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Abstract—This paper describes a new curve-fitting lithium-ion 

battery parameter identification method for equivalent circuit 

models. The current pulse/relaxation test is carried out and the 

corresponding terminal voltage is used for extracting the battery 

model parameters. Analysis and fitting of the waveform is 

performed for both pulse and relaxation periods without assuming 

the initial conditions of the associated RC branches. This approach 

is demonstrated for 2nd order model using commercial battery cell 

and model results are presented and compared against 

experimental finding revealing a good agreement.   
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I. INTRODUCTION 

Recent advancements in the chemistry of lithium-ion 
technology enabled more extensive use, commercialisation, and 
research interest of these batteries not only in conventional 
electric propulsion applications such as electric vehicles, city 
buses, etc., but also in aerospace applications for instance, 
aircraft electric taxiing [1], [2] and helicopter rotor energy 
harvesting [3]. Accordingly, their modelling is a critical step 
when designing energy storage devices for a specific 
application, identifying operating limits or developing efficient 
battery management systems (BMS). 

In general, battery’s models can be classified into three 
categories: electrochemical models, empirical models, and 
equivalent circuit models (ECM) [4], with the first being most 
detailed and accurate. However, its inputs are parameters not 
found in datasheets easily such as electrode thickness or 
electrolyte concentration [5]. Furthermore, they are 
computationally intensive as the models include many sets of 
nonlinear partial differential equations (PDEs) in the time and 
space domain [6]. Although numerous reduced models have 
been implemented by simplifying the PDEs to ordinary 
differential equations [4], [7], finding model’s parameters yet 
remains a challenge. In addition, a few software programmes 
exist nowadays to aid the electrochemical modelling, but they 
are not practical if the models are to be developed quickly and if 
there is lacking on the knowledge of electrochemistry. On the 
other hand, empirical models are obtained from datasheets or 
measurements and they model batteries using specific formulas 
to represent only a particular behaviour (e.g., Peukert’s model 
predicts runtime), and they cannot guarantee the correct model 
behaviour if subjected to loads other than one used for obtaining 
empirical equation law [6].  

ECMs are undoubtedly the most popular models due to their 
simplicity and low computational burden. Moreover, they have 
an acceptable ratio of accuracy and mathematical complexity 
and as such, are commonly implemented in BMS or used in 
design procedures and simulations. Due to the existence of many 
electrical elements, the possibilities for ECM topology are 
infinite. However, the most popular configurations are 
Thevenin’s models that are comprised of a voltage source, an 
internal resistance and n sets of RC pairs, as shown in Fig. 1. 
Circuit with n=0 is commonly called Rint or zero-order model 
and it is used for design purposes, whereas models with n>1 are 
employed in dynamic simulations.  

In this paper, a novel method of identifying the parameters 
of the circuit from Fig. 1 based on curve fitting is presented. The 
paper is organised as follows. The following section explains 
and discusses the conventional approaches of battery 
parameter’s identification. Then, the proposed estimation 
method and its benefits are systematically presented in Section 
III. The Panasonic NCR18650B has been selected as benchmark 
to test the introduced technique and the obtained ECM 
parameters are shown in Section IV. In addition, the developed 
model is validated and compared to the experimental results, and 
to the results of conventional modelling approach. Finally, 
conclusions and considerations are drawn in Section V.  

II. PARAMETERS IDENTIFICATION  

The parameter extraction procedure aims to identify values 
of all elements of the circuit from Fig. 1., which are namely 
open circuit voltage (OCV or uocv), internal resistance R0, and 
polarisation resistance-capacitance pairs (Rn,Cn) .  All the 
mentioned parameters are highly dependent on the state of 
charge of the battery (SoC), and thus they have to be found 
considering SoC variation. Moreover, these dependencies are 
seldom found in datasheets, and thus they are obtained from 
specifically designed experiments.  The best-known and most 
straightforward procedure is for the battery to be exposed to the 
set of constant current pulses (CP) and rest/relaxation periods 
(RP). During CPs, the SoC  decreases whereas it remains 
constant for the period of RPs (Fig. 2).  
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Fig. 1. Thevenin’s battery ECM with 𝑛 RC circuits. 



The amplitude and duration of the CP are related to the 
desired decrease of SoC throughout one pulse (ΔSoC). Usually, 
ΔSoC is in the range of 10% or 5%. Sometimes, a smaller ΔSoC 
is preferred outside [10%÷90%] SoC  interval, because 
parameters tend to vary more in [0%÷10%] and [90%÷100%] 
intervals [8]. The choice of ΔSoC  represents a compromise 
between the total experiment time and desired accuracy. For 
example, if 2% ΔSoC  is selected, the interpolation of 
parameters will be more precise, but on the other hand there 
will be N=50 rest periods which are usually very lengthy. The 
length of RPs is related to the OCV identification.  

The uocv at a particular SoC is determined by measuring the 
battery terminal voltage (ub) at the end of each RP (i.e., red 
markers in Fig. 2). Consequently, the more prolonged is the RP, 
the battery terminal voltage at the end of the RP will be closer 
to the OCV. This is because having longer rest times assure that 
when the battery voltage is measured at the end of RP, all 
polarisation dynamics are finished (i.e., u1=…=un=0 ), and 
hence ub=uocv  [9]. In general, there is no consensus on how 
long the RP should be. In literature, the RPs are short as 8 
minutes [10], 10 minutes [11] and extended as 1h [8]. Finally, 
the duration of RP should be decided in conjunction with the 
desired ΔSoC considering the total time of the experiment. If in 
the previous example (i.e., ΔSoC=2%)  RPs are 30 minutes 
long, experiment would last at least 1500 minutes, which is 25h.  

The internal resistance R0 can also be computed easily from 
the battery terminal voltage waveform. It is calculated from the 
instantaneous voltage drop as in (1), where trelax,end  and 

tpulse,start are time instants just before and after the CP starts, 

respectively (Fig. 2). 

 R0= (u
b
(trelax,end)-ub(tpulse,start)) I⁄  (1) 

Contrary to the calculation of uocv(SoC)and Ro(SoC), which 
are straightforward, many approaches exist for (Rn,Cn) 
identification, which are continuously subjected to discussion, 
proposal of new methods and improvements of the existing 
ones. Even so, the majority of the identification procedures are 
based on analysing the voltage of all RC circuits (uτ), which can 
be easily found as in (2) once uocv(SoC)and Ro(SoC) are known. 

  uτ= ∑ ui=uocv(SoC)-Roib-ub
n
i=1  (2) 

In (2), ui is the voltage of i
th

 RC pair and n is the number of RC 
circuits. 

In a large number of studies, polarisation parameters are 
extracted from the relaxation periods of uτ due to two crucial 
reasons: 1.) SoC is constant, and 2.) analytical expression of 
polarisation voltage is simpler than during CP. Therefore, 
methods are broadly divided into analytical based on simple 
equations [12] and fitting exponential functions to uτ using least 
square method [10], [13]. Nevertheless, in both cases in order to 
make calculations easier, most of the methods rely on the fact of 
the sufficiently long pulse and rest periods. In case of analytical 
approach this assumption allows splitting of RC dynamics into 
independent intervals or in case of curve fitting approach it 
allows easier calculation of initial conditions. 

Even though there are studies that propose a derivation from 
CP part of uτ waveform [14], there are no studies that combine 
extraction from both CP and RP. In the following section, it is 
explained how battery parameters can be obtained using both 
pulse and relaxation periods of uτ  via curve fitting without 
presuming any assumptions regarding initial voltages of RC 
circuits. It is also recognized that ECM parameters besides SoC, 
depend on current rate, temperature current direction, and 
calendar and cycle life. Thus, one benefit of the proposed 
method is that two sets of the parameters can be derived since 
estimation is also estimated during CP. The two sets are: 1.) with 
the presence of current (I≠0; i.e. CP) and 2.) without load current 
(I=0; i.e. RP). This improves the accuracy of the model keeping 
unchanged the experimental procedure.  

III. PROPOSED METHOD OF RC IDENTIFICATION 

The beginning of the procedure for the novel approach is the 
same as for conventional ones, i.e., the input is uτ obtained from 
the pulse/relaxation experimental procedure. The new technique 
is based on the least square method by fitting multiple 

exponential functions to uτ. Specifically, the voltage of the i
th

 
RC circuit can be expressed analytically as: 

  ui,PN=U
0i,PN

e
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t
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  ui,RN=U0i,RNe
-
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where U0i,PN and U0i,RN are initial voltages of the i
th

 RC branch 

at the beginning of the Nth  CP and RP respectively, whereas 

τi,PN and τi,RN are time constants of the i
th

 RC branch during the 

Nth CP and RP respectively. In this paper, the ECM with n=2 
RC sets is selected because it represents good fit between 
complexity and accuracy. As a result, the experimental uτ can be 
fitted using following function fN: 

  fP,N=a+(U01,PN-a)e-bt+c+(U02,PN-c)e-dt (4a) 

  fR,N=U
01,RN

e-et+U02,RNe-gt (4b) 

Compared to other fitting methods, in this approach no 
assumptions are made regarding initial voltages. Instead, initial 
voltages are analytically calculated before each CP and RP 
fitting. For this purpose, uτ needs to be fitted during both CP and 
RP and then those fitted equations are used for calculations of 
initial conditions as in (5). 

 
Fig. 2. Battery terminal voltage (ub) and current (ib) during two CPs. 



 U0i,PN=ui,R(N-1)(t=trelax)=U0i,R(N-1)e
-

trelax
τi,R(N-1) (5a) 

 U0i,RN=ui,PN(t=tpulse)=U0i,PNe
-
tpulse

τi,PN + (1-e
-
tpulse

τi,PN ) R1,PNI (5b) 

Practically, the initial voltage of the i
th

 branch at the 

beginning of the Nth  CP is equal to the i
th

 branch relaxation 
voltage prior to the pulse at the time trelax (i.e., at the end of 

(N-1)th  RP) ui,R(N-1)(t=trelax). Similarly, the initial voltage of 

the i
th

 branch at the beginning of the Nth  RP is equal to the 

i
th

 branch pulse voltage at the time tpulse (i.e., end of the Nth CP) 

ui,PN(t=tpulse). It is evident that the procedure requires that fitted 

voltages are known before each U0i,PN and U0i,RN calculations.  

Initial conditions for the first CP are equal to zero (i.e., 
U01,P1=U01,P2=0), since the system is in equilibrium before the 

test. Using (4a), uτ is fitted for the 1st CP (i.e., a,b,c and d are 
determined), from which initial conditions for the 1st RP can be 
computed (5b). Similarly, then, using (4b) uτ is fitted for the 1st 
RP (i.e., e and f are calculated), thus initial conditions for 2nd 
CP can be assessed (5a). This procedure is repeated until the 
last RP is reached. The flowchart of the method is shown in Fig. 
3.  

Coefficients of the fitting a,b,c  and d  are related to the 
parameters of the ECM from Fig. 1 and can be determined by 
comparing equations (4a) and (5a). Hence, parameters of the 
ECM during the pulse (i.e., I≠0) are:  

 {
R1,PN=

a

I
, τ1,PN=

1

b
, C1,PN=

τ1,PN

R1,PN

R2,PN=
c

I
, τ2,PN=

d

b
, C2,PN=

τ2,PN

R2,PN

,    I≠0 (6) 

Likewise, ECM’s parameters in relaxation (i.e., no current) are 

obtained by comparing equations (4b) and (5b) as in (7): 

 {
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U01,RN

I
, τ1,RN=

1

e
, C1,RN=

τ1,RN

R1,RN

R2,RN=
U02,RN

I
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1

g
, C2,RN=

τ2,RN
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,    I=0 (7) 

IV. MODEL DEVELOPMENT 

A. Test for parameter identification 

 Parameter estimation method and model validation are 
carried out on a popular Panasonic NCR18650B cell, whose 
characteristics are listed in Table I. BK Precision 8602 
Programmable DC Electronic Load is employed to generate 
constant current pulses and it is remotely controlled from host 
PC through USB communication, via BK Precision software 
(Fig. 4). Besides, the electronic load was also used for data 
acquisition (16bit A/D converter and 1Hz sampling frequency), 
with data directly being saved in the host PC’s memory.  

TABLE I.  PANASONIC NCR18650B CELL PARAMETERS 

Name Value 

Max. capacity Q
max

 [mAh] 3400 

Nominal voltage [V] 3.6 

Max. current [A] 5 

 The cell under test was first fully charged and then exposed 
to current pulses of 3A (~0.9C) and duration of 3 minutes, which 
resulted in ΔSoC of approximately 4.5% and N= 21 pairs of CP 
and RP. The rest periods are 10 minutes long, same as in [11], 
which led to total experiment time of 5h. The temperature 
dependence was not considered in this study, and the experiment 
was done at ambient temperature. Also, only discharging pattern 
was examined. The cell voltage and current waveforms during 
the experiment, along with relevant points necessary for data 
processing, are shown in Fig. 5. The uocv is extracted from the 
end of RPs whereas Ro is calculated using (1). The uocv(SoC) 
and Ro(SoC) are plotted in Fig. 6.  

 
Fig. 4. Experimental setup. 

 
Fig. 3. Flowchart of the proposed extraction methodology. 

 
Fig. 5. Cell voltage and current during experiment. 



Following the identification of OCV and internal resistance, 
the voltage over the RC chain, i.e. uτ, was calculated using (2) 
and it is given in Fig. 7. Once uτ is obtained during both pulse 
and relax periods, it is used as an input for parameter extraction 
procedure as explained in Section IV. Algorithm was 
implemented in MATLAB® Script Editor. Fitting procedures 
itself were carried out using fittype and fit functions. Lower and 
upper boundary conditions for all parameters are set to 0 and 1, 
respectively. Furthermore, a trust-region algorithm is used.  
 Finally, the last parameters to be found were polarisation 
resistances and capacitances using (6) and (7), and they are 
shown in Fig. 8 and Fig. 9 for both pulse and rest periods in 
relation to SoC. As mentioned before, the SoC changes during 

CP, so parameters estimated over current pulse are assigned to 
the average value (SoCa+SoCb)/2 , where SoCa  and SoCb are 
values at the beginning and at the end of CP.  

B. Simulation results 

 Employing the estimated parameters, the model of the tested 
cell is created in the PLECS® environment using lookup tables, 
controlled sources and variable resistors and capacitors (Fig. 
10). In the simulation model, a battery load profile identical to 
the experimental one is considered. The SoC  is continuously 
calculated using coulomb counting method and model 
parameters are updated accordingly considering SoC  and 
current rate. Voltages from the model and from the experiment 
are compared in Fig. 11 together with the error. Additionally, 

 
Fig. 6. The uocv and 𝑅𝑜 with respect to SoC. 

 
Fig. 8. 𝑅1 and 𝑅2 parameters of the model with respect to SoC. 

 
Fig. 10. Schematics of the complete ECM of Panasonic NCR18650B. 

 
Fig. 9. 𝐶1 and 𝐶2 parameters of the model with respect to SoC. 

 
Fig. 11. Simulated and experimental cell voltage (up) and error (below). 

 
Fig. 7. The RC voltage waveform 𝑢𝜏 during both CP and RP.  



conventional model using analytical approach [12] is created 
and compared with the developed one.  The voltages and errors 
are shown in Fig. 12. and Fig. 13.  
 It can be noticed that absolute error considerably increases 
below 15% SoC for both methods. Over the whole SoC range 
novel method performs better in terms of the maximum absolute 
error (MxAE). However, with regards to the mean absolute error 
(MAE) and to the root-mean-square error (RMSE) conventional 
method outperforms the novel one (5.6mV compared to 6.1mV 
for MAE and 25.9mV compared to 27.7mV for RMSE). On the 
other hand, more importantly, in the [20%÷90%] SoC interval, 
in which batteries are usually operated, novel approach showed 
better performance for all three error types as it can be seen in 
Table II and Fig. 12 and Fig. 13.  

TABLE II.  ERRORS USING NOVEL AND CONVENTIONAL METHOD 

Feature Novel  Conventional 

MxAE(0%,100%)  [V] 0.325 0.514 

MxAE(20%,90%)  [mV] 14.6 41.4 

MAE(0%,100%)  6.1 5.6 

MAE(20%,90%) 2.1 2.1 

RMSE(0%,100%)   [mV] 27.7 25.9 

RMSE(20%,90%)   [mV] 2.7 4.3 

V. CONCLUSIONS 

In this paper, a battery parameter estimation technique for 
the equivalent circuit modelling approach was presented. The 
method is based on fitting double exponential functions to the 
experimentally obtained (i.e., current pulse/rest period 
procedure) battery terminal voltage curve. In this methodology, 
the terminal voltage is approximated during both pulse and rest 
periods contrary to other estimation methods, i.e., parameters of 
the equivalent circuits are also obtained during the presence of 
current. In practice, 2D lookup tables were created which 
estimated parameters based on the battery current and state of 
charge. In addition, the initial voltages of RC branches were 
calculated analytically, and no assumptions had been made 
regarding the dynamics of mentioned RC circuits. Another 
benefit of this technique is that it doesn’t require change in 
experimental part of the estimation process. In the end, the 
proposed procedure was verified by creating a model of 
Panasonic NCR18650B cell and results showed excellent 
matching between simulation and experiment results during 
both pulse and rest periods.  
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Fig. 12. Simulated and experimental cell voltage (up) and error (below) 

between 20% and 90% SoC  

 
Fig. 13. Simulated and experimental cell voltage (up) and error (below) 

between 4000s and 6000s. 


