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Summary: 

 

Understanding how to modulate appetite in humans is key to developing successful weight 

loss interventions. Here, we show that postprandial glucose dips 2-3h after a meal are a better 

predictor of postprandial self-reported hunger and subsequent energy intake than peak 

glucose 0-2h and glucose iAUC 0-2h. We explore the link between postprandial glucose, 

appetite, and subsequent energy intake in 1070 participants from a UK discovery and US 

validation cohort, consuming 8,624 standardised meals followed by 71,715 ad libitum meals, 

using continuous glucose monitors to record postprandial glycemia. For participants eating 

each of the standardised meals, the average postprandial glucose dip 2-3h relative to baseline 

level predicts an increase in hunger 2-3h (r=0.16 P=<0.001), shorter time until next meal (r=-

0.14 P=<0.001), greater energy intake 3-4h (r=0.19 P=<0.001) and greater energy intake 24h 

(r=0.27 P<=0.001). Results are directionally consistent in the US validation cohort. These data 

provide a quantitative assessment of the relevance of postprandial glycemia in appetite and 

energy intake modulation. 

 

Funding: Zoe Global Ltd, Wellcome Trust, NIHR.  
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Introduction  

 

Obesity represents a major global health challenge, with its prevalence in adults and children 

increasing worldwide(1). Effective short term interventions have, for the most part, failed to 

translate into successful long-term healthy behaviour(2). Multiple mechanisms make 

intentional weight loss difficult and facilitate weight regain ((3),(4) . In addition to decreases in 

resting energy expenditure (5) there is also considerable evidence for increases in 

postprandial appetite following hypocaloric diets and caloric restriction (e.g. (6),(7),(8)). 

Attenuating hunger after weight loss has been proposed as a strategy for preventing weight 

regain(9). 

 

Appetite control is influenced by tonic and episodic signalling systems, formerly known as 

long-term and short-term control. In the last decade research has shown that processes 

associated with fat-free mass and resting metabolic rate represent tonic determinants of 

energy intake (10), confirming consistent outcomes from several studies (eg (11) for review). 

Equally importantly, research continues to be focussed on episodic processes in the 

physiology of satiety with the goal of identifying key post-prandial events that influence the 

feeling of hunger after eating, and the occurrence and size of subsequent meals. Postprandial 

satiety is influenced by a series of physiological events following eating, including gastric 

distension, the release of gastrointestinal peptides and plasma metabolites. Prominent among 

these metabolites is plasma glucose, modulated by insulin, which has long been regarded as 

one of the most potentially interesting markers of postprandial satiety. 

 

Animal models have shown that insulin regulates appetite by activating insulin receptors that 

increase the hypothalamic expression of appetite suppressing (anorexigenic) peptides,and 

acts on other neurons to inhibit the expression of appetite stimulating (orexigenic) peptides. In 

parallel, insulin and leptin act to decrease food intake through appetite suppression and 

changes in energy homeostasis(12). Investigation of glucose-insulin dynamics in some human 

studies (13,14) suggests that lower glycemic loads and lower glycemic responses can result 

in lower postprandial appetite and energy intake, particularly in select overweight 

populations(15).  

 

The notion that blood glucose is involved in appetite expression was originally proposed by  

Mayer in his ‘glucostatic  hypothesis’ (16). However, appetite research in the past decades 

has focused on seemingly more potent appetite signals such as leptin, GLP-1 and other 

peptides and their receptors. To date, the role of glucose in appetite expression is not resolved 

https://paperpile.com/c/k4LEB3/OU57g
https://paperpile.com/c/k4LEB3/xJrJp
https://paperpile.com/c/k4LEB3/RDAYQ
https://paperpile.com/c/k4LEB3/vLjz9
https://paperpile.com/c/k4LEB3/MuZqk
https://paperpile.com/c/k4LEB3/PYtEb
https://paperpile.com/c/k4LEB3/M7qSj
https://paperpile.com/c/k4LEB3/DtlhH
https://paperpile.com/c/k4LEB3/H78ZB
https://paperpile.com/c/k4LEB3/TiV2O
https://paperpile.com/c/k4LEB3/T3BBz
https://paperpile.com/c/k4LEB3/5w3fz
https://paperpile.com/c/k4LEB3/7It8H+mVIue
https://paperpile.com/c/k4LEB3/VbKlq
https://paperpile.com/c/k4LEB3/bktrA
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and has not been investigated in free-living conditions.  In the current study we reprised 

Mayer’s idea and investigated the potential role of glucose in appetite control in a large-scale 

real-world environment.  We hypothesize that glucose dynamics after a meal influence self-

reported appetite, alertness and subsequent energy intake (calories). We have tested this by 

taking advantage of digital devices, specifically continuous glucose monitors, wearables, and 

mobile apps.  In the largest such study to date we assessed postprandial glucose and appetite 

in 1,110 healthy adults from the UK and US without diabetes, following them for 2 weeks at 

home as they consumed both standardised breakfast and ad libitum meals. By using 

continuous glucose monitors and a series of standardised meals at breakfast and recording 

all ad libitum food intake it has been possible to estimate the effect of postprandial glycemia 

on postprandial appetite and energy intake. 

 

Methods 

 

Study Participants 

The PREDICT 1 Cohort 1 study(17) (Personalised REsponses to DIetary Composition Trial) 

was a two-centre study conducted between 2018 and 2019. The first participant was enrolled 

on 4 August 2018, the last clinical visit was completed on 24 April 2019, with the primary cohort 

based at King’s College London, UK, and a validation cohort (that underwent the same 

profiling as in the UK) assessed at Massachusetts General Hospital (MGH) in Boston, 

Massachusetts, USA. In the UK, participants (target enrolment = 1,000, total enrolled n=1010) 

were recruited from the TwinsUK cohort, a prospective cohort study and online advertising. In 

the US, participants (target enrolment = 100, total enrolled = 100) were recruited through 

online advertising, research participant databases and Rally for Research 

(https://rally.partners.org/), an online recruiting portal for research trials. Ethical approvals for 

the studies were obtained in the UK Ethics was granted by the London - Hampstead Research 

Ethics Committee (REC approval18/LO/0663) Research Ethics Committee and Integrated 

Research Application System (IRAS 236407) and by the Partners Healthcare Institutional 

Review Board (IRB 2018P002078). The informed consent and ethical committee approvals 

covered all analysis reported in the current study in addition to the key primary outcomes 

described in Berry et al (18). The trial is registered at ClinicalTrials.gov (registration number: 

NCT03479866) and was run in accordance with the Declaration of Helsinki and Good Clinical 

Practice. Descriptive characteristics of participants included in this substudy are shown in 

Supplementary Table 1. 

 

 

 

https://paperpile.com/c/k4LEB3/62d2c
https://rally.partners.org/
https://paperpile.com/c/k4LEB3/ZjEem
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Study Protocol 

The full study protocol is described by Berry (17). In brief, the study consisted of two phases: 

a 1-day clinical baseline visit which included a breakfast and lunch challenge followed by a 

13-day at-home study phase. For this study we focused only on the at home phase. During 

the at-home phase (days 2-14), participants consumed standardised breakfasts (including a 

repeat of the clinic breakfast and lunch meal, an OGTT and 6 isocaloric meals of which 5 were 

in duplicate) as described in the protocol (17), varying in macronutrient composition.  

Analyses of most primary outcomes have been described in (18). Secondary analyses on 

hunger and postprandial responses after 2-hours are reported here.  

 

Participants were asked to fast for 3 hours following the standardised breakfast meals,and 

were then free to eat ad libitum. In later phases of the study, some participants were asked to 

consume meals with different fasting periods; these meals are excluded from the present 

analysis. Details of the meals included in the analysis are given in Supplementary Table 2. 

During the assessment period, participants wore continuous glucose monitors (CGM) and 

accelerometers to assess physical activity and sleep. 

 

Zoe study app and dietary assessment 

The Zoe study app prompted participants to report their hunger and alertness levels on visual 

analogue scales (from 0 to 10) truncated from Flint et al (19)], by displaying the questions 

“how hungry are you?” and “how alert are you?” above the scales, at 0 minutes (time of 

logging) and regular intervals thereafter following the logging of a standardised meal.. 

Participants were supported throughout the study with reminders and communication from 

study staff through a mobile application (Zoe study app).   

 

Any dietary intake during the study, including test meals, ad libitum meals and accompanying 

drinks, was recorded in the Zoe study app by participants with the exact time at consumption 

and ingredient quantities, so that compliance could be monitored by study staff. Only test 

meals that were completed according to instructions were included in analyses.  

 

QC of the app data: Inclusion criteria for meals 

Meals were included in the analysis if they met certain characteristics. Listed below are the 

exclusions applied to the overall PREDICT 1 Study dataset for the current analysis: 

 

1090 participants completed 9340 standardised meals, of which; 9078 meals were scored as 

compliant with the study protocol; 8797 meals also had meal valid glucose readings, 8792 

meals also occurred during days where the caloric intake was plausible (<6000 kcal), 8683 

https://paperpile.com/c/k4LEB3/62d2c
https://paperpile.com/c/k4LEB3/62d2c
https://paperpile.com/c/k4LEB3/ZjEem
https://paperpile.com/c/k4LEB3/c7k0d
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meals also were fasted until 175 minutes (within 10%, or +/- 100 kcal) and 8624 meals were 

also part of a daily calorie record that contained at least 5 dishes. 

 

When considering the free-living meals, calorie records were adjusted to remove suspicious 

and incomplete values. Meal calories were substituted with the food category average calories 

when missing, or when the reported value was more than 2 standard deviations from the food 

category average. These adjustments did not affect the significance of the results. When 

calculating Time until next meal, only meals in excess of 50kcal were included in the analysis 

to avoid noise from tea, coffee and other non-sugar sweetened beverages. 

  

For the energy intake in the 24 hours after a meal we used a window of time (-4 hours to +20 

hours relative to the set meal time) because participants were instructed to eat the set 

breakfast immediately after waking, and there is some natural variation in waking times. This 

introduces the risk that the 24hr period following the set breakfast may include the following 

day’s set breakfast. By calculating the window from -4hr to +20hr, we minimise this issue.  

 

The distributions of all outcome traits are presented in Extended Data Figure 2 (UK cohort) 

and Extended Data Figure 3 (US cohort). 

 

Data Analysis 

From the overall PREDICT 1 dataset (n=1,110) a subset was selected for inclusion in this 

study (see QC of the app data for inclusion criteria), corresponding to the responses to the 

standardised breakfast meals taken at home (n=1,070, m=8,624) and the subsequent free-

living meals consumed over the course of 24h (m=71,715). We denote the number of 

individuals who consumed the meal with ‘n’ and to the number of meals consumed with ‘m’.  

 

From the overall set of meals included in the study, two subsets were analysed: 

a) Meals from participants who ate each of the types of standardised meals at least once 

(n=763, m=5667) 

b) Meals eaten in duplicate (n=1053, m=6428)  

 

(see Statistical Analysis for power calculations for these two sets of data) 

 

Meal Baseline calculations 

The standard approach to the calculation of glycemic responses such as Glucose iAUC0-2h 

and Glucose Rise0-2h  from clinic data is to consider the average glucose level in the 30 

minutes before the start of the meal as the “meal baseline”. This baseline can itself therefore 
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be a source of variability in Glucose responses, especially those immediately after waking. 

Between two repeats of the same meal for the same individual, there was a (r=0.76 

p=<0.001) association between the meal baseline values. 

We took advantage of the larger dataset provided by the Continuous Glucose monitors to 

establish a more stable “average baseline” for each individual. This was calculated as the 

average of the meal baselines for each of the meals included in the study for that individual. 

By taking a more stable baseline, we were able to improve the repeatability of the glycemic 

responses that were studied, and observe stronger associations between the Glucose Dip2-3h 

and the postprandial measures. This choice of baseline does not affect the direction or 

significance of the main results of this study. A comparison of the main results is presented 

in Supplementary Table 4 

 

The phases of the study where measures were taken are illustrated in Figure 1 and are as 

follows:  

Average Baseline Level: for each participant, the mean glucose concentration throughout 

the 30 minutes before each meal eaten in the study, measured across all meals in the study 

for that participant.  

 

Phase 1: Pre-Meal: The phase up to 30 minutes before the standardised meal starts. It is 

characterised by; 

● pre-meal Hunger & Alertness: the level of hunger and alertness declared by the 

participant, in the period +/-5mins around the start of consumption of the meal. 

Readings are self-reported on a scale of 0-100. Larger values indicate increased 

perception of hunger and alertness.  Hunger and Alertness was asked at 0, 30, 90,120 

and 150 minutes after each standardised meal 

 

Phase 2: Standardised Meal: The phase from 0 to +2 hours is the conventional time period 

for measuring glucose response. It is characterised by:  

● Glucose Rise0-2h: the maximum level above the baseline within the 2h period, as a 

percentage of the Average Baseline Level; 

● Glucose iAUC0-2h:  the incremental area under the glucose curve, measured relative 

to the Average Baseline Level 

 

Phase 3: Post-Meal: The phase +2 hours to +3 hours after the meal. Participants who 

consumed additional food (except water) before the end of phase 3 (+3h hours, +/- 5 mins) 

were excluded from the analysis.  

● Glucose Dip2-3hr: The difference between the lowest glucose reading in hours 2-3, and 

the Average Baseline Level, as a percentage of Average Baseline Level. The Glucose 

Dip2-3hr is expressed as a percentage in order to adjust for differences in participants’ 

baseline levels. Positive Glucose Dip2-3hr values indicate states of mild hypoglycemia, 

negative Glucose Dip2-3hr values indicate that blood glucose levels remain elevated 

above baseline level.  

● Change In Hunger2-3hr: The difference between a participant’s pre-meal hunger and 
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the average hunger reading in hours 2-3.  

● Change In Alertness2-3hr: The difference between a participant’s pre-meal alertness 

and the average alertness reading in hours 2-3.  

 

Phase 4: Ad libitum meals: After 3 hours, participants record their food intake using a mobile 

app.  

● Time until next meal: The number of minutes after consumption of the standardised 

meal that elapsed before the next meal of at least 50 kcal was consumed;  

● Energy intake3-4h: The initial consumption is totalled over hours 3-4 including drinks;  

Energy intake24h: The total daily consumption covers the full period from 4 hours before the 

standardised breakfast to 20 hours after/ 

 

The key measures are summarized in Table 1. The Consort Diagram for number of 

participants and the types of meals are shown in Extended Data Figure 1. 

 

 

Statistical analyses 

In order to test for associations between glucose parameters, hunger and energy intake, 

standard linear regression models were used. P<.05 was considered as nominally statistically 

significant, and error bars are shown throughout as 95% confidence intervals. All key 

measures were approximately normally distributed (γ2: 0.7 to 2.26), except time to next meal 

and energy intake 3-4h. Distributions are shown in Extended Data Figure 2. Linear 

regressions were adjusted for age, sex, BMI and weight. Data from questionnaires, clinical 

visits and laboratory data was entered using comma delimited files, Excel spreadsheets and 

Microsoft Access. CGM  data was imported from text files into the analysis pipeline. Analyses 

were carried out in R 3.4.2. Core Team, Python 3.7, using Pandas 0.25.1, Scipy 1.3.1, 

Pingouin 0.3.3.   

 

 

The key analyses included in this study are multiple linear regressions, with Pearson’s 

correlations coefficients and 95% CIs used to report effect sizes. Statistical power for the key 

analyses refer to (i) differences between individuals, for which the sample size is n=763 (see 

Data Analysis: Set (a), corresponding to the results described in Figure 2), and (ii) differences 

between m=6428 meals consumed in duplicate; for which the sample size is therefore m=3214 

pairs of meals (see Data Analysis: Set(b), corresponding to the results described in Figure 

3). The power for the analyses for (i) was carried out adjusting for 5 traits, namely change in 

hunger, change in alertness, time to next meal, energy intake in the 3 hours after the meal 

and energy intake in the 24 hours after the meal, and hence an alpha level of 0.01 was chosen. 

The necessary correlation effect size needed to achieve 80% power with p<0.01 for this 
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sample size is r= 0.124. For the correlations for (ii) to achieve 80% power at the same alpha 

level the Pearson’s coefficient needs to be r=0.061 or higher. 

 

 

Results 

The descriptive characteristics of study participants, including their fasting levels of circulating 

glucose and insulin and their insulin secretion indices from the hospital day meal are presented 

in Supplementary Table 1. For each type of standardised meal, the mean and standard 

deviation of responses for the post-prandial measures are presented in Table 1 (data for the 

validation cohort is shown in Supplementary Table 2(b)). The macronutrient content of the 

standardised and free-living meals analysed is shown in Supplementary Table 3. 

  

To assess the repeatability of self-reported measures of hunger, alertness, and energy intake, 

we explored the 6,428 standardised breakfasts that were eaten in duplicate on different days 

(see Extended Data Figure 1 for meal numbers). Each of the glycemic measures was 

statistically repeatable, though as expected the strength of correlations varied; Glucose Rise0-

2h (r=0.73 P=<0.001; US: r=0.64 P=<0.001), Glucose Dip2-3h (r=0.58 P=<0.001; US: r=0.57 

P=<0.001). Intraclass correlations (ICC) for these measures fell within the moderate to good 

range: Glucose Rise0-2h (ICC(2,1)=0.81; 95% CI [0.78, 0.83]; US: ICC(2,1)=0.78; 95% CI [0.69, 

0.85]), Glucose Dip2-3h (ICC(2,1)=0.62; 95% CI [0.59, 0.66]; US: ICC(2,1)=0.68; 95% CI [0.56, 

0.78]). 

  

1) Glucose Dips2-3h predict subsequent hunger and calorie intake 

 

Participants were instructed to eat a range of standardised breakfasts, followed by a 3 hour 

fast. The post-prandial measures for those participants who consumed each of the 5 core 

meals (High Carb, High Fat, OGTT, UK Average, High Fibre) (n=763, m=5667; see 

Supplementary Table 2 for meals included) were averaged for each participant. We 

examined whether there was an association between glycemic responses - peak glucose rise 

in hours 0-2 (Glucose Rise0-2h), the glucose incremental area above baseline in hours 0-2 

(iAUC0-2h), and the subsequent Glucose Dip2-3h - and postprandial measures of self-reported 

hunger, alertness, time until next meal, and subsequent energy intake. 

 

Across the postprandial measures, we found a stronger correlation with Glucose Dips 2-3h 

than with Glucose Rise0-2h, or Glucose iAUC0-2h (Table 2). The Glucose Dip2-3h was statistically 

significantly associated with a change in Hunger2-3h (r=0.16 P=<0.001; US: r=0.12 P=0.315), , 
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Time until next meal (r=-0.14 P=<0.001; US: r=-0.16 P=0.160), Energy intake3-4h (r=0.19 

P=<0.001; US: r=0.24 P=0.032), Energy intake24h (r=0.27 P=<0.001; US: r=0.21 P=0.065). 

The association with change in Alertness2-3h (r=-0.04 P=0.313; US: r=0.02 P=0.875) was not 

significant. The Glucose Dip2-3h was as predictive of postprandial responses as the 

participant’s self-reported hunger. 

Figure 2 illustrates the difference by dividing the participants into quartiles of Glucose Dip2-3h. 

The participants with the largest average Glucose Dip2-3h (Q4) also had on average a +9%; 

(95% CI 5,13) increase in reported Hunger2-3h, a -2% (95% CI 1,5) decrease in Alertness level2-

3h, a -24 minutes (95% CI 15,33) shorter time until the next meal, a +75 kcal (95% CI 47,103) 

higher  Energy intake3-4h, and a +312 kcal (95% CI 226,398) higher overall Energy intake24h, 

compared to the participants with the smallest Glucose Dip2-3h (Q1). 

 

The associations between the Glucose Dips2-3h and the postprandial measures were strongest 

with the OGTT set meal (which also preceded the largest dips). For each of the set meal 

subgroups considered independently, the associations between the glucose dip and the 

postprandial measures were directionally consistent with the overall results and statistically 

significant, with the exception of (a) Change in Alertness2-3h,,which was not significantly 

associated at the subgroup level and (b) the High Carb muffin, where the glucose dip was not 

significantly associated with Energy intake3-4h (r=0.04, p=0.349). 

 

Glucose Dips2-3h had modest and non-significant correlations with individual characteristics, 

such as age, weight and BMI -  except for sex, where males (P=0.005) had slightly larger dips. 

Glucose Dips2-3h were associated with lower fasting levels of Insulin and C-Peptide, as 

measured in clinic; Plasma Glucose (r=-0.05 P=0.186; US: r=-0.12 P=0.321), Insulin (r=-0.10 

P=0.008; US: r=0.02 P=0.883), C-Peptide (r=-0.14 P=<0.001; US: r=-0.11 P=0.357). Glucose 

dips2-3h were associated with the Glucose Rise0-2 h, but not with Glucose iAUC0-2 ; Glucose 

iAUC0-2h (r=0.05 P=0.166; US: r=-0.15 P=0.189), Glucose Rise0-2h (r=0.12 P=0.003; US: 

r=0.07 P=0.557) 

 

After adjusting for these factors, the postprandial measures (except Change in alertness2-3hr) 

remained significantly correlated with the Glucose Dips2-3h; Change in hunger2-3hr (r=0.12 

P=0.002; US: r=-0.01 P=0.904), Change in alertness2-3hr (r=-0.06 P=0.109; US: r=0.04 

P=0.756), Time until next meal (r=-0.15 P=<0.001; US: r=-0.24 P=0.038), Energy intake 3-4h 

(r=0.18 P=<0.001; US: r=0.23 P=0.055), Energy intake 24h (r=0.25 P=<0.001; US: r=0.12 

P=0.316) 

 

2) Glucose Dips2-3h in identical meals consumed by the same person.  



11 

 

To understand if the association between Glucose Dips2-3h, hunger, alertness and postprandial 

energy intake was present even when adjusting for individual characteristics, we used each 

person as their own control and compared their own responses to the standardised breakfasts 

that were repeated in duplicate, following an overnight fast, separated by 2-5 days (n=1053, 

m=6428; see Supplementary Table 2 for meal numbers).  

 

The difference between the first and second repeat of each meal was calculated. We then 

measured the degree to which the difference in Glucose Dip2-3h was associated with the 

difference in each of the postprandial measures. Even when holding constant both the food 

and the individual, Glucose Dips2-3h were modestly but significantly correlated with time until 

next meal (r=-0.06 P=<0.001), Energy intake3-4h(r=0.08 P=<0.001), and Energy intake24h 

(r=0.06 P=<0.001). The association with change in Hunger2-3hr (r=0.04 P=0.232) and change 

in Alertness2-3hr (r=-0.06 P=0.076) was directional, but not significant. None of the correlations 

in the smaller US validation cohort were significant. Figure 3 illustrates these effects, by 

comparing the postprandial measures across the largest (above +10%) and smallest (below -

10%) differences in Glucose Dip2-3h.  

The correlation between difference in glucose dips and difference between the five outcomes 

shown in Figure 3 for each pair of meals was computed separately for each of four type of 

standardised meals included in the analysis, namely High Carb, High Protein, OGTT and “UK 

Average”. The resulting correlation coefficients were then meta-analysed using a fixed effects 

and a random effects estimate. The results are reported in Supplementary Table 5 and are 

very similar to those reported in Figure 3. 

The fact that associations between Glucose Dips2-3h and postprandial measures still exist 

between repeated meals for the same individual shows that this relationship is not fully driven 

by differences between individuals. It is possible that contextual factors (such as exercise, 

sleep and other meals in the previous day) may be responsible for differences in glucose dips2-

3h but we did not explore this avenue further in this study. 

 

Discussion 

The notion that blood glucose is involved in appetite was described by Mayer in the ‘glucostatic  

hypothesis’(16). This concept - that a decline in blood glucose influenced appetite -  was 

subjected to intense study (20)(21,22) but has lost support from front line researchers, partly 

because of a lack of evidence of any suppression of eating by high glucose availability (23). It 

has been argued that inadequate delivery of glucose to the brain (‘neuroglucopenia’ or 

‘glucoprivation’) activates neurocircuits that drive feeding along with wide-ranging 

https://paperpile.com/c/k4LEB3/bktrA
https://paperpile.com/c/k4LEB3/FDex0
https://paperpile.com/c/k4LEB3/AI3Yt+CNemk
https://paperpile.com/c/k4LEB3/VrtKR


12 

neuroendocrine and autonomic responses(24). A sustained increase in food intake follows, 

overriding the control exerted by the energy homeostasis system, i.e., irrespective of body fuel 

stores or plasma levels of leptin or insulin (24,25). However, this mechanism has been 

dismissed as not relevant to normal feeding and considered as an “emergency response” (e.g. 

(26)). More recently, an observational (n=31) study (31) of obese and healthy individuals in 

free-living conditions found that the glucose nadir preceding a meal had statistically significant 

ability to predict hunger and subsequent energy intake. In the present study, using continuous 

glucose monitors in an at-home setting in >8,000 controlled meals and> 70,000 ad libitum 

meals we have been able to show that postprandial glucose dips are associated with appetite 

expression and energy intake in normal feeding in healthy individuals under what can be 

regarded as real-world conditions. 

We demonstrate in the largest study to date the importance of glucose dynamics in the 

regulation of hunger and subsequent energy intake in real life scenarios. We report that the 

key postprandial glycemic measure linked to hunger and subsequent food intake is the 

Glucose Dip2-3h, not the Glucose Rise0-2h nor the glucose iAUC0-2h. Whilst some of the 

correlations we report are relatively modest, they reflect the complexity of real-world eating 

decisions. It is notable that the Glucose Dip2-3h was as good a predictor of subsequent energy 

intake as the participants’ self-reported Hunger2-3h. 

We found these effects to be consistent for the same individual consuming the same meal on 

two occasions - the meals with larger Glucose Dips2-3h have larger subjectively declared 

hunger, and greater energy intake afterwards. These results were directionally consistent with 

those in the US validation cohort, although not all results were significant in this smaller cohort. 

We have not fully explored all the possible causes of Glucose Dips in this study; but the 

findings suggest that both individual characteristics and dietary factors are likely important. 

Comparing individuals, Glucose Dips2-3h are negatively associated with fasting C-peptide and 

insulin levels. Between the standardised meals, the largest glucose dips followed the meal 

with the largest glucose rise (OGTT). Our analysis may partly explain why observational 

epidemiological ((27) (28)) studies have shown strong correlations between foods with high 

glycemic loads (such as potatoes and sugar sweetened beverages (29)) and weight gain – as  

consumption of such foods could lead to glucose dips and subsequent hunger. The link 

between postprandial blood glucose and satiety suggests novel approaches to predicting and 

managing hunger using glucose data, especially if it were available in real-time.  

The associations demonstrated in our studies are a realistic reflection of how appetite control 

operates under real world conditions, allowing variation in contextual variables such as 

https://paperpile.com/c/k4LEB3/xnbij
https://paperpile.com/c/k4LEB3/lb5oT+xnbij
https://paperpile.com/c/k4LEB3/v1BhQ
https://paperpile.com/c/k4LEB3/haAc
https://paperpile.com/c/k4LEB3/8AXT
https://paperpile.com/c/k4LEB3/UE4K
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exercise, sleep, or meal sequence. These factors may contribute to the observed in-person 

variability in Glucose Dips. It should be noted that the degree of association (correlation 

values) between glucose dips and appetite variables is relatively small, and therefore 

contributes only partly to postprandial satiety. In heavily controlled laboratory studies with 

uniform conditions and with participants’ physiology and behaviour tightly constrained, much 

higher correlations can be observed; however, these scientifically ideal conditions are not 

typical of real-world human activities. The data set reported in this paper is unique - most of 

the meals were self-determined and consumed according to the individuals’ own schedules. 

The decision to eat is determined by many social, psychological and physiological factors, and 

glucose dips are just one part of the picture. Our data confirm that in the real world blood 

glucose dips are a physiological mediator of this dietary risk factor, although much of the 

variance remains to be accounted for. 

We note several study limitations. Firstly, given the scale, it was not practical to measure 

appetite hormones for any of the participants nor measure insulin sensitivity directly with a 

euglycemic clamp, nor to record insulin dynamics for the at home meals. Secondly, for the ad 

libitum meals the meal content is self-reported. Great care was taken to ensure the quality and 

accuracy of these records, as outlined in the methods, and we believe the scale and real-life 

context of this study more than compensates for this limitation. Thirdly, we relied on the self-

reported compliance of the participants with the fasting protocols - 109 meals were excluded 

from participants that ate before the end of the specified fasting period. (See QC of the app 

data: Inclusion criteria for meals) - these participants may also have been responding to 

blood glucose dips. Fourthly, whilst we were able to study energy intake immediately after a 

meal and total energy intake over 24 hours, we were not able to monitor if participants 

compensated for short term changes in energy intake over a period of weeks or months. In 

addition, there was limited ethnic diversity in our study population (97% white). In addition, we 

have not included some potential confounders in the models, including sleep and physical 

activity. Finally, we note that some of the outcomes studied, specifically the visual analogue 

scale for scoring hunger was not perfectly normally distributed. However, we have analysed a 

very large number of meals (8624 standardised meals and 71,715 ad libitum meals) and linear 

models are known to be robust to the violation of the assumption of normality when the sample 

size is large enough for the central limit theorem to be at work (30). 

In conclusion, our data show for the first time in a large-scale controlled study of healthy 

individuals representative of the general population that postprandial glucose dips are 

common and lead to increased hunger and energy consumption in real world conditions.  

  

https://paperpile.com/c/k4LEB3/vvJL8
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Figure Legends 

Figure 1. Average glycemic responses to standardised breakfasts, illustrating key 

measures used in study  (n=1,070, m=8,624). Four phases were studied (see methods) 

namely: Phase 1: Pre-Meal: ( up to 30 minutes before the standardised meal starts. Phase 2: 

Standardised Meal: ( from 0 to +2 hours is the conventional time period for measuring glucose 

response)  Phase 3: Post-Meal: The phase +2 hours to +3 hours after the meal. All participants 

were asked to fast up until 3 hours post-meal so no energy intake has taken place. Phase 4: 

Ad libitum meals: when participants were allowed to eat again. See methods for details  

 

Figure 2.  Postprandial measures by top and bottom quartiles of 2-3h Glucose Dip  

(n=763, m=5667 (UK n=685, m=5667, US n=78, m=602). Participants were divided into 

quartiles of their average Glucose Dip2-3h, following consumption of' OGTT, High Carb, UK 

average, High Fat, and High Fibre standardised breakfasts (n=5667). The participants with 

the largest dips (Q4) are compared to those with the smallest dips (Q1), according to their 

Change in Hunger2-3h, Change in Alertness2-3h, Time until the next meal, ad libitum Energy 

Intake3-4h immediately after the end of the fasting period, and ad libitum Energy Intake24h. 

Boxplots showing median, means (indicated by a + sign) interquartile ranges and 90% 

confidence intervals are shown. P-values from two sided t-tests are reported. Sample sizes 

for each panel (a) change in hunger and (b) change in alertness Q1(n=161) Q4(n=162) (c) 

time in minutes until next meal (d) energy intake between 3 and 4 hours after the meal  (e) 

energy intake in the 24 hours after the meal Q1(n=172) Q4(n=171).  Error bars indicate 90% 

confidence intervals. 

 

Figure 3. Differences in postprandial measures across repeated meals within 

individuals (n=1053, m=6428 (UK n=958; US n=95, m=500). Standardised breakfasts that 

were repeated on two occasions, following an overnight fast, separated by 2-5 days. The 

difference between the first and second repeat of each meal was calculated. We then 

measured the degree to which the difference in Glucose Dip2-3h was associated with the 

difference in each of the postprandial measures in the exploration and validation studies.  For 

illustration, the results were grouped according to differences between the  Glucose Dip2-3h 

recorded on the first and second repeat (<-10% less, -10% to +10%, >10% more ). Number 

of pairs of meals for each box are: for panels  (a) and (b) <-10% less m= 177 , -10% to +10% 

m=652, >10% more m=157; for panels (c) (d) and (e) <-10% less m= 501 , -10% to +10% 

m=1960, >10% more m=503. Correlation coefficients  (r) were calculated for  m= 2964 and 
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m=250  pairs of meals from the UK and US respectively. P-values from two sided tests are 

shown. Error bars indicate 90% confidence intervals. 
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Tables. 

Table 1. Responses to standardised meals (Exploration Cohort) 

Meal Num Glucose 
Rise 0-2h 

(%) 

Glucose Dip 
2-3h 
(%) 

Change 
in hunger 

Change 
in 

alertness 

Time until 
next meal 

(mins) 

Energy 
intake 3-4h 

(kcal) 

Energy intake 
24h 

(kcal) 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

High Carb 1,826 56% 24% 5% 11% -12 28 8 20 273 87 156 263 2189 614 

High Fat 381 29% 18% 8% 8% -10 24 6 21 264 95 197 286 2267 696 

High Fibre 886 50% 23% 6% 10% -18 26 8 20 277 89 134 243 2237 647 

High Protein 1,069 27% 17% 4% 9% -16 27 7 20 272 134 163 244 2231 650 

OGTT 1,808 77% 31% 19% 17% 9 28 3 25 241 85 269 283 2085 622 

UK Average 1,865 45% 22% 6% 10% -11 26 7 21 272 79 131 220 2182 632 

 

 

 

Table 2: Associations between glucose responses and postprandial measures, between 

individuals 

 Glucose Rise 
0-2h 

Glucose iAUC 
0-2h 

Change in hunger Glucose Dip 2-3h 

Glucose Dip  
2-3h 

r=0.11 P=0.003 
 

 (US: r=0.07 P=0.557) 

r=0.05 P=0.166 
 

 (US: r=-0.15 P=0.189) 

r=0.16 P=<0.001 
 

 (US: r=0.12 P=0.315) 

 

Change in 
hunger 

r=0.02 P=0.678 
 

 (US: r=0.07 P=0.540) 

r=0.02 P=0.701 
 

 (US: r=-0.05 P=0.647) 

 r=0.16 P=<0.001 
 

 (US: r=0.12 P=0.315) 

Change in 
alertness 

r=0.04 P=0.304 
 

 (US: r=-0.07 P=0.571) 

r=0.05 P=0.169 
 

 (US: r=0.00 P=0.988) 

r=-0.03 P=0.416 
 

 (US: r=0.06 P=0.625) 

r=-0.04 P=0.313 
 

 (US: r=0.02 P=0.875) 

Time until next 
meal 

r=0.13 P=<0.001 
 

 (US: r=-0.09 P=0.413) 

r=0.11 P=0.005 
 

 (US: r=-0.11 P=0.319) 

r=-0.11 P=0.007 
 

 (US: r=-0.02 P=0.876) 

r=-0.14 P=<0.001 
 

 (US: r=-0.16 P=0.160) 

Energy intake 
 3-4h 

r=-0.16 P=<0.001 
 

 (US: r=-0.03 P=0.764) 

r=-0.08 P=0.036 
 

 (US: r=0.05 P=0.695) 

r=0.21 P=<0.001 
 

 (US: r=0.03 P=0.810) 

r=0.19 P=<0.001 
 

 (US: r=0.24 P=0.032) 

Energy intake 
24h 

r=-0.08 P=0.036 
 

 (US: r=-0.02 P=0.835) 

r=-0.05 P=0.170 
 

 (US: r=0.05 P=0.677) 

r=0.18 P=<0.001 
 

 (US: r=0.10 P=0.375) 

r=0.27 P=<0.001 
 

 (US: r=0.21 P=0.065) 

 


