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ABSTRACT: We present here a novel surface mass spectrometry
strategy to perform untargeted metabolite profiling of formalin-
fixed paraffin-embedded pediatric ependymoma archives. Sequen-
tial Orbitrap secondary ion mass spectrometry (3D OrbiSIMS)
and liquid extraction surface analysis-tandem mass spectrometry
(LESA-MS/MS) permitted the detection of 887 metabolites (163
chemical classes) from pediatric ependymoma tumor tissue
microarrays (diameter: <1 mm; thickness: 4 μm). From these
163 classes, 60 classes were detected with both techniques, whilst
LESA-MS/MS and 3D OrbiSIMS individually allowed the
detection of another 83 and 20 unique metabolite classes,
respectively. Through data fusion and multivariate analysis, we were able to identify key metabolites and corresponding pathways
predictive of tumor relapse, which were retrospectively confirmed by gene expression analysis with publicly available data.
Altogether, this sequential mass spectrometry strategy has shown to be a versatile tool to perform high-throughput metabolite
profiling on sample-limited tissue archives.

Central nervous system pediatric tumors are the most
prevalent type of solid cancer diagnosed in children and

the leading cause of mortality among all cancers in children.1

From the clinical and biological perspective, intracranial
pediatric ependymomas remain enigmatic and challenging
tumors to treat. Overall, the prognosis is poor with over 50% of
tumors relapsing and less than 50% of children surviving this
disease (5 year overall survival is ∼25% for patients who have
relapsed).2−4 Though widely considered a “surgical disease”, a
significant proportion of patients experience relapse, even
following complete surgical resection of the tumor. The
identification of biological correlates of disease progression and
patient-tailored therapeutic targets therefore remains a
significant challenge in this disease. Understanding the
biochemical nature of tumor development is of vital
importance for the development of the next generation of
treatments.2 In a disease state, the human metabolome is
affected by several factors and therefore provides an excellent
source of information to investigate disease-related alterations
in metabolism.5 To do so, an untargeted metabolomics
approach can be used to study molecular changes within and
between tissue samples of different phenotypes.6,7 State-of-the-
art metabolomics techniques allow the detection of hundreds
to thousands of metabolites in a biological sample,8 where

untargeted metabolomics of cancer tissue is undertaken by
liquid chromatography−mass spectrometry (LC−MS) and gas
chromatography−mass spectrometry (GC−MS).9,10 Chroma-
tography-based strategies allow the identification of a vast
number of metabolites; however, these require 20−50 mg of
tissue for metabolomics analysis.
Preserving tumor regions of interest is commonly achieved

using the tissue microarray (TMA) format. Neuropathologists
identify and cut out key regions in the whole tissue section,
which are stored as a separate formalin-fixed paraffin-
embedded (FFPE) block. The TMA platform allows small
amounts of tissue to be used for transcriptomic and histological
analysis,11−13 though for diagnosis, the entirety of the tumor
needs to be reviewed. Since the TMA tissue sections are small
(diameter: <1 mm; thickness: 4 μm), sensitive analytical
techniques are required for metabolomics studies to detect
low-abundance metabolites. Despite the vast amount of
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available TMA libraries, metabolite profiling of tumor TMAs
has been an unexplored territory due to incompatibility of
LC−MS or GC−MS analysis. To perform MS analysis on
TMAs, a sensitive technique is required to directly obtain a
wide range of metabolites from small tissue sections.
A few studies have shown the potential of liquid extraction

surface analysis-MS (LESA-MS) for untargeted metabolomics
across a range of sample types. With LESA-MS, liquid
microjunction-based extraction can be performed on a flat
sample surface to obtain the analytes of interest, which are
directly injected into a mass spectrometer.14 Hall et al.15 found
significantly changed profiles of lipids in non-alcoholic fatty
liver disease tissue by LESA-MS. This allowed discrimination
between different stages of stearosis. Ellis et al.16 performed
LESA-MS for the analysis of single-cell arrays and could
distinguish cell types based on lipid profiles showing the
capability of performing single-cell metabolomics with LESA.
We have also successfully performed LESA-MS to identify
metabolic changes in small volumes of urine samples from an
intervention study.17 Basu et al.18 performed LESA-MS for
direct metabolite profiling for several different breast cancer
cell lines. The capability of LESA was shown to allow direct
analysis of adherent cells with minimal sample preparation.
Collectively, these studies have shown that from a limited
amount of sample, metabolic changes could be measured
accurately.
The recent development of Orbitrap secondary ion MS (3D

OrbiSIMS) revealed new possibilities for metabolic profiling
due to its capability of high mass accuracy and mass resolving
power (>240,000 at m/z 200) at subcellular spatial
resolution.19 In that study, it was shown that 3D OrbiSIMS
can be used for 2D and 3D imaging of neurotransmitters, in
situ identification of lipid species by tandem MS, and
performing metabolomics profiling of single cells.19 One
unmet scientific challenge for brain tumor research is the
capability to perform metabolomics analysis on archived TMAs
to understand tumor development and find potential targets
for therapies.8,20

3D OrbiSIMS and LESA-tandem MS (LESA-MS/MS)
require only minimal sample preparation, analysis can be
performed directly on the tissue sample, and both instruments
can acquire data in an automated manner using the TMA as a
sample platform. These MS techniques can therefore circum-
vent the need for tissue homogenization, allowing the tissue to
remain architecturally intact and available for subsequent
studies. The data achievable using this approach will address
current challenges in cancer metabolomics, as detection of low-
abundance (highly polar) oncometabolites to study important
metabolic pathways may enable the development of novel
prognostic and treatment strategies.9,21 To date, no disease
studies have thus far reported the use of combined 3D
OrbiSIMS and LESA-MS/MS for untargeted metabolite
profiling on TMAs. Combining MS techniques, in which
ions are generated via different mechanisms, will allow
acquisition of complementary metabolomics datasets from
the same set of samples. Combination of the individual
datasets on existing TMA archives could therefore provide a
vast amount of clinically valuable information. Here, we
perform 3D OrbiSIMS and LESA-MS/MS analysis of FFPE
pediatric ependymoma TMAs as an exemplar demonstration of
the ability to perform untargeted surface metabolomics and
obtain clinically relevant data.

■ EXPERIMENTAL SECTION
Tissue Microarray Preparation. Hematoxylin and eosin-

stained sections from FFPE pediatric ependymoma (collection
period 1992−2010) were examined by a neuropathologist at
Nottingham University Hospital, and three representative areas
were marked on the slides. Using a Raymond Lamb tissue
micro-arrayer, 1 mm cores were punched from the marked
areas of the donor blocks and placed into recipient paraffin
blocks to generate a tissue microarray (TMA) on glass slides.
Sections (4 μm) were cut from each block for use in further
experiments. The analyzed TMA blocks consisted of patients
who experienced tumor relapse (N = 5; n = 3) and patients
without relapse (N = 2; n = 3). All tissue sections were
approximately 1 mm in diameter.

Sample Preparation for MS Analysis. Deparaffinization
of FFPE pediatric ependymoma TMAs (Figure 1) was

achieved using an adapted protocol from Ly et al.22 FFPE
TMAs were first washed twice for 1 min in a xylene bath
(mixture of isomers; ≥98.5%; AnalaR NORMAPUR, VWR,
Leicestershire, UK). Residual xylene was removed, and the
array was allowed to dry in a fume hood for at least 1 h before
storage at room temperature until analysis. Time between
storage and 3D OrbiSIMS analysis was less than 24 h.

3D OrbiSIMS. The TMA was placed in a hybrid TOF.SIMS
5 (IONTOF GmbH, Münster, DE) instrument coupled to a Q
Exactive HF (Thermo Scientific, San Jose, CA) mass
spectrometer without any dessication. Ions were sputtered
from the surface using a 20 keV Ar3000

+ gas cluster ion beam
(GCIB). The field of view (FoV) was set to 500 μm × 500 μm
around the center of each tissue section to avoid charging
effects of the glass surface. The ion dose was 6.3 × 1014 ions/
cm2. Spectra were acquired at a lateral resolution of 20 μm in
random raster mode. The Orbitrap was operated in full-MS
mode. The resolution was set to 240,000 at m/z 200, and the
AGC target was set to 1 × 106 with a maximum ion injection of
511 ms. Data were acquired in the scan range m/z 75−1125
for both positive and negative polarity.

LESA-MS/MS. The TMA was placed on a universal plate
holder (Advion Biosciences, Ithaca, NY) and scanned with an
Epson V330 scanner. The tissue sample location was selected
in LESA Points (Advion Biosciences, Ithaca, NY). Liquid
extraction surface analysis-tandem mass spectrometry (LESA-
MS/MS) was carried out using a TriVersa Nanomate (Advion
Biosciences, Ithaca, NY) coupled to a Q Exactive plus Orbitrap
mass spectrometer (Thermo Scientific, San Jose, CA).
Extraction of metabolites from tissue samples was conducted
with a mixture of 80% v/v methanol (CHROMASOLV;
Sigma-Aldrich, Gillingham, UK) and 20% v/v water
(CHROMASOLV; Sigma-Aldrich, Gillingham, UK) to which

Figure 1. Example of an ependymoma tissue microarray before and
after paraffin removal with xylene.
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MS-grade formic acid (Optima LC−MS grade; Fisher
Scientific, Loughborough, UK) was added (final concentration,
1% v/v). Brain tissue was sampled using the contact LESA
approach,23 in which the solvent tip is brought into contact
with the sample to minimize solvent spread. During contact,
1.5 μL of solvent (total volume: 3 μL) was dispensed on the
tissue and after 15 s, 2.0 μL was aspirated back into the tip.
The extract was introduced into the mass spectrometer via
chip-based nanoelectrospray ionization (ESI Chip, Advion
Biosciences, Ithaca, NY) at 1.4 kV and 0.3 psi gas pressure.17

The mass spectrometer was operated in full-MS/dd-MS2

mode. MS1 spectra were acquired in a scan range of m/z
70−1050. The resolution was set to 140,000 at m/z 200, and
the AGC target was set to 3 × 106 with a maximum ion
injection time of 200 ms. Data-dependent MS/MS spectra
were acquired at a resolution of 17,500 at m/z 200. The AGC
target for MS2 scans was set to 1 × 105 with a maximum ion
injection time of 50 ms. The top 20 most intense ions were
isolated within a 1 m/z window for fragmentation. Dynamic
exclusion was applied for 120 s per polarity. Fragmentation was
carried out by higher-energy collisional dissociation using a
stepped collision energy of 10, 25, and 40 eV. All tissue
sections were analyzed once. MS data were acquired for 2 min
per polarity. Time between 3D OrbiSIMS and LESA-MS/MS
analysis was less than 24 h.
Feature Extraction. Mass spectrometry data were

processed using an in-house MATLAB (R2017a, The Math-
Works, Inc., Natick, MA) script. For LESA-MS data, files were
converted to .mzXML using ProteoWizard (v3.0.1908).24

Peaks were picked from averaged spectra using the mspeaks
function (threshold: 1% of base peak intensity) and aligned
within a 5 ppm m/z window.15 Features with >20% missing
values across all samples were removed.25 The remaining
missing values were imputed using k-nearest neighbor (knn)

imputation. The value of k was set to 10.26 For 3D OrbiSIMS,
total ion spectra were exported as .TXT files and further
processed in MATLAB as outlined above. The threshold
intensity for peaks was set to 1% of the base peak intensity.
The output intensity matrices were stored in .XLSX format for
further use.

Metabolite Identification and Pathway Analysis. Peak
lists were searched against the Human Metabolome Database
(HMDB)27 with 3 ppm mass tolerance using [M + H]+, [M +
Na]+, [M + K]+, and [M + H-H2O]

+ as ions for positive mode
and [M − H]−, and [M − H-H2O]

− for negative mode.
Monoisotopic masses were exported from the Human
Metabolome Database and then submitted to MetExplore28

for pathway analysis. Masses were searched against the Homo
sapiens (Strain: global) (Source: Publication, Version: 2.02)
database (3 ppm mass tolerance).

Data Fusion and Statistical Analysis. Analyzed
ependymoma samples were divided in two groups: no relapse
and eventual relapse for patients who did not experience
relapse and patients for whom ependymoma relapsed after
surgical removal, respectively. For data fusion, a low-level
strategy29 was used in which the individual ion intensity
matrices derived from the feature extraction workflow were
normalized to the total ion count, log-transformed, and
subsequently concatenated. Next, data were subjected to
partial-least-squares discriminant analysis (PLS-DA). An initial
model was built for feature selection based on a variable’s
importance in projection (VIP) score ≥1.5. With the selected
variables, a new PLS-DA classification model was created and
validated through leave-one-out cross validation and a
permutation test.30 Leave-one-out cross validation was
performed by holding out all replicates for one subject during
each iteration.

Figure 2. Sequential mass spectrometry analysis of pediatric ependymoma tissue microarrays. (A) Tumor tissue was removed and the tumor area
was marked and then paraffin-embedded for long-term storage. (B) For MS analysis, a TMA block from the archive was sectioned and mounted
onto a glass substrate followed by a xylene wash to remove the paraffin. (C) Paraffin-free samples were then analyzed by OrbiSIMS followed by (D)
LESA-MS/MS. (E) Ions were selected from the mass spectra and aligned. (F) All matrices with ion intensities were then combined (low-level data
fusion). (G) Subsequently, data were subjected to partial-least-squares discriminant analysis (PLS-DA) to identify discriminative features in tumor
recurrence. Molecular formulae were assigned to the significant ions using the Human Metabolome Database. Ions with a putative ID were then
submitted to MetExplore for metabolic pathway analysis to identify affected pathways and corresponding genes.
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Univariate statistical analysis was a Student’s t-test. False
discovery rates were estimated using permutations. A p-value
<0.05 was considered significant.

■ RESULTS AND DISCUSSION

Sequential Mass Spectrometry Workflow for Untar-
geted Metabolomics. We analyzed deparaffinized TMAs
(Figure 2A,B), first with 3D OrbiSIMS (Figure 2C) followed
by LESA-MS/MS (Figure 2D). The idea behind this analysis
strategy was to maximize the metabolite coverage whilst
consuming only a minimal amount of tissue using comple-
mentary MS techniques. After the data were acquired, they
were processed in MATLAB for peak detection and alignment
(Figure 2E). To get the most out of the 3D OrbiSIMS and
LESA-MS/MS datasets, a low-level data fusion strategy25,29

was added to the workflow, which means that the ion intensity
data from 3D OrbiSIMS and LESA-MS/MS were combined
into one single data matrix instead of creating individual
classification models for each dataset (Figure 2F). The fused
data was then subjected to PLS-DA with subsequent
permutation testing30 to select discriminative ions between
ependymoma subgroups (Figure 2G). Molecular formulae
were subsequently assigned using the Human Metabolome
Database27 (Figure 2) and submitted for pathways analysis in
MetExplore28,31 to identify significantly affected metabolic
pathways and corresponding genes (Figure 2).

Complementary Metabolite Profiling with 3D Orbi-
SIMS and LESA-MS/MS. In both MS techniques, molecules
are ionized via different mechanisms. This would potentially
allow coverages of a wider range of metabolites since molecules
might be more efficiently ionized with either technique.
Representative mass spectra for each instrument are shown in
Figure S1. During SIMS analysis, the sample was slightly
etched by the primary ion beam (20 keV Ar3000

+), although the
amount of sample consumed by SIMS was limited when argon
clusters were used.32 Prior 3D OrbiSIMS analysis did neither
deplete the ion intensities (Student’s t-test: p = 0.8345; Figure
S2) nor reduce the number of features (Student’s t-test: p =
0.4743; Figure S3) in subsequent LESA-MS/MS analysis. In
total, 634 and 51 ions were assigned a molecular formula for
LESA-MS data acquired in positive and negative ionization
modes, respectively. For 3D OrbiSIMS data, 86 and 116 ions
were annotated with putative IDs in positive and negative
ionization modes, respectively (Figure 3A). The number of
identified metabolites is a vast improvement compared to
previous research done on metabolite profiling of ependymo-
ma tissue by nuclear magnetic resonance spectroscopy
(NMR).1,33 Similar numbers of metabolites were identified
by LC−MS(/MS) in different types of cancer FFPE
tissues.34−36

To assess the degree of complement in annotated
metabolites, HMDB classes were derived from the putative
identities. Twenty unique metabolite classes were found by 3D

Figure 3. Identifying putative metabolite features in OrbiSIMS and LESA-MS spectra. (A) In total, more features were identified in the LESA-MS,
though the number of ions in negative mode identified as metabolites was higher for SIMS. (B) From the Venn diagram can be derived with both
surface mass spectrometry techniques unique metabolite classes can be detected and could therefore provide complementary information.(C) For
all identified features, the class as described in the HMDB was obtained to identify which classes can be detected with either technique. The
patched areas represent structurally similar classes.

Table 1. Demographic Information for Patients Included in the Analysis per Classa

class total patients age (months) gender WHO grade ependymoma class tumor site Ki-67 score nucleolin score

eventual relapse 5 35 ± 25 M: 1/F: 4 II: 3 anaplastic: 2 PF: 5 <1: 2 95: 2
1: 2 65: 1

III: 2 NOS: 3 N/A: 2 N/A: 2
no relapse 2 64 ± 31 M: 1/F: 1 II: 0 anaplastic: 2 PF: 1 N/A: 2 N/A: 2

III: 2 NOS: 0 ST: 1
aNOS: not otherwise specified; PF: posterior fossa; ST: supratentorial.
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OrbiSIMS followed by another 83 unique metabolite classes
with LESA-MS/MS (Figure 3B). Further investigation of
metabolite class breakdown reveals that with SIMS, predom-
inantly nonpolar metabolites can be detected whilst LESA-
MS/MS permits the analysis of polar metabolites (Figure 3C).
This reveals the benefit of analyzing the same sample set with
complementary MS techniques for increased metabolite
coverage.
Fused Metabolite Profiles Reveal Signatures Predic-

tive of Brain Tumor Relapse. The analyzed sample cohort
(N = 7; n = 3) consisted of primary pediatric ependymomas
(Table 1). For five patients, it was known that the tumor
eventually recurred. To assess whether any alteration in the
metabolite profile could be observed, patients were divided
into no relapse (N = 2; n = 3) and eventual relapse groups (N
= 5; n = 3). Through data fusion and multivariate analysis
(partial-least-squares discriminant analysis (PLS-DA)), we
were able to cluster patients based on whether the tumor
eventually recurred (Figure 4A). To identify the discriminative
ions between no relapse and eventual relapse ependymoma
cohorts, the VIP score for each ion was calculated. A VIP score

≥1.5 was considered discriminative. After PLS-DA, the model
was validated using leave-one-out cross validation, which
resulted in a Q2 (goodness-of-prediction) of 0.4606. The PLS-
DA model showed an acceptable Q2 (>0.4) for a biological
model.37 Through a permutation test,30 it was shown that no
random PLS-DA model predicted tumor recurrence better
than the original PLS-DA model (p < 0.05).
The ions that met this criterion were subjected to the

Student’s t-test to determine which ions were significantly
altered between the two groups. In total, we identified 27
significant mass ions in the fused data set (p < 0.05; Figure
3B). The classification of ependymoma subgroups substantially
improved using significant ions only (Q2: 0.6375).
From the significant 27 mass ions, 18 mass ions were

assigned putative molecular formulae using the Human
Metabolome Database27 (Table 2). From those 18 ions, six
were detected with LESA-MS and the other 12 ions with 3D
OrbiSIMS. For all significant ions, the fold change in ion
intensity was calculated from the fused data matrix between the
no relapse and eventual relapse groups. Most of the significant
ions were found to be more prominent in the no relapse group.

Figure 4. Identification of significant ions from 3D OrbiSIMS and LESA-MS/MS data. (A) PLS-DA scores plot after data fusion reveals clustering
of patients based on tumor recurrence. (B) Box plot for significant ions (p < 0.05) identified using the Student’s t-test and FDR estimation through
a permutation test.

Table 2. Annotations for Significant Ions (p < 0.05)a

m/z formula Δppm adduct instrument fold change

321.2400 C18H34O3 0 [M + Na]+ LESA 0.23
145.0293 C9H6O2 2.1 [M + H-H2O]

+ LESA 1.98
201.0225 C8H10O5S 1.5 [M + Na]+ LESA 1.64
143.0500 C5H12OS 0.7 [M + Na]+ LESA 1.57
170.0609 C11H9NO2 2.4 [M + H-H2O]

+ LESA 1.89
319.2244 C18H32O3 0 [M + Na]+ LESA 0.45
146.0610 C9H11NO2 2.7 [M − H-H2O]

− SIMS 2.53
167.0612 C11H8N2 1.8 [M − H]− SIMS 2.42
160.0402 C9H9NO3 1.9 [M − H-H2O]

− SIMS 2.39
145.0293 C9H6O2 1.4 [M − H]− SIMS 1.98
158.0610 C10H11NO2 2.5 [M − H-H2O]

− SIMS 2.25
142.0296 C9H7NO2 2.1 [M − H-H2O]

− SIMS 1.57
201.0225 C8H10O4S 1.0 [M − H]− SIMS 1.64
143.0500 C10H8O 1.4 [M − H]− SIMS 2.50
168.0452 C11H9NO2 1.8 [M − H-H2O]

− SIMS 1.94
170.0609 C11H11NO2 1.8 [M − H-H2O]

− SIMS 1.89
409.0570 C21H14O9 1.2 [M − H]− SIMS 0.44
318.1183 C13H32NO9 1.9 [M − H-H2O]

− SIMS 0.49
aFold changes were calculated by dividing the average ion intensity of the no relapse group by the average ion intensity in the eventual relapse
group.
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The same processing workflow was used to determine the
benefit of data fusion. The same ions were identified as being
discriminative between no relapse and eventual relapse groups.
Data fusion resulted in a slightly higher Q2 value mode
compared to the individual data sets per MS method (Table
S1). The data fusion workflow allows processing four
individual datasets at once, resulting in a single classification
model generated, making this workflow more efficient. Also,
this workflow is not only applicable for LESA-MS and 3D
OrbiSIMS data but could be used for any type of mass
spectrometry data.
Previous studies (e.g., Mascini et al.38) have shown that

tumor classification could be done successfully by matrix-
assisted laser desorption/ionization-mass spectrometry imag-
ing (MALDI-MSI). The results here show that combined or
single LESA and 3D OrbiSIMS can be used as an alternative
for tumor classification. The advantage of LESA and 3D
OrbiSIMS is that the required sample preparation only consists
of paraffin removal (i.e., no matrix has to be applied on to the
TMA).
We further investigate the significant ions obtained by 3D

OrbiSIMS. Due to the hard ionization process in SIMS,
molecules tend to fragment. Therefore, putative assigned IDs
could potentially be an isobaric fragment. Ion intensities were
pairwise compared using the Pearson’s correlation coefficient
(Figure S4). Ions with a correlation >0.95 were considered to
belong to the same parent/fragment. We found that none of
the significant ions had a strong correlation with another ion in
the 3D OrbiSIMS data (Table S2) and therefore it suggests
that there is no contribution to these ions from other
fragment/parent ions.
The putative metabolite IDs were submitted to MetEx-

plore28,31 for metabolic pathway analysis. This allowed putative
identification of affected pathways between ependymoma
subgroups. We could identify five metabolic pathways with
14 associated genes to be potentially affected between the no
relapse and eventual relapse groups (Table 3). To the best of
our knowledge, this is the first report of investigating
alterations in MS-based metabolite profiles between ependy-
moma subgroups. Previous work on metabolite profiling of
ependymoma via NMR showed that L-phenylalanine is highly
abundant and an important discriminative metabolite for
ependymoma among other pediatric brain tumors.1,33 Here, we
found a more prominent abundance of L-phenylalanine (m/z
146.0610; fold change: 2.53) in the no relapse group. We also
putatively identified metabolites in the tryptophan metabolism
pathway (5-hydroxytryptophol, 4,6-dihydroxyquinoline, β-
carboline, methyl indole-3-acetate, and quinolone-4,8-diol) to
be significantly increased between the no relapse and eventual
relapse ependymoma cohorts. Previous work has identified
phenylalanine and tryptophan metabolism to be important
pathways in brain tumor metabolism.9 Cytochrome metabo-
lism and tyrosine metabolism were also found to be increased
significantly in the no relapse group. Also, these pathways have
not been reported concerning ependymoma relapse. Cyto-
chrome enzymes are important in the metabolism of
endogenous and exogenous compounds and could be
important factors in drug therapy resistance.39,40 Tyrosine
metabolism pathways have been proposed as potential targets
for treatment of glioblastoma.41 Conversely, linoleate metab-
olism was more predominant in the eventual relapse group for
the conversion of epoxy fatty acids (EpOMEs) to fatty acids
and vice versa. Whilst linoleate metabolism has not been

reported for ependymoma relapse, fatty acid oxidation
pathways have been reported to be affected in carcino-
genesis.42,43 These observations indicate that the sequential
MS strategy permits the identification of important metabolic
changes associated with brain tumor progression from small
amounts of tissue in a high-throughput manner.

Validation of MS-Based Metabolomics with Publicly
Available Gene Expression Data. Due to the limited
availability of ependymoma samples, only a small cohort could
be analyzed. We recognize the need for an increase in the
number of patients to validate these results, though the data
shows the clinical potential for the sequential MS strategy to be
further used for metabolomics screening of ependymoma
TMAs. To validate our current findings, we used publicly
available gene expression datasets for primary (n = 72) and
recurrent (n = 47) pediatric ependymoma.44,45 Ten out of the
fourteen genes listed in Table 3 were present in the gene
expression datasets. From those 10 genes, four genes showed a
significant differential expression. ADHFE1 (p = 0.00234) was
upregulated in primary ependymoma, whilst GSTK1 (p =
0.00450), GOT2 (p = 0.0393), and EPHX2 (p = 0.0433)
showed a significantly higher expression in the recurrent
ependymoma cohort. The gene expression results are partially
in concordance with the metabolomics data. The expression of
GSTK1 and GOT2 is in line with higher abundance of
adrenochrome and L-phenylalanine, respectively. On the other
hand, the expression of ADHFE1 and EPHX2 was opposite to
the observed difference in metabolite abundance between the
no relapse and eventual relapse group. An explanation could be
that for the metabolomics study, only primary ependymomas
were used and these might not completely reflect the same
gene expression profile as recurrent ependymoma and would

Table 3. Putative Metabolite IDs for Significantly Affected
Pathways (p < 0.05) and Related Genes between
Ependymomas That Relapsed and Those That Did Not
Relapse

pathway putative metabolite ID related genes

tryptophan metabolism 4,6-dihydroxyquinolineS (↑) ADHFE1
5-hydroxytryptopholS (↑)
β-carbolineS (↑) MAOA
methyl indole-3-acetateS (↑)
4,8-dihydroxyquinoloneS (↑) MAOB

linoleate metabolism 12,13-EpOMEL (↓) EPHX1
9,10-EpOMEL (↓) EPHX2

cytochrome metabolism coumarinS (↑) CYP2A13
CYP2A6

napthalene epoxideS(↑) CYP2F1

phenylalanine metabolism L-phenylalanineS (↑) DDC
GOT1
GOT2
PAH
TAT

tyrosine metabolism adrenochromeS (↑) GSTK1

aArrows indicate higher (↑) or lower (↓) abundance of the metabolite
in the eventual relapse group compared to the no relapse group. L:
identified by LESA-MS. S: identified by 3D OrbiSIMS.
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require further investigation using a larger sample cohort. Also,
the group of 10 genes as a single gene set showed significant
change between primary and recurrent ependymoma (p =
0.00257, global test) and showed clear separation of primary
tumors from recurrent ependymal tumors (Figure 5),

indicating a good predictive power of the four significant
genes for predicting ependymoma relapse. Although our
metabolomics dataset is small, the gene expression analysis
supports the significance of the genes that we identified
through MS-based metabolomics and pathway analysis.
Moreover, excellent clustering was observed for primary and
recurrent ependymoma based on the subset of the significant
genes. This confirmation of our metabolomics data shows the
potential of the sequential MS strategy to be further used for
large-scale clinical studies on archived TMAs.

■ CONCLUSIONS
We have presented a novel mass spectrometry strategy for
metabolite profiling of tumor microarrays. Complementary
metabolite profiles were obtained, permitting putative
identification of additional affected metabolic pathways and
their corresponding genes, resulting in a putative predictive
signature of no relapse/relapse. This opens new opportunities
to perform large-scale metabolomics studies on archived tissue
libraries. Furthermore, the minimally required sample prep-
aration and short analysis time (10 min with 3D OrbiSIMS; 4
min with LESA-MS/MS) permit high sample throughput,
making this strategy a competitive alternative to standard
metabolomics analyses such as GC−MS, LC−MS, and NMR.
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