈ [−ς̃ ,∞), with some ς̃ > 0, and g(η) = g1(η) + g2(η), where g1(η) ≥ 0 for η ≥ 0,89

with g1(0) = 0, and g2 is sublinear, with g2(0) ≤ 0. The monotonicity of g ensures90

existence of a unique solution h of h + σg(h) = ζ, with ζ ≥ 0 and σ > 0, important91

for the derivation of macroscopic equations for (2.1)-(2.3), (2.6), (2.7). In Section 592

we will consider the Michaelis-Menten type function93

(2.4) g(u) =
u

1 + u
,94

1Even though the analysis for a nonlinear boundary condition would be straightforward, we
consider linear uptake here, as the emphasis will be on the derivation of sink terms resulting from
the boundary conditions applied on the hair surfaces, which often are dominant in nutrient uptake.
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4 J. KING, J. KÖRY, AND M. PTASHNYK

often used in modelling uptake processes by plant roots, e.g. [8, 11], for which all95

of the above assumptions are satisfied, with g2 ≡ 0. The scaling factor K(aε)96

in (2.3) is set to be97

(2.5) K(aε) =
κ

aε
,98

with some positive constant κ = O(1) (see the Supplementary materials for the jus-99

tification of this scaling). On other parts of the boundary ∂Ωε we consider100

(2.6) Du∇uε · n = 0 on ∂Ωε \ (Γε ∪ ΓεR), t > 0.101

The initial nutrient concentration is given by102

(2.7) uε(0, x) = uin(x) for x ∈ Ωε,103

where we assume that uin ∈ H2(Ω) and 0 ≤ uin(x) ≤ umax for x ∈ Ω.104

First we consider the definition of a weak solution of (2.1)–(2.3), (2.6), and (2.7).105

We shall use the notations ΩεT = (0, T )×Ωε, ΓεT = (0, T )×Γε, and ΓεR,T = (0, T )×ΓεR.106

Definition 2.1. A weak solution of problem (2.1)–(2.3), (2.6), (2.7) is a function107

uε ∈ L2(0, T ;H1(Ωε)), with ∂tuε ∈ L2((0, T )× Ωε), satisfying108

(2.8)

∫
ΩεT

(
∂tuεφ+Du∇uε · ∇φ

)
dxdt = −ε

∫
ΓεT

κ

aε
g(uε)φdγ

εdt−
∫

ΓεR,T

β uεφdγ
εdt109

for φ ∈ L2(0, T ;H1(Ωε)) and uε(t)→ uin in L2(Ωε) as t→ 0.110

Standard results for parabolic equations, together with the above assumptions on g,111

ensure the existence of a unique weak solution of problem (2.1)–(2.3), (2.6), (2.7) for112

any fixed ε > 0, see e.g. [19, 21].113

3. Derivation of the macroscopic equations using the method of formal114

asymptotic expansions. To derive the macroscopic equations from the multiscale115

problem (2.1)–(2.3), (2.6), (2.7) we first apply the method of the formal asymptotic116

expansions. We shall consider different scalings for aε and derive equations for zero,117

first and second orders of approximation for solutions. Apart from the macroscopic118

variables x = (x1, x2, x3), we further introduce y = (y1, y2) = (x1/ε, x2/ε) and z =119

(z1, z2) = (x1/rε, x2/rε) = (y1/aε, y2/aε). Since there is no microscopic variation120

in the x3 direction, we do not include any dependence on y3 (or z3). Notice that121

due to the assumed scale separation between the radius of the root hairs and the122

distance between them, three scales are present: an inner microscopic scale, ‖z‖ =123 √
z2

1 + z2
2 = O(1), corresponding to the radius of root hairs, an outer microscopic124

scale, ‖y‖ = O(1), given by the distance between them and a macroscopic scale,125

‖x‖ = O(1), corresponding to a representative length of a plant root (for simplicity,126

we assume that the typical distance between two neighboring roots is of the same127

order as the representative root length).128

In the derivation of macroscopic equations we consider two cases. In the first, we129

take the limits in the order ε→ 0 then aε → 0, with no relationship assumed between130

these two parameters and, in the second, we study a distinguished limit motivated by131

the analysis in the first section. Note that in the first case, instead of aε, we suppress132

the subscript to recall that a and ε are independent small parameters therein.133

This manuscript is for review purposes only.



NONSTANDARD SCALING 5

3.1. Derivation of the macroscopic equations in the case of complete134

scale separation between ε and a. In this section, we assume complete scale135

separation between ε and a (i.e. we take the limit ε → 0 followed by a → 0). We136

adopt the ansatz137

(3.1) uε(t, x, a) = u0(t, x, x̂/ε, a) + εu1(t, x, x̂/ε, a) + ε2u2(t, x, x̂/ε, a) + · · · ,138

for x ∈ ΩL, t > 0, x̂ = (x1, x2), and uj(t, x, ·, a) being Y -periodic (cf. [3, 17]). We first139

fix 0 < a < 1/2, then perform a separate a→ 0 analysis at each order in ε. Note that140

for the simplicity of presentation, we will consider linear boundary condition in (2.3),141

i.e. g(u) = u; the same calculations have also been performed for a nonlinear function142

g(u) by Taylor expanding of g(u) about u0 (see the Supplementary materials).143

3.1.1. a = O(1). Even though this problem has already been analyzed in [20, 29],144

to set up for the sublimit a→ 0 in the next section, we briefly recall the main outcomes145

of this analysis. The terms of order ε−2 in (2.1) and of order ε−1 in (2.3) yield146

(3.2) ∇y · (Du∇yu0) = 0 in Ya, Du∇yu0 · n̂ = 0 on Γa, u0 is Y -periodic,147

where Ya = Y \ Ba, Γa = ∂Ba. The existence and uniqueness theory for linear ellip-148

tic equations with zero-flux and periodic boundary conditions implies that solutions149

of (3.2) are independent of y, i.e. u0 = u0(t, x, a). For the terms of order ε−1 in (2.1)150

and of order ε0 in (2.3) we then have151

(3.3) ∇y · (Du∇yu1) = 0 in Ya, Du∇yu1 · n̂ = −Du∇x̂u0 · n̂ on Γa,152

and u1 is Y -periodic, where x̂ = (x1, x2). The solution reads153

(3.4) u1(t, x, y, a) = U1(t, x, a) +∇x̂u0(t, x, a) · ν(y, a),154

where U1 consists of contributions to u1 that do not depend on the microscale and155

the vector function ν(y, a) = (ν1(y, a), ν2(y, a)) is a solution of156

(3.5) ∇y · (Du∇yν) = 0 in Ya, ∇yν · n̂ = −n̂ on Γa, ν is Y -periodic.157

Finally, collecting the terms of order ε0 in (2.1) and of order ε in (2.3) yields158

∇y · (Du∇yu2)= ∂tu0 −∇x · (Du∇xu0)−∇x̂ · (Du∇yu1)−∇y · (Du∇x̂u1) in Ya,159

Du∇yu2 · n̂ = −K(a)u0 −Du∇x̂u1 · n̂ on Γa.(3.6)160

Integrating (3.6) over Ya and using the divergence theorem (for more details see [18])161

gives as the leading-order macroscale problem162

(3.7) ∂tu0 = ∇x · (DuDeff(a)∇xu0)− 2πaK(a)

1− πa2
u0,163

where Deff(a) = I +B(a)/(1− πa2), I is the identity matrix and164

(3.8) B(a) =


∫
Ya

∂ν1(y,a)
∂y1

dy 0 0

0
∫
Ya

∂ν2(y,a)
∂y2

dy 0

0 0 0

 .165
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6 J. KING, J. KÖRY, AND M. PTASHNYK

3.1.2. a � 1. Now, we analyze (3.5) and (3.7) in the limit a → 0. Because of166

the large scale difference between the periodicity of the microscopic structure and the167

radius of the root hairs, in the analysis of the asymptotic behavior of the solution168

we can distinguish between the behavior in a region characterized by ‖z‖ = O(1),169

which will correspond to an inner solution (denoted using a superscript I) and the170

behavior in a region characterized by ‖y‖ = O(1), corresponding to an outer solution171

(denoted using a superscript O), see [18] for more details. Thus each term in (3.1)172

requires its inner and outer analysis, some of which will involve expanding in δ =173

1/ ln(a−1) � 1. These logarithmic relationships arise due to the two-dimensional174

microstructure, reflecting the fact that the Green function of the Laplace operator in175

R2 is proportional to ln(r), as will become obvious at O(ε2). Note that for any n ≥ 2,176

we have177

· · · � εn � · · · � ε� · · · � an � · · · � a� · · · � δn � · · · � δ = 1/ ln(a−1)� 1,178

due to the assumption of the complete scale separation between a and ε. We expand179

(3.9) u0(t, x, δ) = u0,0(t, x) + o(1).180

The macroscopic behaviour of u0,0 will be determined via Fredholm alternative at181

O(ε2) (see (3.23)). Proceeding to O(ε), we should not aim to satisfy the boundary182

condition from (3.5) on Γa in the ‖y‖ = O(1) region (this part of the boundary183

degenerates to a point in the limit a→ 0) and we have an expansion184

(3.10) νO(y, a) = νO0 (y) + aνO1 (y) + · · · ,185

with νOi being Y -periodic and satisfying Laplace’s equation. Setting z = y/a in (3.5)186

yields187

(3.11) ∇z · (Du∇zν) = 0 in Y1/a, ∇zν · n̂ = −an̂ on ∂B1,188

where Y1/a = a−1Y \B1. This suggests an inner expansion of the form189

(3.12) νI(z, a) = νI0(z) + aνI1(z) + · · · .190

It follows that νI0 is independent of z and191

(3.13) νI1(z) = −
[
α
(
r +

1

r

)
+ r
] (z1, z2)

r
,192

where r = ‖z‖, and α = −1 is required to match with the outer region. Hence193

(3.14) νI1(z) =
(z1, z2)

‖z‖2
.194

To match the inner νI and outer νO, (3.10) has to contain terms of the form

a
(z1, z2)

‖z‖2
= a2 (y1, y2)

‖y‖2

as ‖y‖ → 0. Noting that the solution of

∆yv(y) = 2π∇yδ(y), v is Y -periodic,
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where δ(y) is the Dirac delta, has the behavior

v(y) ∼ (y1, y2)T

‖y‖2
as ‖y‖ → 0,

we infer that νO2 = v. In order to uncover the effective behavior at the macroscale,195

we need to analyze (3.6) in the inner and outer regions and matching between these196

will eventually lead us to the homogenized equation (3.23). Using the information on197

the inner and outer behavior of u1, see (3.4) and (3.14), problem (3.6) becomes198

∇y · (Du∇yu2) = ∂tu0 −∇x · (Du∇xu0) +O(a) in Ya,

Du∇yu2 · n̂ = −K(a)u0 −Du∇x̂ (U1 +∇x̂u0 · ν) · n̂ on Γa.
(3.15)199

Rescaling by z = y/a and using (2.5), we obtain200

∇z · (Du∇zu2) = O(a2) in Y1/a,

Du∇zu2 · n̂ =− κu0 +O(a) on ∂B1,
201

Recalling (3.9), we infer the following ansatz for u2202

(3.16) u2(t, x, y, δ) = U2(t, x, δ) + u0(t, x, δ)ψ(y, δ),203

where the inner (z = y/a = O(1)) expansion for ψ reads204

(3.17) ψI(z, δ) = ψI0(z) +O(δ)205

and at the leading order we get206

(3.18) ∇z · (Du∇zψI0) = 0 in Y∞, Du∇zψI0 · n̂ = −κ on ∂B1,207

where Y∞ = R2 \B1, the solution of which reads208

(3.19) ψI0(z) = (κ/Du) ln (‖z‖).209

Rewriting this in the outer variables y, we obtain210

(3.20) (κ/Du)
(

ln (‖y‖) + δ−1
)
.211

In the ‖y‖ = O(1) region, the ansatz (3.16) (rescaled to y variables) together with212

(3.20) results in an outer expansion for ψ of the form213

(3.21) ψO(y, δ) = ψO−1(y)δ−1 + ψO0 (y) +O(δ),214

which means that the substitution of (3.16) into (3.15) gives at the leading order215

(3.22) ∇y · (Du∇yψO−1) = 0 in Y, ψO−1 is Y -periodic216

implying that ψO−1 is independent of y. At the next order in the outer expansion, we217

need to capture the logarithmic contribution from (3.20) (required for matching with218

the inner solution), and we thus conclude219

u0,0∇y · (Du∇yψO0 ) = ∂tu0,0 −∇x · (Du∇xu0,0)− 2πκu0,0 δ(y) in Y,

ψO0 is Y -periodic.
220

This manuscript is for review purposes only.



8 J. KING, J. KÖRY, AND M. PTASHNYK

Due to the Fredholm alternative this problem admits a solution if and only if221

(3.23) ∂tu0,0 = ∇x · (Du∇xu0,0)− 2πκu0,0 for x ∈ ΩL, t > 0.222

We have thus obtained an outer approximation223

uε =
[
u0,0(t, x) + · · ·

]
+ ε
[
U1,0(t, x) + νO0 (y) · ∇x̂u0,0(t, x) + · · ·

]
224

+ε2
[
U2,0(t, x) + δ−1u0,0(t, x)ψO−1(y) + · · ·

]
+ · · · .(3.24)225

Note as a consistency check that we could have also arrived at (3.23) more directly via226

the a → 0 limit in (3.7) (for details, see section 4.2 in [18]). However, in general, as227

we have δ−1 � 1, the ε2δ−1 term could be promoted to O(ε) or even O(1), depending228

on the specified limit behavior of δ with respect to ε → 0, thereby identifying the229

distinguished limit that we consider below.230

3.2. Derivation of macroscopic equations: distinguished limit. In the231

asymptotic analysis in Section 3.1 we first took the limit ε → 0, and then aε → 0.232

Motivated by the ε2δ−1 term (with δ−1 = ln(1/aε)) from (3.24), in this section we233

consider the situation where ε and ln(1/aε) are dependent and analyze two cases,234

ε ln(1/aε) = O(1) (section 3.2.1) and ε2 ln(1/aε) = O(1) (section 3.2.2). Note that235

even though the case ε ln(1/aε) = O(1) does not give us a distinguished limit, the236

O(ε) balance changes and thus this case is still worth studying. In both cases we set237

K(aε) = κ/aε and use the formal asymptotic expansion238

(3.25) u(t, x, ε) = u0(t, x, x̂/ε) + εu1(t, x, x̂/ε) + ε2u2(t, x, x̂/ε) + ε3u3(t, x, x̂/ε) + · · ·239

to derive the macroscopic equations, uj being Y -periodic with respect to the outer240

microscopic variables y = x̂/ε. The convergence of solutions of the multiscale prob-241

lems to solutions of the derived macroscopic equations will subsequently be confirmed242

via rigorous analysis in Section 4 and numerical simulations in Section 5.243

We consider a linear function g(u) = u in the boundary condition (2.3), the244

details on derivation of the macroscopic equations for nonlinear boundary conditions245

are given in the Supplementary materials. In the next two subsections, λ is an O(1)246

quantity, with a different meaning in each subsection.247

3.2.1. Derivation of macroscopic equations in the case ε ln(1/aε) = λ.248

Observe first that the ε2δ−1 term from (3.24) becomes O(ε) here and therefore we do249

not expect it to impact on the leading order. The ansatz (3.25) yields250

(3.26)
∂t(u0 + εu1 + · · · ) =

( 1

ε2
A0 +

1

ε
A1 +A2

)
(u0 + εu1 + · · · ) in ΩL × Yaε ,

Du

(1

ε
∇y +∇x̂

)
(u0 + εu1 + · · · ) · n̂ = −κ eλε ε(u0 + εu1 + · · · ) on ΩL × Γaε ,

251

where252

A0v ≡ ∇y · (Du∇yv), A1v ≡ ∇y · (Du∇x̂v) +∇x̂ · (Du∇yv), A2v ≡ ∇x · (Du∇xv).253

On the root surface we have

Du

(1

ε
∇y +∇x

)
(u0 +εu1 +ε2u2 + · · · ) ·n = −β (u0 + εu1 + · · · ) on

{
x3 = 0

}
×Yaε .
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As in Section 3.1 we analyze the behavior of solutions for ‖z‖ = O(1) and ‖y‖ = O(1)254

successively. The scaling z = y/aε = y eλ/ε implies255

(3.27)
∂tu0 + ε∂tu1 + · · · =

(e 2λ
ε

ε2
B0 +

e
λ
ε

ε
B1 +A2

)
(u0 + εu1 + · · · ) in ΩL × Y1/aε ,

Du

(eλε
ε
∇z +∇x̂

)
(u0 + εu1 + · · · ) · n̂ = −κ εeλε (u0 + εu1 + · · · ) on ΩL × ∂B1,

256

where257

(3.28) B0v ≡ ∇z · (Du∇zv), B1v ≡ ∇z · (Du∇x̂v) +∇x̂ · (Du∇zv).258

The inner approximations satisfy259

(3.29)
∇z · (Du∇zuIj ) = 0 in Y∞, Du∇zuIj · n̂ = 0 on ∂B1, j = 0, 1,

∇z · (Du∇zuIj ) = 0 in Y∞, Du∇zuIj · n̂ = −κuIj−2 on ∂B1, j = 2, 3, 4,
260

which imply261

(3.30)

uI0(t, x, z) = uI0(t, x), uI1(t, x, z) = uI1(t, x),

uIj (t, x, z) =
κ

Du
uIj−2(t, x) ln (‖z‖) + U Ij (t, x), for j = 2, 3,

uI4(t, x, z) =
κ

Du
U I2 (t, x) ln (‖z‖) + U I4 (t, x).

262

Note that in this section we expand up to O(ε4), because we wish to find a two-263

scale approximation valid up to O(ε2) and compare it with full-geometry numerical264

simulation results in Section 5. The outer approximations satisfy265

(3.31) ∇y · (Du∇yuO0 ) = 0 in Y, uO0 Y − periodic,266

so uO0 (t, x, y) = uO0 (t, x) and therefore uO1 (t, x, y) = uO1 (t, x) holds similarly. Since in
the outer microscopic variables we have

uI2(t, x, z) =
κ

Du

[
uI0(t, x) ln (‖y‖) + uI0(t, x)

λ

ε

]
+ U I2 (t, x),

to match logarithmic terms in outer and inner approximations we consider267

(3.32) ∇y · (Du∇yuO2 ) = ∂tu
O
0 −∇x · (Du∇xuO0 ) + 2πκuI0 δ(y) in Y268

and uO2 is Y -periodic. The solvability condition for (3.32) yields269

(3.33) ∂tu
O
0 = ∇x · (Du∇xuO0 )− 2πκuI0 for x ∈ ΩL, t > 0,270

and substituting this result into (3.32) gives271

(3.34) ∇y · (Du∇yuO2 ) = 2πκ
(
δ(y)− 1

)
uI0 in Y.272

Therefore273

(3.35) uO2 (t, x, y) = UO2 (t, x) + 2π(κ/Du)uI0(t, x)ψ(y) for x ∈ ΩL, t > 0,274
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where ψ(y) is a solution (unique up to a constant) of275

(3.36) ∆yψ = δ(y)− 1 in Y, ψ Y -periodic.276

For similar reasons277

(3.37)
∇y · (Du∇yuO3 ) + 4πκ∇yψ · ∇x̂uI0

= ∂tu
O
1 −∇x · (Du∇xuO1 ) + 2πκuI1δ(y) in Y

278

and uO3 is Y -periodic. Due to the periodicity conditions imposed on ψ, we conclude279

(3.38) ∂tu
O
1 = ∇x · (Du∇xuO1 )− 2πκuI1 for x ∈ ΩL, t > 0.280

At the next order, we obtain281

(3.39)
∇y · (Du∇yuO4 ) +∇y · (Du∇x̂uO3 ) +∇x̂ · (Du∇yuO3 )

= ∂tU
O
2 −∇x · (Du∇xUO2 ) + 2π

κ

Du

[
∂tu

I
0 −∇x · (Du∇xuI0)

]
ψ(y),

282

and uO4 is Y -periodic, and to match the contribution from the inner solution we require283

∇y · (Du∇yuO4 ) +∇y · (Du∇x̂uO3 ) +∇x̂ · (Du∇yuO3 ) = ∂tU
O
2 −∇x · (Du∇xUO2 )284

+2π(κ/Du)
[
∂tu

I
0 −∇x · (Du∇xuI0)

]
ψ(y) + 2πκU I2 δ(y) in Y.(3.40)285

The solvability of (3.40) implies286

(3.41) ∂tU
O
2 = ∇x · (Du∇xUO2 )− 2π

κ

Du

[
∂tu

I
0−∇x · (Du∇xuI0)

]
−
∫
Y

ψ(y)dy− 2πκU I2 ,287

in ΩL and for t > 0. Thus we obtain the outer approximation288

(3.42) uO0 (t, x) + εuO1 (t, x) + ε2
(
UO2 (t, x) + 2π(κ/Du)uI0(t, x)ψ(y)

)
+ · · · ,289

and the inner approximation290

(3.43)
uI0(t, x) + εuI1(t, x) + ε2U I2 (t, x) + ε2(κ/Du)uI0(t, x) ln (‖z‖) + ε3U I3 (t, x)

+ ε3(κ/Du)uI1(t, x) ln (‖z‖) + ε4U I4 (t, x) + ε4(κ/Du)U I2 (t, x) ln (‖z‖) + · · · .
291

Writing the latter in terms of the outer microscopic variables y = aεz gives292

(3.44)

uI0(t, x) + ε
(
uI1(t, x) + λ

κ

Du
uI0(t, x)

)
+ ε2

(
U I2 (t, x) + λ

κ

Du
uI1(t, x) +

κ

Du
uI0(t, x) ln (‖y‖)

)
+ · · ·

293

Comparing (3.42) with (3.44) at O(1) and O(ε) yields matching conditions294

(3.45)
uO0 (t, x) = uI0(t, x) = u0(t, x),

uO1 (t, x) = uI1(t, x) + λ(κ/Du)uI0(t, x) = uI1(t, x) + λ(κ/Du)u0(t, x).
295

Matching the inner and outer solutions at O(ε2) yields296

(3.46) UO2 (t, x) = U I2 (t, x) + λ
κ

Du

[
uO1 (t, x)− λ κ

Du
u0(t, x)

]
,297
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where we have fixed the degree of freedom in the ψ, satisfying (3.36), by setting298

(3.47) lim
y→0

{
2πψ(y)− ln (‖y‖)

}
= 0.299

Since there are no root hairs in Ω\ΩL, in this part of the domain the macroscopic300

problem is given by the original equations. Thus, due to the continuity of concentra-301

tion and fluxes on the interface ∂ΩL \∂Ω between the domain with root hairs and the302

domain without, we substitute (3.45) into (3.33) and obtain the macroscopic problem303

(3.48)

∂tu0 = ∇x · (Du∇xu0)− 2πκu0 χΩL in Ω, t > 0,

u0(0, x) = uin(x) in Ω,

Du∇xu0 · n = 0 on ∂Ω \ ΓR, t > 0,

Du∇xu0 · n = −βu0 on ΓR, t > 0,

304

where ΓR = Ω ∩ {x3 = 0} and χΩL denotes the characteristic (or indicator) function305

of set ΩL. Notice that we obtain the same macroscopic equation as for u0,0 in (3.23).306

This is because with ε ln(1/aε) = O(1), the term ε2δ−1u0,0(t, x)ψO−1 from (3.24) is307

promoted to O(ε) but does not affect the leading order.308

Substituting the second relation in (3.45) into (3.38) implies the following problem309

for the first order term u1(t, x) = uO1 (t, x):310

(3.49)

∂tu1 = ∇x · (Du∇xu1)− 2πκ
{
u1 − λ(κ/Du)u0

}
in ΩL, t > 0,

u1(0, x) = 0 in ΩL,

Du∇xu1 · n = 0 on ∂ΩL \ ΓR, t > 0,

Du∇xu1 · n = −βu1 on ΓR, t > 0.

311

Finally, we substitute (3.46) into (3.41) and obtain312

(3.50)

∂tU
O
2 = ∇x · (Du∇xUO2 ) + 4π2 κ

2

Du
u0−
∫
Y

ψ(y)dy

− 2πκ
(
UO2 − λ

κ

Du

[
u1(t, x)− λ κ

Du
u0(t, x)

])
in ΩL, t > 0,

UO2 (0, x) = −2π(κ/Du)uin(x)−
∫
Y

ψ(y)dy in ΩL,

Du∇xUO2 · n = −2πκ∇xu0 · n−
∫
Y

ψ(y)dy on ∂ΩL \ ∂Ω,

Du∇xUO2 · n = −βUO2 on ΓR,

Du∇xUO2 · n = 0 on (∂ΩL ∩ ∂Ω) \ ΓR.

313

Then314

(3.51) u2(t, x, y) = UO2 (t, x) + 2π(κ/Du)u0(t, x)ψ(y),315

where ψ is the solution of the ‘unit cell’ problem (3.36) satisfying (3.47).316

For the nonlinear boundary condition (2.3) on the surfaces of root hairs, together317

with the scaling assumption (2.5), we follow the same calculations as above and obtain318

(3.52)

∂tu0 = ∇x · (Du∇xu0)− 2πκ g(u0)χΩL in Ω, t > 0,

u0(0, x) = uin(x) in Ω,

Du∇xu0 · n = 0 on ∂Ω \ ΓR, t > 0,

Du∇xu0 · n = −βu0 on ΓR, t > 0,

319
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see the Supplementary materials for the derivation. Equations for higher order ap-320

proximations can be obtained in the same way as in the case of linear boundary321

conditions on the hair surfaces.322

3.2.2. Derivation of macroscopic equations in the case ε2 ln(1/aε) = λ.323

The relation ε2 ln(1/aε) = λ is equivalent to aε = e−λ/ε
2

. The formal asymptotic324

expansion (3.25) used in equations (2.1)–(2.3) yields325

∂tu0 + ε∂tu1 + · · · =
[ 1

ε2
A0 +

1

ε
A1 +A2

]
(u0 + εu1 + · · · ) in ΩL × Yaε ,(3.53)326 [1

ε
Du∇y +Du∇x̂

]
(u0 + εu1 + · · · ) · n̂ = −κe

λ
ε2 ε (u0 + εu1 + · · · ) on ΩL × Γaε .327

The rescaling z = y/aε implies328

∂t(u0 + εu1 + · · · ) =
[e2λ/ε2

ε2
B0 +

eλ/ε
2

ε
B1 +A2

]
(u0 + εu1 + · · · ) in ΩL × Y1/aε ,329 [

e
λ
ε2 ε−1Du∇z +Du∇x̂

]
(u0 + εu1 + · · · ) · n̂(3.54)330

= −ε κ e
λ
ε2 (u0 + εu1 + · · · ) on ΩL × ∂B1.331

Then for the inner approximation we again obtain (3.29). Following the same calcu-332

lations as in subsection 3.2.1, we obtain the outer approximation (3.42) and the inner333

approximation (3.43); writing the latter in terms of the outer variables y yields334

(3.55)

(
uI0(t, x) + λ

κ

Du
uI0(t, x)

)
+ ε
(
uI1(t, x) + λ

κ

Du
uI1(t, x)

)
+ ε2

( κ

Du
uI0(t, x) ln (‖y‖) + U I2 (t, x) + λ

κ

Du
U I2 (t, x)

)
+ · · · .

335

Matching (3.42) to (3.55) at O(1) gives336

(3.56) uO0 (t, x) = (1 + λκ/Du)uI0(t, x).337

Substituting (3.56) into (3.33) yields the macroscopic problem for u0(t, x) = uO0 (t, x):338

(3.57)

∂tu0 = ∇x · (Du∇xu0)− 2πκ

1 + λκ/Du
u0 χΩL in Ω, t > 0,

u0(0, x) = uin(x) in Ω,

Du∇xu0 · n = −βu0 on ΓR, t > 0,

Du∇xu0 · n = 0 on ∂Ω \ ΓR, t > 0.

339

Notice that (3.57) differs from the macroscopic equation in (3.23), because the term340

ε2δ−1u0,0(t, x)ψO−1 from (3.24) becomes O(1) with the present scaling; for λ = 0 we341

recover equation (3.23), as expected.342

Comparing (3.42) with (3.55) at O(ε) gives343

(3.58) uO1 (t, x) = (1 + λκ/Du)uI1(t, x).344

Substituting (3.58) into (3.38) implies that u1(t, x) = uO1 (t, x) satisfies:345

(3.59)

∂tu1 = ∇x · (Du∇xu1)− 2πκ

1 + λκ/Du
u1 in ΩL, t > 0,

u1(0, x) = 0 in ΩL,

Du∇xu1 · n = −βu1 on ΓR, t > 0,

Du∇xu1 · n = 0 on ∂ΩL \ ΓR, t > 0,

346
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and we see that u1(t, x) = 0 (for all t > 0 and x ∈ ΩL) solves this problem. Similarly,347

(3.60) UO2 (t, x) = (1 + λκ/Du)U I2 (t, x),348

together with condition (3.47) on function ψ. Using (3.60) in equation (3.41) yields349

∂tU
O
2 =∇x · (Du∇xUO2 ) +

κ

Du

4π2κu0

(1 + λ(κ/Du))2
−
∫
Y

ψ(y)dy − 2πκ

1 + λ(κ/Du)
UO2 in ΩL,350

UO2 (0, x) = − 2π(κ/Du)

1 + λ(κ/Du)
uin(x)−

∫
Y

ψ(y)dy in ΩL,351

Du∇xUO2 · n = − 2πκ

1 + λ(κ/Du)
∇xu0 · n−

∫
Y

ψ(y)dy on ∂ΩL \ ∂Ω,(3.61)352

Du∇xUO2 · n = −βUO2 on ΓR, Du∇xUO2 · n = 0 on (∂ΩL ∩ ∂Ω) \ ΓR,353

for t > 0. Hence for u2(t, x, y) = uO2 (t, x, y) we obtain354

(3.62) u2(t, x, y) = UO2 (t, x) +
2πκ/Du

1 + λκ/Du
u0(t, x)ψ(y),355

where ψ is the solution of ‘unit cell’ problem (3.36) satisfying (3.47).356

For the nonlinear boundary condition (2.3) (with the scaling assumption (2.5)),357

using the Taylor expansion of g(uε) and following the same procedure as above gives358

(3.63)

∂tu0 = ∇x · (Du∇xu0)− 2πκ g(h(u0))χΩL in Ω, t > 0,

Du∇xu0 · n = −βu0 on ΓR, t > 0

Du∇xu0 · n = 0 on ∂Ω \ ΓR, t > 0,

u0(0, x) = uin(x) in Ω,

359

where h = h(u0) is the solution of u0 = h + λ (κ/Du)g(h), see the Supplementary360

materials for the derivation. Similar result for an elliptic problem is obtained in [14,361

15, 16]. Note that by choosing g(u) = u we recover the effective equation from (3.57).362

Assuming boundary condition (2.4), we obtain the effective equation363

(3.64) ∂tu0 = ∇x · (Du∇xu0)− 2πκ

[√
(u0 − κ̃− 1)2 + 4u0 + u0 − κ̃− 1

]
2 +

[√
(u0 − κ̃− 1)2 + 4u0 + u0 − κ̃− 1

]χΩL ,364

for x ∈ Ω, t > 0, and κ̃ = λκ/Du (see the Supplementary materials for the derivation).365

4. Rigorous derivation of macroscopic equations. In this section we give a366

rigorous derivation of the macroscopic equations for (2.1)–(2.3), (2.6), (2.7). To prove367

the convergence of solutions of multiscale problem to the solution of the corresponding368

macroscopic equations we first derive a priori estimates for uε, uniform in ε. Due to369

the non-standard scale-relation between the size and the period of the microscopic370

structure considered here, i.e. aε = rε/ε � 1, we need to derive modified trace esti-371

mates and extension results, taking into account the difference in the scales between ε372

and rε. In the derivation of the trace estimates and extension results we follow similar373

ideas as in [9] with small modifications due to the cylindrical microstructure of Ωε.374

We define the following domains, for some 0 < ρ < 1/2,

Ωε0 =
⋃
ξ∈Ξε

ε(Bρ + ξ)× (0, L), Ω̃ε = Ω \ Ωε0, Ω̃εL = ΩL \ Ωε0, ΩεL = Ωε ∩ ΩL,

Γε0 =
⋃
ξ∈Ξε

ε(∂Bρ + ξ)× (0, L), Λε0 =
⋃
ξ∈Ξε

ε(∂Bρ + ξ).
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Lemma 4.1. For v ∈ W 1,p(Ωε), with 1 ≤ p < ∞, we have the following trace375

inequality376

(4.1)
ε2

rε
‖v‖pLp(Γε) ≤ µ

[
‖v‖p

Lp(Ω̃ε)
+ εp‖∇v‖p

Lp(Ω̃ε)

]
, µ- independent of ε, rε.377

Proof. For v ∈W 1,p(Y∗× (0, L)) using a trace inequality [12] in Y∗ = Y \Bρ (and378

an approximation of v by smooth functions) yields379

(4.2)

∫
∂Bρ

|v|pdγŷ ≤ µ1

∫
Y∗

(
|v|p + |∇ŷv|p

)
dŷ,380

with ŷ = (y1, y2) and for a.a. y3 ∈ (0, L). Scaling by rε/ρ in the boundary integral
and by ε in the volume integral in (4.2) we obtain

ρ

rε

∫
∂Brε

|v|pdγ̂ε ≤ µ1
1

ε2

∫
εY∗

(
|v|p + εp|∇x̂v|p

)
dx̂

for x3 ∈ (0, L), where x̂ = (x1, x2), x1 = εy1, x2 = εy2, x3 = y3. Adopting the
changes of variables xj → xj + εξ in the integral over εY∗ and zj → zj + εξ in the
boundary integral, with j = 1, 2, and multiplying by ε2, implies

ε2

rε

∫
∂Brε+εξ

|v|pdγ̂ε ≤ µ2

∫
εY∗+εξ

(
|v|p + εp|∇x̂v|p

)
dx̂.

Integrating the last inequality with respect to x3 over (0, L) and summing up over381

ξ ∈ Ξε imply the estimate (4.1).382

Lemma 4.2 (Extension). For v ∈ H1(Ωε) there exists an extension Pεv ∈ H1(Ω)383

such that384

(4.3) ‖Pεv‖L2(Ω) ≤ µ‖v‖L2(Ωε), ‖∇Pεv‖L2(Ω) ≤ µ‖∇v‖L2(Ωε),385

with a constant µ independent of ε.386

Proof. Consider S̃ = B2ρ, S = S̃ \Bρ, S̃L = S̃ × (0, L), and SL = S × (0, L). By387

a standard extension result for v ∈ H1(S × (0, L)) there exists v̂ ∈ H1(S̃ × (0, L)):388

(4.4)
‖v̂‖L2(S̃×(0,L)) ≤ µ1‖v‖L2(S×(0,L)), ‖∇v̂‖L2(S̃×(0,L)) ≤ µ1‖∇v‖L2(S×(0,L)),

‖∇x̂v̂(·, x3)‖L2(S̃) ≤ µ1‖∇x̂v(·, x3)‖L2(S) for x3 ∈ (0, L) and x̂ = (x1, x2),
389

see e.g. [7]. Then for v ∈ H1(Y ε∗ ), where Y ε∗ = εY \ Brε , consider an extension
Pε : H1(Y ε∗ × (0, L)) → H1(εY × (0, L)) such that Pεv = v in Y ε∗ × (0, L) and
Pεv(x) = v̂(ρx̂/rε, x3) in Brε × (0, L). The estimates (4.4) then give∫

Brε×(0,L)

‖Pεv‖2dx =
r2
ε

ρ2

∫
Bρ×(0,L)

‖Pεv‖2dy ≤
r2
ε

ρ2

∫
S̃L

‖Pεv‖2dy

≤ µ1
r2
ε

ρ2

∫
SL

‖Pεv‖2dy ≤ µ1

∫
rε
ρ S×(0,L)

‖Pεv‖2dx ≤ µ1

∫
Y ε∗ ×(0,L)

‖Pεv‖2dx

and∫
Brε×(0,L)

‖∇x̂Pεv‖2dx = r2
εr
−2
ε

∫
Bρ×(0,L)

‖∇ŷPεv‖2dy ≤
∫
S̃L

‖∇ŷPεv‖2dy

≤ µ1

∫
SL

‖∇ŷPεv‖2dy ≤ µ1

∫
rε
ρ S×(0,L)

‖∇x̂Pεv‖2dx ≤ µ1

∫
Y ε∗ ×(0,L)

‖∇x̂Pεv‖2dx,

This manuscript is for review purposes only.



NONSTANDARD SCALING 15

where the constant µ1 is independent of rε and ε, and xj = (rε/ρ)yj for j = 1, 2,
x3 = y3. For the derivative with respect to x3 we have∫

Brε×(0,L)

‖∂x3
Pεv‖2dx =

r2
ε

ρ2

∫
Bρ×(0,L)

‖∂y3Pεv‖2dy ≤
r2
ε

ρ2

∫
S̃L

‖∂y3Pεv‖2dy

≤ µ1
r2
ε

ρ2

∫
SL

‖∇yPεv‖2dy ≤ µ1

∫
rε
ρ S×(0,L)

‖∇xPεv‖2dx ≤ µ1

∫
Y ε∗ ×(0,L)

‖∇xPεv‖2dx.

Combining the estimates above with the fact that Pεv = v in Y ε∗ × (0, L) yields

‖Pεv‖L2(εY×(0,L)) ≤ µ‖v‖L2(Y ε∗ ×(0,L)), ‖∇Pεv‖L2(εY×(0,L)) ≤ µ‖∇v‖L2(Y ε∗ ×(0,L)).

Considering the last inequalities for Y ε∗ + εξ and summing up over ξ ∈ Ξε imply the390

extension and estimates stated in lemma.391

Lemma 4.3. Assume g is continuously differentiable on [−ς̃ ,∞) for some ς̃ > 0,392

and g(η) = g1(η) + g2(η), where g1(η) ≥ 0 for η ≥ 0, with g1(0) = 0, and g2 is393

sublinear, with g2(0) ≤ 0, initial condition uin ∈ H1(Ω), with 0 ≤ uin ≤ umax,394

K(aε) = κ/aε, with κ > 0, and β ≥ 0. Then solutions uε of (2.1)–(2.3), (2.6), (2.7)395

satisfy the following a priori estimates396

(4.5)

‖uε‖2L∞(0,T ;L2(Ωε)) + ‖∇uε‖2L2((0,T )×Ωε) + β‖uε‖2L2((0,T )×ΓεR)

+
ε2

rε

∫
ΓεT

g1(uε)uε dγ
εdt+ ‖∂tuε‖2L2((0,T )×Ωε) ≤ µ,

‖(uε −Memt)+‖2L2((0,T )×Ωε) ≤ µε,

397

where M,m > 0 and the constant µ is independent of ε and of rε = ε aε.398

Proof. Using assumptions on g and initial data and employing the theorem on399

positive invariant sets, [31, Theorem 2], we obtain uε ≥ 0 in ΩεT . Taking uε as a test400

function in (2.8) and using the nonnegativity of uε and assumptions on g(uε) ensure401

(4.6)

‖uε(s)‖2L2(Ωε) + 2Du‖∇uε‖2L2((0,s)×Ωε) + 2β‖uε‖2L2((0,s)×ΓεR)

+ 2
κε2

rε

∫
Γεs

g1(uε)uε dγ
εdt ≤ µ1

ε2

rε
‖uε‖2L2((0,s)×Γε) + µ2 + ‖uε(0)‖2L2(Ωε),

402

for s ∈ (0, T ]. Notice that if g(η) ≥ 0 for η ≥ 0, i.e. g2 ≡ 0, we have µ1 = µ2 = 0. Then403

using (4.1) with p = 2 and ‖v‖2
L2(Ω̃ε)

≤ ‖v‖2L2(Ωε), applying Gronwall’s inequality, and404

taking supremum over s ∈ (0, T ], yield the first four estimates in (4.5).405

Taking (uε−Memt)+, with M > umax and some m > 0, as a test function in (2.8),
and using assumptions on g and inequality (4.1), with p = 2 and p = 1, yield

‖(uε(s)−Mems)+‖2L2(Ωε) + 2Du‖∇(uε −Memt)+‖2L2(Ωεs)

+ 2m‖Memt(uε −Memt)+‖L1(Ωεs)
≤ µ1‖(1 +Memt)(uε −Memt)+‖L1(Ωεs)

+ µ2‖(uε −Memt)+‖2L2(Ωεs)
+ ε(1 +Mems)

(
µ3‖∇(uε −Memt)+‖2L2(Ωεs)

+ µ4

)
.

Choosing m such that µ1(1 + M) ≤ 2mM and ε such that εµ3(1 + MemT ) ≤ 2Du,406

and applying Gronwall’s inequality imply the last estimate in (4.5).407

Taking ∂tuε as a test function in (2.8) we obtain408

(4.7)

2‖∂tuε‖2L2(Ωεs)
+Du‖∇uε(s)‖2L2(Ωε) + β‖uε(s)‖2L2(ΓεR)

+ 2
κε2

rε

∫
Γε
G1(uε(s)) dγ

ε ≤ µ1
ε2

rε
‖uε(s)‖2L2(Γε) + µ2 + µ3‖uin‖2H1(Ωε),

409
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for s ∈ (0, T ] and G1(η) =
∫ η

0
g1(ξ)dξ for η ≥ 0. Here we used that∫

ΓεR,s

uε ∂tuε dγ
εdt =

1

2

∫
ΓεR

(
|uε(s)|2 − |uε(0)|2

)
dγε,

∫
ΓεR

|uε(0)|2dγε ≤ µ1u
2
max,∫

Γεs

g(uε)∂tuε dγ
εdt =

∫
Γε

[
G(uε(s))−G(uε(0))

]
dγε, where G(η) =

∫ η

0

g(ξ)dξ,

and that g1(η) ≥ 0 implies G1(η) ≥ 0 for η ≥ 0, whereas the sublinearity of g2 yields410

|G2(η)| ≤ µ2(|η|2 + 1), with G2(η) =
∫ η

0
g2(ξ)dξ. Since uin ∈ H1(Ω) is bounded we411

obtain that uin is bounded on Γε and ΓεR and the continuity of g ensures that G(uin)412

is bounded on Γε. Using (4.1) with p = 2, in (4.7) implies the estimate for ∂tuε.413

First we prove convergence of a sequence of solutions of the microscopic problem414

for g(u) = u. The case of a nonlinear function g(u) will be considered in Theorem 4.5.415

Theorem 4.4. Consider K = κ/aε and ε2 ln(1/aε) = λ for some λ > 0, κ > 0,416

β ≥ 0, and initial condition uin ∈ H1(Ω), with 0 ≤ uin ≤ umax. Then a sequence {uε}417

of solutions of (2.1)–(2.3), (2.6), (2.7) converges to a solution u0 ∈ L2(0, T ;H1(Ω))418

of the macroscopic problem (3.57). If K = κ/aε and ε ln(1/aε) = λ for λ > 0,419

then a sequence {uε} of solutions of (2.1)–(2.3), (2.6), (2.7) converges to a solution420

u0 ∈ L2(0, T ;H1(Ω)) of the macroscopic equations (3.48).421

Proof. The a priori estimates (4.5) and extension Lemma 4.2 imply

‖uε‖L2(0,T ;H1(Ω)) + ‖∂tuε‖L2((0,T )×Ω) ≤ µ,
with a constant µ independent of ε, where uε is identified with its extension. Hence422

there exists a function u0 ∈ L2(0, T ;H1(Ω)), with ∂tu0 ∈ L2((0, T )× Ω), such that423

(4.8)
uε ⇀ u0 weakly in L2(0, T ;H1(Ω)), ∂tuε ⇀ ∂tu0 weakly in L2((0, T )× Ω),

uε → u0 strongly in L2(0, T ;Hs(Ω)), for s < 1, (up to a subsequence),
424

where the strong convergence is ensured by the compactness of H1(Ω) ⊂ Hs(Ω)425

for s < 1 and the Aubin-Lions Lemma [22].426

To pass to the limit as ε→ 0 in the weak formulation of (2.1)–(2.3), (2.6), (2.7)427

we need to construct an appropriate corrector to compensate the boundary conditions428

on Γε. Define wε to be the solution of429

(4.9)
∇x̂ · (Du∇x̂wε) = 0 in Bερ \Brε ,
Du∇x̂wε · n̂ = −κ(ε2/rε)w

ε on ∂Brε , wε = 1 on ∂Bερ,
430

where x̂ = (x1, x2), which can be solved explicitly to obtain for x̂ ∈ Bερ \Brε431

(4.10) wε(x̂) =
κε2

Du + κ(λ+ ε2 ln(ρ))
ln
(√

x2
1 + x2

2

)
+
Du + κ(λ− ε2 ln(ε))

Du + κ(λ+ ε2 ln(ρ))
.432

We extend wε in a trivial way to (Bερ \Brε)× (0, L) and denote it by ŵε(x) = wε(x̂).433

Then we extend ŵε(x) periodically with period εY into Ωε ∩ Ωε0 and by 1 into Ω̃ε.434

Using φ = ŵεψ1 + ψ2 as a test function in (2.8), where ψ1 ∈ C1([0, T ];C1(ΩL)),
ψ2 ∈ C1([0, T ];C1(Ω \ ΩL)), with ψ1(t, x̂, L) = ψ2(t, x̂, L) = 0, and extended by zero
into ΩM−L,T = (0, T )× (Ω \ ΩL) and ΩL,T = (0, T )× ΩL respectively, yields∫

ΩεL,T

[
∂tuε ŵ

εψ1 +Du∇uε∇(ŵεψ1)
]
dxdt+

∫
ΓεT

ε2κ

rε
uε ŵ

εψ1dγ
εdt

+

∫
ΓεR,T

βuε ŵ
εψ1dγ

εdt+

∫
ΩM−L,T

[
∂tuεψ2 +Du∇uε∇ψ2

]
dxdt = 0.
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Notice that the assumptions on ψ1 and ψ2 and the construction of ŵε ensure that
φ ∈ L2(0, T ;H1(Ωε)). The second term in the last equality can be rewritten as∫

ΩεL,T

Duŵ
ε∇uε∇ψ1dxdt+

∫
ΩεL,T

Duψ1∇uε∇ŵεdxdt =

∫
ΩεL,T

Duŵ
ε∇uε∇ψ1dxdt

+

∫
Ω̃εL,T

Duψ1∇uε∇ŵεdxdt+

∫
ΓεT

Duuε∇ŵε · nψ1dγ
εdt+

∫
Γε0,T

Duuε∇ŵε · nψ1dγ
εdt

−
∫ T

0

∫
ΩεL\Ω̃εL

[
uε∇ · (Du∇ŵε)ψ1 +Duuε∇ŵε∇ψ1

]
dxdt.

By the definition of ŵε, we have ∇ · (Du∇ŵε) = 0 in ΩεL \ Ω̃εL and ∇ŵε = 0 in Ω̃εL.
The definition of ŵε also implies

‖∇ŵε‖L2(ΩεL) ≤ µ,

with some constant µ independent of ε. Since ŵε is bounded in ΩεL, |ΩL \ ΩεL| → 0

as ε→ 0, and ŵε = 1 in Ω̃εL, we obtain that w̃ε → 1 in L2(ΩL) strongly, where w̃ε is
the extension of ŵε by zero into ΩL \ ΩεL. Thus strong convergence of the extension
of uε in L2((0, T )×Ω) and weak convergence of ∇ŵε ⇀ 0 in L2(ΩL), using the same
notation for ŵε and its extension, ensure

lim
ε→0

∫ T

0

∫
ΩεL\Ω̃εL

Duuε∇ŵε∇ψ1dxdt = 0.

Using ‖∇uε‖L2(ΩT ) ≤ C and |Ω \ Ωε| → 0, w̃ε → 1 in L2(ΩL), as ε→ 0, yields∫
ΩεL,T

[
∂tuεŵ

εψ1 +Duŵ
ε∇uε∇ψ1

]
dxdt→

∫
ΩL,T

[
∂tu0 ψ1 +Du∇u0∇ψ1

]
dxdt,∫

ΩM−L,T

[
∂tuε ψ2 +Du∇uε∇ψ2

]
dxdt→

∫
ΩM−L,T

[
∂tu0 ψ2 +Du∇u0∇ψ2

]
dxdt,∫

ΓεR,T

β uε ŵ
εψ1 dγ

εdt→
∫

ΓR,T

β u0 ψ1 dx̂dt, as ε→ 0,

where the strong convergence of uε in L2(0, T ;Hs(Ω)), for 1
2 < s < 1, ensures its

strong convergence in L2((0, T )× ΓR). Computing ∇ŵε yields

Du∇ŵε · n =
Duκ ε/ρ

Du + κ(λ+ ε2 ln(ρ))
=

κ ε/ρ

1 + (κ/Du)(λ+ ε2 ln(ρ))
on Γε0.

Applying the two-scale convergence on Γε0 = Λε0 × (0, L), with a test function ψ1 ∈435

C1([0, T ];C1(ΩL)), see e.g. [1, 26], and using lim
ε→0

ε‖uε − u0‖2L2(Γε0,T ) = 0, ensured by436

the strong convergence of uε in L2(0, T ;Hs(Ω)) for 1
2 < s < 1, see e.g. [29], yields437

(4.11)

lim
ε→0

∫
Γε0,T

Du∇ŵε · nuε ψ1dγ
εdt = lim

ε→0
ε

∫
Γε0,T

(κ/ρ) (uε − u0)ψ1

1 + (κ/Du)(λ+ ε2 ln(ρ))
dγεdt

+ lim
ε→0

ε

∫ T

0

∫ L

0

∫
Λε0

(κ/ρ)u0 ψ1

1 + (κ/Du)(λ+ ε2 ln(ρ))
dγ̂εdx3dt

=

∫
ΩL,T

∫
∂Bρ

(κ/ρ)u0 ψ1

1 + λ(κ/Du)
dγ̂dxdt =

∫
ΩL,T

2πκu0 ψ1

1 + λ(κ/Du)
dxdt.

438
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Notice that u0 and ψ1 are independent of y ∈ ∂Bρ and the ε-scaling in the boundary439

integrals in (4.11) is essential for the two-scale convergence on oscillating surfaces.440

Using the trace inequality ε‖v‖2L2(Γε0) ≤ µ‖v‖
2
H1(ΩL), see e.g. [29], we have∣∣∣ε∫

Γε0,T

(κ/ρ) (uε − u0)ψ1

1 + (κ/Du)(λ+ ε2 ln(ρ))
dγεdt

∣∣∣ ≤ µ1ε
1
2 ‖uε − u0‖L2(Γε0,T )‖ψ1‖L2(0,T ;H1(ΩL)),

ε
∥∥∥ (κ/ρ)u0

1 + (κ/Du)(λ+ ε2 ln(ρ))

∥∥∥2

L2(Γε0,T )
≤ µ2‖u0‖2L2(0,T ;H1(ΩL)) ≤ µ3,

for 0 < ε ≤ ε0, such that λ+ ε2
0 ln(ρ) > 0 with 0 < ρ < 1/2.441

Combining all the calculations from above, in the limit as ε → 0, we obtain the442

equation and boundary conditions in (3.57). Standard arguments, see e.g. [30], ensure443

that u0 satisfies the initial condition in (3.57) and is a unique solution of (3.57). Hence444

the whole sequence {uε} converges to u0 as ε→ 0.445

If ε ln(1/aε) = λ then the solution of problem (4.9) is given by446

(4.12)

wε(x1, x2) =
κε2

Du + κ(ελ+ ε2 ln(ρ))
ln
(√

x2
1 + x2

2

)
+
Du + κ(ελ− ε2 ln(ε))

Du + κ(ελ+ ε2 ln(ρ))
,

Du∇ŵε · n = ε
κ/ρ

1 + (κ/Du)(ελ+ ε2 ln(ρ))
on Γε0.

447

In this case the boundary integral converges to∫ T

0

∫
Γε0

Du∇ŵε · nuεψ1 dγ
εdt→

∫ T

0

∫
ΩL

2πκu0 ψ1 dxdt as ε→ 0,

and we obtain the macroscopic equation as in (3.48).448

Now we consider the nonlinear condition (2.3) on the boundaries of the microstructure.449

Theorem 4.5. Consider K = κ/aε, for κ > 0, and ε2 ln(1/aε) = λ for some450

λ > 0, let g be continuously differentiable and monotone non-decreasing on [−ς̃ ,∞),451

for some ς̃ > 0, and g(η) = g1(η) + g2(η), where g1(η) ≥ 0 for η ≥ 0, with g1(0) = 0,452

and g2 is sublinear, with g2(0) ≤ 0, initial condition uin ∈ H1(Ω) with 0 ≤ uin ≤ umax,453

and β ≥ 0. Then a sequence {uε} of solutions of (2.1)–(2.3), (2.6), (2.7) converges to454

a solution u0 ∈ L2(0, T ;H1(Ω)) of the macroscopic problem (3.63). If K = κ/aε and455

ε ln(1/aε) = λ for λ > 0 then a sequence {uε} of solutions of (2.1)–(2.3), (2.6), (2.7)456

converges to a solution u0 ∈ L2(0, T ;H1(Ω)) of the macroscopic equations (3.52).457

Proof. In the same way as in the proof of Theorem 4.4, using a priori esti-458

mates (4.5) and extension Lemma 4.2 we obtain following convergence results459

(4.13)
uε ⇀ u0 weakly in L2(0, T ;H1(Ω)), ∂tuε ⇀ ∂tu0 weakly in L2((0, T )× Ω),

uε → u0 strongly in L2(0, T ;Hs(Ω)), for s < 1, (up to a subsequence),
460

where u0 ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)). Since uε ≥ 0 for all ε > 0 we have461

u0 ≥ 0, whereas the last estimate in (4.5), together with the strong convergence of uε,462

implies u0 ∈ L∞((0, T )× Ω).463

As in the proof of Theorem 4.4, the main step is to construct an appropriate464

corrector to pass to the limit in the integral over the boundaries of the microstructure.465

In a similar way as in [14, 16], we define wε to be the solution of466

(4.14) ∆wε = 0 in Bερ \Brε , wε = 1 on ∂Brε , wε = 0 on ∂Bερ.467
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Then we extend wε by 1 into Brε , in a trivial way into the x3-direction for x3 ∈ (0, L),
by wε(x̂)[1+(L−x3)/ε] for x3 ∈ [L,L+ε), and then εY -periodically into Ωε0∪Ωε0,L+ε,

where Ωε0,L+ε =
⋃
ξ∈Ξε ε(Bρ + ξ)× [L,L+ ε), and by 0 into Ω̃εL+ε = Ω̃ε \Ωε0,L+ε. We

denote this extension of wε again by wε. Then wε(x) = ln(|x̂|/(ερ))
[

ln(rε/(ερ))
]−1

for x ∈ Ωε ∩ Ωε0 and wε(x) = 0 for x ∈ Ω̃εL+ε. The assumption on the relation
between ε and aε = rε/ε implies∫

ΩεL\Ω̃ε
|∇wε|2dx =

1

ln(ερ/rε)2

∫
ΩεL\Ω̃ε

1

|x̂|2
dx ≤ 2πµ1L

ε2 ln(ερ/rε)2

∫ ερ

rε

dr

r
≤ µ,∫

Ωε0,L+ε

|∇wε|2dx ≤ µ1ε‖∇wε‖2L2(ΩεL\Ω̃ε)
+
µ2

ε
‖wε‖2

L2(ΩεL\Ω̃ε)
≤ µ ε,

for some constant µ > 0 independent of ε. This, together with similar arguments as in468

Theorem 4.4, implies that wε ⇀ 0 weakly in H1(Ω) and strongly in Hs(Ω) for s < 1.469

To prove convergence of solutions of problem (2.1)–(2.3), (2.6), (2.7), by using470

the monotonicity of g, we rewrite its weak formulation (2.8) as variational inequality471

(4.15)

∫
ΩεT

[
∂tuε(φ− uε) +Du∇φ∇(φ− uε)

]
dxdt+

ε2κ

rε

∫
ΓεT

g(φ)(φ− uε)dγεdt

+

∫
ΓεR,T

β φ (φ− uε)dγεdt ≥ 0

472

for any φ ∈ L2(0, T ;H1(Ωε)) ∩ L∞((0, T ) × Ωε), with φ(t, x) ≥ −ς̃ in (0, T ) × Ωε.473

Notice that the last condition on φ is not needed if g is monotone on R.474

Considering φ = ψ − κ̃g(h)wε, for ψ ∈ C1([0, T ];C1(Ω)) with ψ(t, x) ≥ −ς̃ in
[0, T ] × Ω, as a test function in (4.15), where κ̃ = λκ/Du and h is the solution of
h+ κ̃g(h) = ψ, and using the weak and strong convergence of wε and of extension of
uε, in the corresponding spaces, together with |Ω \ Ωε| → 0 as ε→ 0, we obtain

lim
ε→0

∫
ΩεT

∂tuε(ψ − κ̃g(h)wε − uε)dxdt =

∫
ΩT

∂tu0(ψ − u0)dxdt,

lim
ε→0

∫
ΓεR,T

β(ψ − κ̃g(h)wε)(ψ − κ̃g(h)wε − uε)dγεdt =

∫
ΓR,T

β ψ(ψ − u0)dx̂dt.

Here and in what follows we use the same notation for uε and its extension. For the
second term in (4.15), the weak convergence of ∇uε and |Ω \Ωε| → 0, as ε→ 0, yield

lim
ε→0

∫
ΩεT

Du∇(ψ − κ̃g(h)wε)∇(ψ − κ̃g(h)wε − uε)dxdt =

∫
ΩT

Du∇ψ∇(ψ − u0)dxdt

− lim
ε→0

∫
ΩεT

Duκ̃(∇g(h)wε + g(h)∇wε)∇(ψ − κ̃g(h)wε − uε)dxdt.

For the first part of the last term the strong convergence of wε and weak convergence
of ∇wε and ∇uε in L2(ΩT ) ensure

lim
ε→0

∫
ΩεT

Duκ̃∇g(h)wε∇(ψ − κ̃g(h)wε − uε)dxdt = 0,
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and the second part can be rewritten as∫
ΩεT

Duκ̃
[
∇wε∇

(
g(h)[ψ − κ̃g(h)wε − uε]

)
−∇wε∇g(h)(ψ − κ̃g(h)wε − uε)

]
dxdt

= I1 + I2,

where lim
ε→0

I2 = 0, due to weak convergence of ∇wε and strong convergence of uε and

wε in L2(ΩT ). Using that ∆wε = 0 in Ωε ∩ Ωε0 and ∇wε = 0 in Ωε \ (Ωε0 ∪ Ωε0,L+ε)
and integrating by parts in I1 yield

I1 =
λκ

λ+ ε2 ln(ρ)

[ε2

rε

∫
ΓεT

g(h)(ψ− κ̃g(h)−uε)dγεdt−
ε

ρ

∫
Γε0,T

g(h)(ψ−uε)dγεdt
]

+ I11,

where, due to lim
ε→0
‖∇wε‖L2(Ωε0,L+ε)

= 0, we have

I11 =

∫ T

0

∫
Ωε0,L+ε

Duκ̃∇wε∇(g(h)[ψ − κ̃g(h)wε − uε])dxdt→ 0 as ε→ 0.

Similar as in the proof of Theorem 4.4, using the two-scale convergence on Γε0, see
e.g. [1, 26], and that lim

ε→0
ε‖uε − u0‖2L2(Γε0,T ) = 0, see e.g. [29], we obtain

lim
ε→0

ε
λ(κ/ρ)

λ+ ε2 ln(ρ)

∫
Γε0,T

g(h)(ψ − uε)dγεdt = lim
ε→0

λ(κ/ρ)

λ+ ε2 ln(ρ)
ε

∫
Γε0,T

g(h)(u0 − uε)dγεdt

+ lim
ε→0

λ(κ/ρ)

λ+ ε2 ln(ρ)
ε

∫
Γε0,T

g(h)(ψ − u0)dγεdt = 2πκ

∫
ΩL,T

g(h)(ψ − u0)dxdt.

Notice that the regularity g(h) ∈ C1([0, T ];C1(Ω)), ensured by the regularity of g
and ψ, and the trace estimate ε‖v‖2L2(Γε0) ≤ µ‖v‖

2
H1(ΩL), see e.g. [29], yield∣∣∣ λ(κ/ρ)

λ+ ε2 ln(ρ)
ε

∫
Γε0,T

g(h)(u0 − uε)dγεdt
∣∣∣ ≤ µ1ε

1
2 ‖u0 − uε‖L2(Γε0,T )‖g(h)‖L2(0,T ;H1(Ω)),

ε
∥∥∥ λ(κ/ρ)

λ+ ε2 ln(ρ)
(ψ − u0)

∥∥∥2

L2(Γε0,T )
≤ µ2

[
‖u0‖2L2(0,T ;H1(Ω)) + ‖ψ‖2L2(0,T ;H1(Ω))

]
≤ µ3,

for 0 < ε ≤ ε0, with λ+ ε2
0 ln(ρ) > 0 and 0 < ρ < 1/2. It remains to show that

κε2

rε

∫
ΓεT

(
g(ψ − κ̃g(h))− λ

λ+ ε2 ln(ρ)
g(h)

)
[ψ − κ̃g(h)− uε]dγεdt→ 0 as ε→ 0.

Since h is the solution of h+ κ̃g(h) = ψ and g is monotone and continuous we have

κε2

rε

∫
ΓεT

[g(ψ − κ̃g(h))− g(h)][ψ − κ̃g(h)− uε]dγεdt = 0.

The trace estimate (4.1) yields[ λ

λ+ ε2 ln(ρ)
− 1
]κε2

rε

∫
ΓεT

|g(h)||ψ − κ̃g(h)− uε|dγεdt ≤ µ
[
‖h‖2

L2(0,T ;H1(Ω̃εL))

+ ‖ψ‖2
L2(0,T ;H1(Ω̃εL))

+ ‖uε‖2L2(0,T ;H1(Ω̃εL))
+ 1
][ λ

λ+ ε2 ln(ρ)
− 1
]
→ 0, as ε→ 0.
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Collecting all calculations from above, taking the limit as ε → 0 in (4.15), with475

φ = ψ − κ̃g(h)wε, and employing a density argument, we obtain476

(4.16)

∫
ΩT

[
∂tu0(ψ − u0) +Du∇ψ∇(ψ − u0)

]
dxdt+

∫
ΩL,T

2πκg(h)(ψ − u0)dxdt

+

∫
ΓR,T

β ψ (ψ − u0)dx̂dt ≥ 0

477

for any ψ ∈ L2(0, T ;H1(Ω)) ∩ L∞((0, T ) × Ω). By choosing ψ = u0 ± σϕ, for σ > 0478

and ϕ ∈ L2(0, T ;H1(Ω)) ∩ L∞((0, T ) × Ω), and letting σ → 0 we obtain that u0479

is a solution of the macroscopic problem (3.63). Since u0 ≥ 0 we have ψ ≥ −ς̃ for480

sufficiently small σ. Standard calculations ensure uniqueness of a solution of (3.63).481

If K = κ/aε and ε ln(1/aε) = λ, we again rewrite (2.1)–(2.3), (2.6), (2.7) as482

variational inequality (4.15). The convergence, as ε → 0, of the first two terms and483

of the last integral in (4.15) follows directly from the weak convergence uε ⇀ u0 in484

L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) and |Ω \ Ωε| → 0 as ε→ 0. To show485

(4.17) lim
ε→0

ε2κ

rε

∫
ΓεT

g(φ)(φ− uε)dγεdt = 2πκ

∫
ΩL,T

g(φ)(φ− u0)dxdt486

we consider the solution of the following problem

∇ · (Du∇w̃ε) = 0 in Bερ \Brε , Du∇w̃ε · ν =
ε2κ

rε
on ∂Brε , w̃ε = 0 on ∂Bερ,

given by w̃ε = ε2(κ/Du) ln(|x̂|/(ερ)), extended in a trivial way to (Bερ \Brε)× (0, L)
and then εY - periodically into Ωε ∩ Ωε0. Notice |w̃ε(x)| ≤ (κ/Du)ε2 ln(ερ/rε) ≤ µ ε,
for all x ∈ Ωε ∩ Ωε0, and∫

Ωε∩Ωε0

|∇w̃ε|2dx ≤ µ1ε
2

∫ ερ

rε

1

r
dr ≤ µ ε,

with a constant µ > 0 independent of ε. Then

0 = −
∫ T

0

∫
Ωε∩Ωε0

∇ · (Du∇w̃ε)g(φ)(φ− uε)dxdt =

∫ T

0

∫
Ωε∩Ωε0

Du∇w̃ε∇
[
g(φ)(φ− uε)

]
dxdt

+
ε2κ

rε

∫
ΓεT

g(φ)(φ− uε)dγεdt− ε
κ

ρ

∫
Γε0,T

g(φ)(φ− uε)dγεdt.

Hence taking in the last equality the limit as ε → 0 and using weak convergence of487

uε in L2(0, T ;H1(Ω)) and two-scale convergence on Γε0, together with the fact that488

lim
ε→0
‖∇w̃ε‖L2(Ωε∩Ωε0) = 0, imply (4.17). By choosing φ = u0 ± σϕ, for σ > 0 and489

ϕ ∈ L2(0, T ;H1(Ω)) ∩ L∞((0, T ) × Ω), and letting σ → 0 we obtain that u0 is the490

solution of the macroscopic problem (3.52). Notice that in the case ε ln(1/aε) = λ491

we can also show convergence of solutions of (2.1)–(2.3), (2.6), (2.7) directly, without492

rewriting it as a variational inequality and using monotonicity of g.493

5. Numerical simulations for multiscale and macroscopic models. In494

this section we present numerical simulations of (2.1)–(2.3), (2.6), (2.7) and of the495

zero, first and second order approximations of solutions of the macroscopic problems,496

see (3.57), (3.59), (3.61). All simulations in this section were performed using standard497
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Parameter ε L M β Du κ
Value 0.5 0.5 1.0 0.0 1.0 1.0

Table 1: Default dimensionless parameter values used in numerical simulations.

finite element methods as implemented in FEniCS [23], with meshed domains gener-498

ated using NETGEN [32]. Steady-state (elliptic) problems were solved directly, while499

for time-dependent (parabolic) problems, backwards Euler discretization in time was500

used and the solution at time t+ ∆t was calculated using the stationary solver with501

the solution at time t entering the right-hand side of the weak formulation as a given502

forcing term (as described in [23]). Since the scale-relation ε2 ln
(
1/aε

)
= λ for small503

ε results in a very small value for aε, which is numerically challenging, we consider504

(only) ε = 0.5 and observe that aε = 0.01 with such ε gives λ = ε2 ln
(
1/aε

)
≈ 1.15.505

Continuous Galerkin finite element method of degree 1 was used and tetrahedral506

meshes for the full-geometry simulations were created using in-built NETGEN gener-507

ators with automatic mesh refinement close to the root hair, so that the size of any508

tetrahedron does not exceed 0.03, which in the case of aε = 10−3 (see below) yielded509

O(7×105) tetrahedra. For the macroscopic problems in our two-scale expansions (i.e.510

u0, u1 and U2), we generated meshes with the maximum mesh size of 0.05, which511

yielded O(14000) tetrahedra for the mesh for domain Ω, and O(7000) for the mesh512

for domain ΩL.513

We first consider the steady-state problem for equation (2.1), imposing a constant514

level of nutrient at the cut-off distance515

(5.1) uε(t, x) = 1 on x3 = M, t > 0,516

and a zero-flux boundary condition on ∂Ω \ {x3 = M}, i.e. β = 0. Then in the
corresponding macroscopic problem we have

u0(t, x) = 1 on x3 = M, Du∇u0(t, x) · n = 0 on ∂Ω \ {x3 = M}, t > 0.

Notice that the choice of boundary condition on x3 = M does not affect the derivations517

of macroscopic equations in Sections 3 and 4. The symmetries of the full-geometry518

problem and the periodicity of the microstructure ensure that the solution of this519

problem has the same behavior in each periodicity cell ε(Y + ξ)× (0,M), for ξ ∈ Z2,520

see Figure SM1 in the Supplementary materials. Hence it is sufficient to determine521

the solution within a single periodicity cell εY × (0,M).522

To illustrate the differences in the behavior of the multiscale solutions and those523

of the corresponding macroscopic problems (3.48) and (3.57) for two different scale-524

relations between ε and aε, we vary aε from 10−1 to 10−3, see Figure 2. The default525

parameter values used throughout this section are summarized in Table 1.526

For aε = 10−1 (Figure 2(b)), the steady-state solution of problem (3.48) (Fig-527

ure 2(a)) gives a good averaged approximation to that of (2.1)–(2.3), (2.6), (2.7),528

whereas for aε = 10−2 and aε = 10−3 (Figure 2(c,d)) the differences between the so-529

lution of the macroscopic problem (3.48) and those of (2.1)–(2.3), (2.6), (2.7) become530

more significant and, as ε2 ln (1/aε) approaches 1, the steady-state solution of the531

macroscopic problem (3.57) provides a better approximation to solutions of the full532

model, as predicted. The analysis in Section 3.2.1 implies that for any scale relations533

satisfying aε � e−1/ε2 as ε→ 0 the same macroscopic equation (3.48) pertains.534
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(a) u0 for ε ln (1/aε) = O(1) (b) uε for aε = 10−1 (ε2 ln (1/aε) ≈ 0.58)

(c) uε for aε = 10−2 (ε2 ln (1/aε) ≈ 1.15) (d) uε for aε = 10−3 (ε2 ln (1/aε) ≈ 1.73)

Fig. 2: Steady-state solutions of the macroscopic problem (3.48), (a), and of the full
model (2.1)–(2.3), (2.6), (2.7), for (b) aε = 10−1, (c) aε = 10−2 and (d) aε = 10−3,
with Dirichlet boundary condition (5.1), g(uε) = uε, all other parameters as in Table 1.

We now compare these solutions at a fixed distance from the root surface. First,535

we fix x3 = 0 and plot the solutions along a diagonal joining the opposite corners536

of this plane. This way, we study behavior at the root surface, and the results for537

decreasing aε are shown in Figure 3(a,c,e). Solutions of the full problem (2.1)–(2.3),538

(2.6), (2.7), (blue) show nutrient depletion zones close to the hair surface with increas-539

ingly sharp concentration gradients for a decreasing value of aε due to the scaling of540

the uptake constant (2.5). Numerical simulations reveal that the steady-state solution541

of the macroscopic problem (3.48) underestimates, and that of the macroscopic prob-542

lem (3.57) overestimates, the averaged behavior of steady-state solutions of the full543

problem (2.1)–(2.3), (2.6), (2.7). While the solution of (3.48) provides us with a better544

approximation to the full-geometry behaviour than that of (3.57) for aε = 10−1, the545

opposite is true for aε = 10−3, which confirms the validity of our asymptotic analysis546

results. Leading-order approximations (i.e. homogenized solutions) naturally cannot547

capture large depletion gradients present in full-geometry simulations near root hair548

surfaces. Comparison with higher-order approximations will be discussed later (see549

Figure 5).550

Simulation results at x3 = 0.75, i.e. outside the root hair-zone, see Figure 3(b,d,f),551

demonstrate that as aε decreases and approaches the scale relation ε2 ln (1/aε) =552
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(a) x3 = 0.0, aε = 10−1 (b) x3 = 0.75, aε = 10−1

(c) x3 = 0.0, aε = 10−2 (d) x3 = 0.75, aε = 10−2

(e) x3 = 0.0, aε = 10−3 (f) x3 = 0.75, aε = 10−3

(g) x3 = 0.0, aε = 10−3, g(u) = u/(1 + u) (h) x3 = 0.75, aε = 10−3, g(u) = u/(1 + u)

Fig. 3: Steady-state solutions at the root surface {x3 = 0} (figures (a), (c) and (e))
and outside of the root-hair zone {x3 = 0.75} (figures (b), (d) and (f)) for (2.1)–
(2.3), (2.6), (2.7) (blue solid line), the problem (3.48) (red crosses) and the problem
(3.57) (green dashed line), with boundary condition (5.1), g(u) = u, and all other
parameters as in Table 1. aε is decreased from 10−1 to 10−3. Figures (g) and (h)
show comparisons for the nonlinear problem (with g(u) = u/(1 + u)) to the problem
(3.63) (green dashed line; for the full form of the continuity equation, see (3.64)), and
the problem (3.52) (red crosses), using the same parameters and boundary conditions.
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(a) x3 = 0.75, g(u) = u/(1 + u) (b) x3 = 0.75, g(u) = u/(1 + u)

(c) x3 = 0.0, g(u) = u/(1 + u) (d) x3 = 0.0, g(u) = u/(1 + u)

Fig. 4: Numerical solutions for (2.1)–(2.3), (2.6), (2.7) (blue solid line), the problem
(3.63) (green dashed line; for the full form of the continuity equation, see (3.64)) and
the problem (3.52) (red crosses), with g(u) = u/(1 +u) (figures (a), (b), (c) and (d)),
and initial condition uin = 1, all other parameters as in Table 1. The time derivative
is discretized using the backwards Euler method, with the time step of 0.01.

O(1), the steady-state solution of the macroscopic model (3.57) provides a better553

approximation to the full model (2.1)–(2.3), (2.6), (2.7) than that of (3.48).554

Numerical solutions to the steady-state problem for (2.1)–(2.3), (2.6), (2.7) with555

a nonlinear boundary condition on Γε, i.e. with g(uε) = uε/(1 +uε), and to the corre-556

sponding macroscopic problems (3.52) and (3.63) are also presented in Figure 3(g,h).557

All model parameters are as in Table 1 and Picard iteration was used to solve the558

nonlinear problem (as described in [23]). Similar differences between solutions of the559

full model and the two macroscopic problems are observed in time-dependent solu-560

tions, see Figure 4 (note that we used a zero-flux boundary condition at x3 = M in561

this case, modelling competition with a neighboring root at x3 = 2M).562

Numerical solutions for the first and second order corrections, given by (3.49),563

(3.51), (3.59) and (3.62), for the two different scale relations between ε and aε are564

presented in Figure 5. The differences between these illustrate the importance of the565

correct approximation. Since we chose our parameters so that ε2 ln
(
1/aε

)
= O(1) we566

have that solutions of (3.57)-(3.62) provide better approximations to those of the full567

problem (2.1)–(2.3), (2.6), (2.7) than solutions of (3.48)-(3.51).568

6. Discussion. The analysis in Section 3.1.2 using two independent small pa-569

rameters ε and a uncovered the term ε2 ln(1/a)u0,0(t, x)ψO−1, which causes problems570

relating to commutation of the two limits under consideration (see (3.24)). Based571
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(a) x3 = 0.0, g(u) = u, correctors (b) x3 = 0.0, g(u) = u, correctors

Fig. 5: Figures (a) and (b) show comparison at the root surface {x3 = 0} for the linear
problem (2.1)–(2.3), (2.6), (2.7) (blue solid line) with the problem (3.57) (brown dia-
monds), the problem (3.48) (yellow squares), the second-order approximation (3.48)
- (3.51) (red crosses), and with the second-order approximation (3.57) - (3.62) (green
dashed line), using the same initial condition and parameters as in Figure 4.

on this observation, we then studied two scale relations given by ε ln(1/aε) = O(1)572

and ε2 ln(1/aε) = O(1). In the ε ln(1/aε) = O(1) case, the mentioned term becomes573

O(ε), and thus it does not affect the leading-order problem (3.48), but the O(ε) prob-574

lem (3.49). In the ε2 ln(1/aε) = O(1) case, the same term becomes O(1), affects the575

leading-order problems and thus leads to distinguished limits, see (3.57) for the linear576

boundary condition and (3.63) for the nonlinear boundary condition. Notice that the577

sink term in the distinguished limit (3.57) is obtained by dividing the sink term in the578

standard limit (3.48) by 1 + λκ/Du > 1, implying weaker effective nutrient uptake in579

the hair zone. This is because assuming ε2 ln(1/aε) = O(1), the uptake rate per unit580

hair surface area becomes large, causing very sharp nutrient depletion near hairs so581

that the diffusion is not fast enough to keep the concentration profile uniform. Under582

these circumstances, the difference between the nutrient concentration at the hair sur-583

face (used in the full-geometry model) and the averaged nutrient concentration (used584

in the sink terms) becomes significant and this gives rise to the new limit. Subse-585

quently, we rigorously proved the convergence of solutions of the multiscale problem586

to solutions of the macroscopic equations for both the linear and nonlinear bound-587

ary conditions at surfaces of root hairs and confirmed the applicability of the two588

limit equations (as well as higher-order correctors) in different parameter regimes via589

numerical simulations.590
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