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Abstract 11 

The architecture, engineering and construction (AEC) industry is experiencing a technological revolution 12 

driven by booming digitisation and automation. Advances in research fields of information technology and 13 

computer science, such as building information modelling (BIM), machine learning and computer vision have 14 

attracted growing attention owing to their useful applications. At the same time, population-driven underground 15 

development has been accelerated with digital transformation as a strategic imperative. Urban underground 16 

infrastructures are valuable assets and thus demanding effective planning, construction and maintenance. While 17 

enabling greater visibility and reliability into the processes and subsystems of underground construction, 18 

applications of BIM, machine learning and computer vision in underground construction represent different sets 19 

of opportunities and challenges from their use in above-ground construction. Therefore, this paper aims to 20 

present the state-of-the-art development and future trends of BIM, machine learning, computer vision and their 21 

related technologies in facilitating the digital transition of tunnelling and underground construction. Section 1 22 

presents the global demand for adopting these technologies. Section 2 introduces the related terminologies, 23 

standardisations and fundamentals. Section 3 reviews BIM in traditional and mechanised tunnelling and 24 

highlights the importance of integrating 3D geological modelling and geographic information system (GIS) 25 

databases with BIM. Section 4 examines the key applications of machine learning and computer vision at 26 

different stages of underground construction. Section 5 discusses the challenges and perspectives of existing 27 

research on leveraging these emerging technologies for escalating digitisation, automation and information 28 

integration throughout underground project lifecycle. Section 6 summarises the current state of development, 29 

identified gaps and future directions. 30 
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1. Introduction 33 

Two decades have elapsed since entering the 21st century, and driven by the prevalence of digitisation 34 

and massive data generation, the AEC industry is experiencing tremendous changes. In this transition, a 35 

collaborative use of technologies plays a vital role in meeting the needs of creating products, processes and 36 

systems that are interconnected, controllable and essentially, ‘smart’. Underground infrastructure has attracted 37 

growing attention in providing an extra dimension of space under rapid urbanisation. With almost every 38 

construction-related process being heavily influenced by the wave of digitisation, underground construction is 39 

no exception.  40 

The possibility of digital delivery of mega-scale subsurface infrastructure through leveraging advanced 41 

computing and data storage solutions has been exemplified by a number of high-profile projects, such as the 42 

London Crossrail in UK (Crossrail Limited, 2017), the MRT Line 2 (SSP) underground works in Malaysia 43 

(MRT Corp, 2020), and the Badaling station of Beijing-Zhangjiakou high-speed railway in China (AREP, 2020). 44 

The transformation efforts within underground construction towards digital solutions are mainly driven by two 45 

reasons. On the one hand, the rapid urbanisation accompanied by a growing population stimulates the utilisation 46 

of underground space and tunnelling (National Research Council, 2013; United Nations, 2019). For example, 47 

as of 2019, Beijing has over 21 million long-term residents and covered an area of 16,410 square kilometres. 48 

To serve its residents, the city has built one of the most extensive metro systems in the world consisted of 391 49 

stations and 22 lines with a total length of 637 km (BTDRC China, 2019). On the other hand, the maintenance 50 

burden of existing underground projects is greatly increased due to lacking a management platform supporting 51 

visualisation and information updates regarding their locations and status. London owns one of the world’s 52 

oldest metro systems accompanied with laid utility networks intertwining with each other. The cost of accidental 53 

strikes on underground pipes and cables can reach 1.2 billion British pounds a year (Geospatial Commission 54 

UK, 2019). To help mitigate the issue and remove workers from the danger of accidentally striking gas or 55 

electric pipes, the UK government’s Geospatial Commission is creating the Underground Asset Register that 56 

provides a digital map of underground pipes and cables to enable more efficient access, utilisation and sharing 57 

of data of buried assets (Geospatial Commission UK, 2019). A similar approach is undertaken by the Singapore-58 

ETH Centre in collaboration with the Singapore Land Authority to create a digital twin of the underground of 59 

Singapore harnessing 3D technology (Schrotter and van Son, 2019) in line with its national plan that values the 60 

effective use of underground space as a core strategy (URA Singapore, 2019).  61 

The above has indeed revealed the demand for adopting digital information technologies to reinforce 62 

efficient and effective planning, development and management of underground construction. There has been 63 

increasing interest of the AEC industry in using BIM to stimulate multifaceted transitions in aspects of facility 64 

design, construction management and stakeholder collaboration (Borrmann et al., 2018; Sacks et al., 2018). The 65 

technology, underpinned by advanced ICTs, promotes efficient management of highly complex and dynamic 66 

information flow throughout a project’s lifecycle while supporting the communication and collaboration among 67 

participants (Borrmann et al., 2018; Bradley et al., 2016; Cerovsek, 2011; Eastman et al., 2008, 2011; Sacks et 68 
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al., 2018; Volk et al., 2014). While presenting manifold opportunities, digital transformation in urban 69 

underground development is facing unique challenges caused by the intrinsic complexity associated with spatial 70 

opaqueness, geological uncertainties, high-risk working environment and ground-machine-structure 71 

interactions. Excavation carried out without a reasonable understanding of the ground features can be especially 72 

problematic. A project-scale geological understanding established incorporating the GIS databases, geological 73 

observation and geophysical investigation is essential to mitigate the uncertainties inherited from the ground. 74 

Therefore, modelling with close reference to geographical and geological information is an important strategy 75 

for BIM in underground construction. The accuracy of the federated BIM model is to be continuously enhanced 76 

with domain-specific knowledge reconciled with as-built and as-damaged information.  77 

BIM, big data and robotics, envisioned as key technologies in the context of Industry 4.0 for the 78 

construction industry (Oesterreich and Teuteberg, 2016; Rüßmann et al., 2015), demonstrate conceivable 79 

benefits in the digital transformation process of underground construction. The focuses on the collective 80 

capabilities of data acquisition, processing and management have reached an unprecedented level as dependence 81 

on intelligent technologies, and smart devices continue to increase. Acquiring data from prospecting and 82 

mapping, machine and structural monitoring, with robots introduced on top of traditional tools is merging into 83 

a trend. The volume, velocity and variety of the generated data have exceeded the ability demonstrated by any 84 

traditional data analysis method. Machine learning and computer vision techniques represent huge potential for 85 

big data analysis by seizing the opportunities in the growth of data and computer processing power. There have 86 

been wide applications developed based on machine learning and computer vision for reflecting the evolving 87 

state of construction and its surrounding environment (Brilakis and Haas, 2019; Darko et al., 2020; Ibrahim et 88 

al., 2020; Koch et al., 2015; Spencer et al., 2019; Xie et al., 2020; Zhu et al., 2020). The data-driven solutions 89 

integrated with model-based approaches form a new direction for the lifecycle management of infrastructure. 90 

The mechanism of implementing data that reflects the prevailing circumstances of a physical system into its 91 

virtual replica shares some similarities with the concepts of a digital twin and cyber-physical system (CPS) 92 

(Anumba and Roofigari-Esfahan, 2020; NSF, 2020; Shafto et al., 2012; Wu and Fang, 2020).  93 

This paper aims to provide a critical review of integrating BIM, machine learning, and computer vision 94 

into mechanised tunnelling and underground stations from the perspectives of geotechnical engineering and 95 

structural integrity assessment. A systematic literature survey was conducted to identify the research trends 96 

concerning BIM, machine learning, and computer vision within underground construction. Four databases are 97 

chosen for the paper retrieval, namely Scopus, Web of Science, American Society of Civil Engineers (ASCE) 98 

Library, and IEEE Xplore Digital Library, among which Scopus is the core collection. Search results are then 99 

selectively reviewed based on refining topics to concentrate on tunnel and underground station/space. For 100 

example, there are a total of 388 publications refined from Scopus (from 2010 to 1 June 2020) showing a very 101 

rapid growth in these topics, particularly since 2015 (Figure 1). The paper is to demonstrate the demand and 102 

provide a logical foundation in these topics rather than to conduct the bibliometric analysis.  103 

 104 
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Figure 1 Publication frequency from 2010 to 2020 (data accessed from Scopus on 01/06/2020): Three query 106 

strings were created in Scopus as 1) TITLE-ABS-KEY ("building information model*" OR BIM) AND TITLE-107 

ABS-KEY (tunnel* OR  underground); 2) TITLE-ABS-KEY ("machine learning”) AND TITLE-ABS-KEY 108 

(tunnel* OR underground); and 3) TITLE-ABS-KEY ("computer vision”) AND TITLE-ABS-KEY (tunnel* 109 

OR underground). 110 

 111 

This paper is organised as follows. Section 2 introduces the domain-specific terminologies and 112 

fundamentals. Section 3 briefly reviews 3D geological modelling and GIS, and examines the state-of-the-art 113 

development of BIM for tunnelling and underground construction. Section 4 evaluates the trends and 114 

applications of machine learning and computer vision techniques in underground prospecting, inspection and 115 

monitoring. Section 5 provides a general discussion on the subject directions, highlighting the collaboration 116 

opportunities of BIM, machine learning and computer vision at different stages of underground construction. 117 

Section 6 concludes this paper by summarising the current state of development, identified gaps and future 118 

directions.  119 

2. Terminologies and fundamentals 120 

In recent years, the trend of digitisation and automation has been envisioned as popular terms within the 121 

construction industry. Oesterreich and Teuteberg (2016) built a concept list by grouping the main technologies 122 

and terms in the context of Industry 4.0, as detailed in Table 1. CPS is “engineered systems that are built from, 123 

and depend upon, the seamless integration of computation and physical components” (NSF, 2020). Product-124 

Lifecycle-Management (PLM) and BIM share some fundamental similarities, but BIM is believed to represent 125 

a paradigm shift regarding lifecycle processes and management in the AEC industry.  126 

Table 1 Concept list of technologies in the construction industry. Reproduced from (Oesterreich and Teuteberg, 127 

2016) 128 
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Cluster Key technologies in the context of Industry 4.0 Sections in this 

paper 

Smart Factory Cyber-Physical Systems (CPS)/Embedded systems 3.4, 3.5, 5.2 

Internet of Things (IoT) /Services (IoS)  

Automation 5.4 

Modularisation/Prefabrication 3.6 

Additive Manufacturing  

Product-Lifecycle-Management (PLM) 2.1, 3, 5.1, 5.2, 5.3 

Robotics 5.4 

Human-Computer Interaction (HCI)  

Simulation and modelling Building Information Modelling 2.1, 3, 5.1, 5.2, 5.3 

Simulation tools/Simulation models 3.4, 5.3 

Augmented Reality (AR)/Virtual Reality (VR) 5.2, 5.3 

Digitisation and virtualisation  Cloud Computing  

Big Data 4 

Mobile Computing  

Social Media  

Digitisation 3, 4 

2.1 Definition and standardisation of BIM 129 

The definition of BIM varies in different contexts and from different standpoints (Barlish and Sullivan, 130 

2012). A commonly accepted definition provided by the US National Building Information Modelling Standard 131 

(NBIMS-US™) states that BIM is  132 

“a digital representation of physical and functional characteristics of a facility. A BIM is a shared 133 

knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle; 134 

defined as existing from earliest conception to demolition.” (NIBS, 2015).  135 

Other definitions acknowledged widely are those given by  British Standards Institution (BSI) and 136 

International Standards Organisation (ISO), such as the BS EN ISO 19650-2: 2018 defines BIM as “the process 137 

of designing, constructing or operating a building or infrastructure asset using electronic object-oriented 138 

information” (ISO, 2018) and ISO 29480-1:2016 as “use of a shared digital representation of a built object 139 

(including buildings, bridges, roads, process plants, etc.) to facilitate design, construction and operation 140 

processes to form a reliable basis for decisions.” (ISO, 2016). An in-depth introduction to BIM from both 141 

practical and technological perspective can be found in these classical textbooks (Borrmann et al., 2018; 142 

Eastman et al., 2008, 2011; Sacks et al., 2018).  143 

The concept of “BIM maturity levels” derived from the BIM maturity model (Figure 2a) is accepted by 144 

the UK Government BIM TASK Group (Sacks et al., 2018). From Level 0 to Level 3, the degree of collaboration 145 

improves as the application level of information technology in construction matures.  It progresses from Level 146 

0: unstructured computer-aided design (CAD) and paper-based data communication over to Level 1: electronic 147 

sharing of both 2D and 3D data engaging a common data environment (CDE), and moving up to Level 2 148 

(mandatory BIM level in the UK on all government construction projects): collaborative working via a federated 149 

BIM model before finally reaching Level 3: a full collaboration between all disciplines working via a single, 150 

shared project model that is held in a centralized repository. The PAS 1192 standards that adopt “BIM maturity 151 
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levels” are now superseded by BS EN ISO 19650 -1 &2:2018 (BSI, 2020a, b), which specify the requirements 152 

on the organisation and digitisation of information about buildings and civil engineering works using BIM. 153 

Based on BS EN ISO 19650-1, the information management maturity is developed in a sequence of stages, as 154 

shown in Figure 2b (BSI, 2018). As the maturity climbs, business benefits increase with the development of 155 

standards, advanced technology and more comprehensive information management approaches. 156 

 157 
(a) 158 
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 159 
(b) 160 

Figure 2 (a) BIM maturity levels, reproduced from (Sacks et al., 2018), (b) a perspective on stages of maturity 161 

of analogue and digital information, reproduced from (BSI, 2018). 162 

 163 

BIM can be differentiated into “Closed BIM” and “Open BIM” that are distinguished by the 164 

implementation of open, neutral data exchange formats (Borrmann et al., 2018). The common understanding of 165 

the language used in the product model is becoming increasingly important to ensure the consistency of 166 

information exchanged and to facilitate the multidisciplinary collaboration in major infrastructure projects. The 167 

semantic enrichment and consensus can be achieved by forming structured vocabularies and classification 168 

systems that contain multiple languages to define terminologies and relationships between them. 169 

“buildingSMART Data Dictionary” (bSDD) created by buildingSMART International (bSI) is such a glossary 170 

or a shared library of objects and their attributes using ISO 12006-3 ontology for the building and construction 171 

industry (bSI, 2019a). 172 

The Semantic Web built upon the World Wide Web intends to bring structure to the web contents and 173 

allow query of data, i.e. enable machines to process the data by “understanding” them (Antoniou et al., 2012). 174 

Leveraging metadata models such as the Resource Description Framework and ontologies that are specifications 175 

of conceptualisations, Semantic Web technology integrated with BIM will help enhance information retrieval 176 

capacity by data query and data-driven reasoning to facilitate better collaboration between project participants 177 

(Underwood and Isikdag, 2011). Karan et al. (2016) discussed the integration and interoperability of BIM and 178 

GIS based on the Semantic Web. A review on BIM integration to Semantic Web technology is given by Godager 179 

(2018).  180 
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2.1.1 Parametric geometry modelling 181 

From a historical perspective, BIM model generation and design technology are evolved and matured 182 

based on 3D solid modelling, which represents the ability to generate and revise arbitrary 3D solid, and 183 

eventually object-oriented parametric geometry modelling. The state-of-the-art method integrated two forms of 184 

3D solid modelling techniques, namely the boundary representation (Brep) and the Constructive Solid Geometry 185 

(CSG), to realise functions of editing, visualising, measuring, clash detection as well as other non-editing uses 186 

(Sacks et al., 2018). Thereafter, the solid modelling CAD systems were improved by recognising the 187 

connectivity of shapes through sharing parameters and building links.  Based on the degree of intelligence 188 

embedded in the parametric model, the modern parametric modelling system is classified into: (1) parametric 189 

solid modelling that is the simplest form of parametric modelling by defining the complex shapes or assemblies 190 

using a few parameters; (2) parametric assembly modelling that allows the creation of assemblies of individual 191 

parametric objects by instantiating such objects and specifying parametric relations between them; and (3) 192 

parametric model composed of topology-based parametric objects or script-based rules (Sacks et al., 2018).  193 

BIM applications and BIM-enabled platforms usually provide an extensive set of predefined parametric 194 

object classes and families while allowing users to customise, when a desired parametric object does not exist 195 

in the specific BIM tool. However, the target functionality of most BIM tools designed for architectural and 196 

building modelling is not well suited for the infrastructure projects, constructing custom parametric objects and 197 

families becomes inevitable. The fulfilment of parametric modelling under this circumstance is often challenged 198 

by the integration of the custom objects with the system rules and specifications embedded in the BIM platform.  199 

2.1.2 IFC data exchange 200 

Facilitating interoperability of data exchange between different software is a fundamental challenge for 201 

incorporating BIM technology into AEC activities. As aforementioned, to enhance the interoperability involving 202 

multiple applications handled by multiple stakeholders (Steel et al., 2012), ISO-STEP (Standard for the 203 

Exchange of Product model data, ISO 10303) endeavoured to develop standardised data models or schemas for 204 

a level exchange of product and object model (Sacks et al., 2018). In the domain of buildings, Industry 205 

Foundation Classes (IFC) as one of the main product data models developed in the course of time by 206 

buildingSMART became International Standard (ISO 16739) in 2013. Except for LandXML that has been well 207 

established for representing objects of roads, the infrastructure domain has longed for adequate data schemas to 208 

perform exchange of data containing infrastructure objects.  209 

Before examining IFC as a data schema specified for BIM data representation and exchange, it is 210 

important to understand the contents that need to be transferred between applications while maintaining meaning. 211 

For different application domains, distinct subsets of information are required in order to meet with specific 212 

utilisation objectives and standards (Lee et al., 2015). The full capture of data requirements will involve 213 

knowledge input from experts in their respective domains; the requirements are then specified in the so-called 214 

“information delivery manuals (IDMs)” (Eastman et al., 2010). Considering the entities available in the IFC 215 

schema are more extensive than needed in any given exchange, specific task-oriented exchanges, referred to as 216 
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model views, by employing subsets of IFC schema are required. An optimal exchange, in terms of geometric 217 

correctness and semantic completeness, of a BIM model using IFC is only achievable given these classes are 218 

clearly defined and adequately incorporated in the model. To this end, model view definitions (MVDs) are 219 

prepared with information requirement specified to assist software developers in creating export and import 220 

translators for delivering and receiving the IFC subsets (Eastman et al., 2010). 221 

2.1.3 Integrated solutions of BIM and GIS 222 

GIS is a computer-based system that handles georeferenced data through data capture and preparation, 223 

data management, including storage and maintenance, data manipulation and analysis, and data presentation 224 

(Huisman and By, 2009). Therefore, BIM and GIS are both associated with information repository and data 225 

management, with BIM characterised by detail-oriented information encompassment, and GIS focusing on 226 

manipulative management of geospatial data. System management can greatly benefit from coupling the life-227 

cycle information management capacity provided by BIM with the locational clarity provided by GIS. The 228 

integrated applications of GIS and BIM have expanded into the AEC industry (Song et al., 2017; Wang et al., 229 

2019a; Zhang et al., 2009), expecting to maximise the efficiency and accuracy of a project’s decision-making 230 

process by concurrently employing the strengths of the two domains. Examples of applying BIM-GIS integrated 231 

solutions include visualising supply chain management (Irizarry et al., 2013), flood damage to the building 232 

(Amirebrahimi et al., 2015), and sustainable built environment (Wang et al., 2019a), as well as utility 233 

information management  (Cheng and Deng, 2015; Lee et al., 2018; Liu and Issa, 2012).  234 

Open Geospatial Consortium (OGC) is an international community committed to advancing the 235 

development and implementation of open standards for geospatial location information and services. The 236 

standard data model and exchange format developed by OGC for representation and exchange of 3D city models 237 

is CityGML (Kolbe et al., 2005). Levels of detail (LoD) is one of the general concepts associated with CityGML 238 

and an important notion to consider in the attempts to integrate BIM and GIS for the geometric representation 239 

and general visualisation of models. CityGML 2.0 has defined five LoDs to geometrically differentiate the 240 

multi-scale representations of 3D city models (Biljecki et al., 2016), as illustrated in Figure 3a. Both GIS and 241 

BIM embody objects in three-dimension based on a certain level of extraction from real-world phenomena. 242 

However, the method and model description are essentially different, GIS 3D models are Boundary-243 

Representation-based surface models, whereas BIM models use Swept Solid representations (Liu et al., 2014). 244 

Figure 3b illustrates the geometric representation of the same objects using IFC and CityGML as spatial solids 245 

and surfaces, respectively (Nagel et al., 2009).  246 
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 247 

(a) 248 

 249 

(b) 250 

Figure 3 (a) The five LoDs defined by CityGML (Kolbe et al., 2005) distinguishing the graphic and non-graphic 251 

features of 3D city models from the coarsest representation of a two and half-dimensional Digital Terrain Model 252 

(DTM) to a high-resolution architectural model with detailed exterior and interior structures (Gröger et al., 253 

2006). Reproduced from (Gröger et al., 2012), and (b) geometric representation of building storey in IFC (left) 254 

and CityGML (right). Reproduced from (Nagel et al., 2009). 255 

Researchers have looked into methods that integrate BIM and GIS using frameworks consisted of 256 

numerous levels or groups. An example was presented by (Kang and Hong, 2015), where integration strategies 257 

were classified into five groups: schema-based, service-based, ontology-based, process-based, and system-258 
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based. Alternatively, a three-level grouping, namely the data level, process level and application level were 259 

proposed by (Liu et al., 2017c) and (Amirebrahimi et al., 2015). Data-level integration focuses on manipulating 260 

data models and structures to meet the requirements of applications. Creation of common models/standards or 261 

introducing mapping rules between data schema are generally involved in this process. Examples of the former 262 

include Unified Building Model (UBM) (El-Mekawy et al., 2012) and Land and Infrastructure Conceptual 263 

Model Standard (LandInfra) (OGC, 2016). Whereas mapping-rules-based unidirectional or bidirectional 264 

information transfer, with IFC and CityGML being the predominant standards for BIM and GIS, respectively 265 

can be found in (Berlo and Laat, 2010; El-Mekawy et al., 2011; Liu et al., 2014). The process-level integration 266 

employs both systems into a workflow to exploit their individual capabilities simultaneously without changing 267 

the data structures. By leveraging Semantic Web and Linked Data technology, this flexible and semantics-268 

reserved method has been applied in shield tunnelling (Vilgertshofer et al., 2017) and utility tunnel maintenance 269 

(Lee et al., 2018; Wang et al., 2019b). The application-level engages modifying or rebuilding either a BIM or 270 

GIS tool to include the functions of the other, or using customised tools (i.e. plug-ins). This method is generally 271 

costly and inflexible since it involves reconfiguration or building of tools from scratch. 272 

2.1.4 Global implementation  273 

From a global standpoint, the adoption of digital construction has been recommended to promote 274 

advanced information exchange and management in the AEC industry. For example, the UK Government 275 

Construction Strategy (ERG UK, 2011) proposed a series of objectives, including the development of standards 276 

to enable collaborative working through BIM among members of the supply chain with the requirement of fully 277 

collaborative 3D BIM ‘Level 2’ as a minimum by 2016. Singapore vigorously uptakes  BIM by mandating BIM 278 

use for major AEC projects in phases since 2013 and has rolled out its second BIM Guide outlining the 279 

deliverables, processes, and personnel/professionals involved when BIM is used in a construction project (BCA 280 

Singapore, 2013). In Germany, the Federal Ministry of Transport and Digital Infrastructure (BMVI) announced 281 

a Road Map for the implementation of  BIM and IT-based technologies to the design and construction of major 282 

infrastructure projects (BMVI Germany, 2015). Most recently, BMVI and Federal Ministry of the Interior, 283 

Building, and Community launched a joint National BIM Centre of Excellence to speed up the digital revolution 284 

in construction (BMVI Germany, 2019). In Australia, both New South Wales (NSW) and Victoria have staged 285 

digital transition plans driven by their infrastructure upgrade schemes with NSW develops state-scale digital 286 

twin integrating digital engineering assets, BIM, and live feeds (NSW Australia, 2020a). Victorian Government 287 

has co-published the Victorian Digital Asset Strategy with the Office of Projects Victoria (OPV) to provide 288 

guidance for the implementation of digital engineering technologies in infrastructure projects to improve the 289 

interoperability and consistency of information management throughout the projects’ life cycle (OPV Australia, 290 

2019). Besides national legislations and governmental regulations, several project-based initiatives have been 291 

launched around the world to uphold the development of BIM for infrastructure. For instance, the French 292 

national collaborative research project – MINnD (IREX France, 2019) has marshalled more than 70 partners 293 
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engaged in areas related to design, construction and maintenance of infrastructures to explore opportunities for 294 

enhanced information exchange and communication by implementing BIM.  295 

2.2 Machine learning and computer vision  296 

Big data and its closely related technologies such as cloud computing, Internet of Things (IoT) and 297 

artificial intelligence (AI) have achieved enormous attention in the past decade. AI branches that mimic human 298 

intelligence include machine learning, computer vision, and robotics, as shown in Figure 4. The advancements 299 

in both hardware and software for data will together benefit a wide range of fields, including design, construction, 300 

and maintenance of underground infrastructure.  301 

 302 

Figure 4 AI types to simulate human intelligence include machine learning, deep learning, computer vision, and 303 

robotics and frequently used terminologies in this paper 304 

2.2.1 Machine learning  305 

With a profound history that can be traced back to 1952 when Arthur Samuel developed the first game-306 

playing program, machine learning was defined by the pioneer in 1959 as a “field of study that gives computers 307 

the ability to learn without being explicitly programmed” (Samuel, 1959). Machine learning algorithms are 308 

constructed to learn from data by automatically extracting patterns, with learning in this context defined by 309 

Mitchell (1997) as “a computer program is said to learn from experience E with respect to some class of tasks 310 

T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”  311 

A manifold of tasks can be achieved with experience learned and performance evaluated by some measures. 312 

For example, in detecting cracks on tunnel segment, the task is to assign a label of “crack” or “no crack” to any 313 
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given image taken inside a tunnel. The performance indicator to be enhanced could be the accuracy of this crack 314 

detector on classification, and the training experience might be a collection of images, each individually labelled 315 

to contain crack or not.  316 

There are generally three types of machine learning: (1) supervised learning, (2) unsupervised learning, 317 

and (3) reinforcement learning. The crack detection task above is an example of supervised learning. The 318 

methods used in the discussed literature of this paper are mainly based on this type of learning, such as 319 

polynomial regression, artificial neural networks (ANN), and support vector machine (SVM). Machine learning 320 

techniques have been found useful in a diverse range of applications, including computer vision tasks, robotics, 321 

and autonomous vehicle control, speech and natural language processing, neuroscience research (Jordan and 322 

Mitchell, 2015). For the technical fundamentals of machine learning, readers are referred to textbooks (Jordan 323 

and Mitchell, 2015; Mitchell, 1997; Murphy, 2012). 324 

2.2.2 Deep learning  325 

Deep learning is a subfield of machine learning that has contributed to a majority of the recent success of 326 

the field. The architecture of deep learning algorithms is generally underpinned by ANN. Beyond the 327 

neuroscientific inspiration, the success of deep learning is mainly rooted in that deep learning networks adopt a 328 

more general learning principle characterised by multiple levels of composition, which has the key advantage 329 

of automatic feature extraction (LeCun et al., 2015). The procedure decomposes a complicated mapping target 330 

into a sequence of nested simple mappings, and each simple mapping is described by a layer in a deep learning 331 

model (Goodfellow et al., 2016). The incredibly large volume of data resulted from increased variety of optical-332 

based systems, along with the growth in computational power, stimulates the development of deep learning. 333 

Among the deep network architectures, models based on convolutional neural networks (CNN) and recurrent 334 

neural networks (RNN) have been particularly successful in tasks associated with pattern recognition and image 335 

interpretation (Schmidhuber, 2015) and thus significantly accelerated recent advances in the field of computer 336 

vision (Spencer et al., 2019). For instance, CNN-based models such as the fully connected network (FCN) (Long 337 

et al., 2015), U-Net (Ronneberger et al., 2015) and Mask-R-CNN (He et al., 2017) have been used for object 338 

detection and image segmentation, and architectures based on RNN such as long short-term memory (LSTM) 339 

(Hochreiter and Schmidhuber, 1997) for image captioning (Alom et al., 2019). Figure 5a schematically 340 

illustrates CNN-based instance segmentation of tunnel images. Other examples can be found in (Guo et al., 341 

2016). With the successful application of deep learning algorithms in computer vision tasks using 2D images, 342 

growing attention is paid to deep learning techniques in 3D data analysis since 2015, driven by the increasing 343 

access to 3D data in recent years. Multi-view deep learning proposed by (Su et al., 2015) and the voxel-based 344 

3D CNN proposed by (Maturana and Scherer, 2015) are among the pioneering studies. Examples of 3D deep 345 

learning in change detection of civil infrastructure can be found in (Gomes, 2018; Zhang et al., 2017).  346 

Ahmed et al. (2018) groups the 3D data representations into Euclidean-structured data and non-Euclidean 347 

data; the former includes descriptors, projections, RGB-D, volumetric (voxels and octree) and multi-view, and 348 

the latter contains point clouds, meshes and graphs. Euclidean-structured data can be learned with 2D deep 349 
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learning algorithms, such as CNN, since it has an underlying grid structure, which allows global parametrisation 350 

and formation of a common coordinate system (Ahmed et al., 2018). For example, the 3D ShapeNets that 351 

illustrates a geometric 3D shape as a probability distribution on a 3D voxel grid and uses a Convolutional Deep 352 

Belief Network (Wu et al., 2015) to perform feature extraction. Another example is the Multi-view CNN as 353 

shown in Figure 5b that trains a standard CNN to recognise 3D shapes from a collection of their rendered views 354 

on 2D images (Su et al., 2015). Whereas non-Euclidean data that has an unordered structure is more challenging 355 

to be directly applied with established deep learning techniques. Qi et al. (2017a) pioneered a deep neural 356 

network named PointSet for 3D classification and segmentation on point clouds considering the unordered 357 

characteristics of the point sets. The PointSet ++ proposed by Qi et al. (2017b) improves on PointNet by 358 

considering local structures with increasing contextual scales.  359 

 360 
(a) 361 

 362 
(b) 363 

Figure 5 (a) Schematic of a typical CNN for instance segmentation of a tunnel, and (b) Multi-view CNN for 3D 364 

shape recognition. Reproduced from (Su et al., 2015) 365 
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Training and evaluating a deep neural network on abundant samples are especially crucial to improving 366 

the robustness of networks (Garcia-Garcia et al., 2017). The ImageNet (Deng et al., 2009) is one of the renowned 367 

image datasets conceptualised in 2006 that intended to provide easily accessible images for image- and vision-368 

related research fields.  Several renowned deep learning architectures, such as the AlexNet (Krizhevsky et al., 369 

2012), VGG16 (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and ResNet-50 (He et al., 370 

2016) have competed in the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) leveraging 371 

the database (Russakovsky et al., 2015). Other open-source datasets include the PASCAL VOC (Everingham 372 

et al., 2010), Microsoft COCO (Lin et al., 2014) and CIFAR-10/100 (Krizhevsky and Hinton, 2009). Ibrahim et 373 

al. (2020) provided a review of the application and opportunities of computer vision in tackling city complexities 374 

from the perspective of city layers related to the built environment, human interaction, transportation and traffic, 375 

natural environment, and infrastructure. Among the subdivided urban systems, there are a few city-level datasets, 376 

such as CamVid (Brostow et al., 2008), Cityscapes (Cordts et al., 2016), DOTA (Xia et al., 2018), and UAVid 377 

(Lyu et al., 2020) and several infrastructure-level datasets (Gao and Mosalam, 2020; Maeda et al., 2018; 378 

Maguire et al., 2018; Ren et al., 2020; Song and Yan, 2013; Zhang et al., 2016a). An example of the 379 

infrastructure-level datasets is the PEER Hub ImageNet Φ-NET, which contains more than 36,000 images for 380 

structural damage recognition based on service conditions, inspection tasks and laboratory simulation of 381 

extreme events (Gao and Mosalam, 2020). These methods normally employ two stages: (1) training a CNN 382 

object detection model to implement a crack patch classification, and (2) detecting crack patches on raw images 383 

to provide crack information for each detected patch. However, these datasets are collected mainly by 2D 384 

sensing devices and seldomly used in a real-time system.  385 

2.2.3 Computer vision 386 

Although deep learning outperforms other techniques in certain areas such as object detection and 387 

recognition, there are domains where traditional computer vision techniques still excel at, such as panoramic 388 

vision and 3D reconstruction (O’Mahony et al., 2019). Such examples can be found in (Fathi et al., 2015). 389 

Computer vision is an interdisciplinary scientific field that can be defined as the process of analysing images or 390 

videos so that useful information can be extracted in order to understand or represent the underlying physical 391 

world. Computer vision algorithms have wide applications, stereo matching, person tracking, and face detection 392 

are some examples of them (Szeliski, 2010). For the implementation of computer vision techniques in 393 

infrastructure, refer to the textbook (Brilakis and Haas, 2019), and for in-depth reviews focusing on specific 394 

computer vision techniques for concrete and asphalt civil infrastructure, readers are referred to (Koch et al., 395 

2015; Spencer et al., 2019). As project transitioning from design to construction, then to operation, the as-396 

designed model is supposed to be converted to an as-built model, which corresponds to the actual BIM data of 397 

the constructed facility and eventually to an as-damaged model that represents any variations of infrastructure 398 

condition (Koch et al., 2014). In these transitions, computer vision-based sensing systems provide essential 399 

means to capture and record the continuously evolving state of infrastructure and subsequently support decision-400 

makings with this information supplied to BIM (Soga and Schooling, 2016). When semi-autonomous or 401 
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autonomous platforms used for data acquisition are combined with machine learning, especially deep learning, 402 

information of the built environment can be managed to build knowledge and create values. 403 

3. BIM for tunnelling and underground construction 404 

Based on the selected publications of BIM for underground construction, a bibliometric network was 405 

established using the software tool VOSviewer, as shown in Figure 6. The network contains 35 nodes and 139 406 

links based on keyword occurrences and association strength to help visually identify relationships and 407 

intellectual structure of the topics covered. In VOSviewer, closely related keywords are positioned in nodes 408 

close to each other while weakly related keywords are positioned far away from each other (van Eck and 409 

Waltman, 2014). Meanwhile, the thicker the line connecting two nodes, the stronger the link is between the two 410 

(Van Eck and Waltman, 2013). From the network illustrated, BIM is strongly bonded with “industry foundation 411 

class (IFC)”, “visualisation”, “3d modelling”, “monitoring” and “tunnelling”. The node of “tunnelling” is then 412 

strongly connected with “mechanised tunnelling”, “digitisation” and “conventional tunnelling”. Keywords that 413 

carry weaker link with BIM include “utility tunnels” and “GIS”.  These topics having forecastable connections 414 

with BIM will be expanded in this section. Except for utility tunnels (e.g., electricity, steam, water supply pipes, 415 

and sewer pipes), which are essential city assets that could have greatly benefited from effective data 416 

management through sharing information and improving visualisation. However, given their different 417 

excavations and maintenances from railway/road/hydraulic tunnels, they will not be the primary focus in this 418 

paper. Some recent research progress in the planning, design and maintenance stages of utility networks with 419 

the assistance of BIM is discussed in these references (Ge and Xu, 2019; Haurum and Moeslund, 2020; Hu and 420 

Zhang, 2019; Lee et al., 2018; Li et al., 2019; Wu et al., 2019a; Yao et al., 2019; Yin et al., 2020; Yu et al., 421 

2019a; Yu et al., 2019b). Refer to Zeiss (2020) for a summary of engineering cases and comments on the latest 422 

progress made by industry and government in underground utility.  423 
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424 
Figure 6 Mapping of co-occurrence of keywords (based on 212 selected papers; minimum number of 425 

occurrences was set to 3; keywords of total link strength less than 3 have been removed; unification of spellings 426 

was made that translate American English to British English; similar terms were merged, such as “engineering 427 

geology” and “geology”; terminologies abbreviated: bim – building information modelling; gis – geographic 428 

information system; ifc – industry foundation class; iot – internet of things; lod – levels of detail; natm – New 429 

Austrian Tunnelling Method; wsn – wireless sensor network).  430 

The ground characterisation and geospatial location information are vital to the establishment of as-431 

designed underground BIM model; therefore, this section will start by examining the relevance and development 432 

of 3D geological model (Section 3.1) and BIM-GIS integration (Section 3.2). Then the section continues to 433 

explore the advancement of BIM’s adoption within underground infrastructure, from the perspectives of data 434 

schema extensions (Section 3.3), geometrical and numerical modelling (Section 3.4), multi-component 435 

interactive platform (Section 3.5), and some typical innovative underground technologies in combination with 436 

the potential use of BIM (Section 3.6). 437 

3.1 3D geological model for BIM 438 

One of the major differences between surface and underground excavation is that the latter needs to deal 439 

with a complex geological environment. A sound understanding of the geological, geotechnical and 440 

geohydrologic conditions is necessary for the planning of underground infrastructure, and thus closely related 441 

to adopting BIM in underground construction.  442 

3.1.1 Geological data schema 443 

Geological survey organisations (GSOs) that exist in provincial, stage and national level are playing an 444 

important role in the long-term maintenance of geological data in terms of documentation, standardisation, 445 
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utilisation, and dissemination. Individual and joint efforts by GSOs in standardising 3D geological data model 446 

exchange, initiatives include the European Geological Data Infrastructure (EGDI) aimed to be developed by a 447 

collaboration of 45 national and regional GSOs from 33 European countries under the Geological Surveys 448 

Research Area (GeoERA), and INSPIRE that aims to create a European Union spatial data infrastructure. 449 

Moreover, efforts have been dedicated to developing data schema for accommodating a transnational 450 

understanding of geological features. For example, GeoSciML (OGC Geoscience Markup Language) is a data 451 

transfer standard developed under a multi-national collaborative effort for the exchange of geoscientific 452 

information such as representations and description of features contained in a geological map (Russell et al., 453 

2019). The GeologicFeature and MappedFeature concepts in OGC:GeoSciML proposed by Beaufils et al. (2020) 454 

is shown in Figure 7. A list of OGC implementation standards can be found from (OGC, 2020). Besides ongoing 455 

efforts in Europe, the Government Geotechnical Report Database (GGRD) Project undertaken by NSW 456 

Australia endeavours to improve data accessibility through collaboration with multiple governmental agencies 457 

(NSW Australia, 2020b). In addition, enhancing research efforts into 3D geological modelling is also an active 458 

direction, for example, the Loop project (Loop, 2019) coordinated through OneGeology (OneGeology, 2017) 459 

is based on multi-collaboration among Australia, Canada, France, Germany and the UK to provide open source 460 

implicit modelling solution.  461 

462 
Figure 7 The GeologicFeature and MappedFeature concepts in OGC:GeoSciML. Redrawn after (Beaufils et al., 463 

2020). 464 

3.1.2 3D Geological modelling and quantification of geotechnical properties 465 

Several studies have investigated the importance of understanding geological structures to underground 466 

construction (Aldiss, 2012; Klopcic et al., 2013; Rienzo et al., 2008). Depending on the geologic features of the 467 

ground, rock masses can be coarsely classified as an isotropic body with no apparent observant failure directions, 468 

or an anisotropic body possessing strong blocky features, indicating failure governed by weaker bedding planes. 469 

Subsequently, the potential failure mode around excavation, corresponding to the specific geological 470 

environment can be inferred. Moreover, the stability of excavation and effectiveness of support systems for 471 

anisotropic rock volume can only be fully assessed when an adequate geological model is established to allow 472 

considerations of discontinuities-associated potential failures (Hoek and Marinos, 2010).  473 
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Information used to form the geological model can be obtained based on either the project-specific ground 474 

investigation or existing knowledge of geological environments and interpretations made by geographers and 475 

geologists (Parry et al., 2014). After the data is acquired, an explicit or implicit approach is then followed to 476 

create the geological model. The explicit modelling involves the interaction and implementation of geological 477 

concepts by experienced geologists. In contrast, implicit modelling refers to the utilisation of software programs 478 

embedded with mathematical functions based on geological concepts. The accuracy of geological models 479 

established regardless the approaches taken are highly reliant on the data availability and quality (Pan et al., 480 

2018) as well as the geological interpretations (Calcagno et al., 2008).  481 

The quantitative data such as the rock quality destination (RQD) for geologic settings predominated with 482 

rocks, and information obtained from, for instances, cone penetration test (CPT) and standard penetration test 483 

(SPT) suggestive of soft-ground conditions provide the preliminary knowledge regarding the project’s 484 

geological environment. This data, however, requires organisation and interpretation to vitalise. Therefore, good 485 

practices such as shown in Figure 8 that visualises the geotechnical parameters in the 3D model in combination 486 

with the tunnel design should be adopted for enhancing the interpretability of data.  487 

488 
Figure 8 A 3D geological model constructed for a tunnel in soft ground (Heinenoord Tunnel, Netherlands) 489 

illustrated with CPT spectrum of boreholes. Reproduced from (Hack et al., 2006). 490 

3.1.3 3D Geological model integrating GIS and BIM 491 

As discussed above, a geological model serves as a bedrock for the design of the tunnel and underground 492 

construction; this is reflected in its capability to help improve design quality and identify, at the earliest stages, 493 

the critical geological issues by characterising the spatial distribution, stratigraphic settings and structural 494 

relationships of geo-objects. Digital management of both the historical and newly acquired data via computer-495 

based systems such as GIS has gradually earned acceptance. Being the predominant tool to handle geo-496 

referenced data, the development of GIS can be traced back to the last century (Coppock and Rhind, 1991) and 497 

through facilitating data maintenance, analysis and presentation (Huisman and By, 2009), the system and its 498 

analytical functions have been adopted widely to support geological information interpretation and model 499 

construction (Kaufmann and Martin, 2008; Kavoura et al., 2016; Song et al., 2018). Examples of establishing 500 
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geological model using GIS applications can be found in (Velasco et al., 2013), which presents the stepwise 501 

procedures of establishing GIS-based 3D geological and hydrogeological models, with the GIS platform used 502 

to facilitate the stratigraphic analysis by administering required data with respects to the geographic location, 503 

as shown in Figure 9. Živec and Žibert (2016) describes the creation of 3D geological model for a tunnel project 504 

using GIS-based datasets and BIM inspired modelling techniques, and demonstrates the applications of the 505 

model, including geological structures extrapolation, rock mass characterization, and investigation planning. 506 

Moreover, Zhu et al. (2016a) proposed a GIS-based engineering geological system underpinned by the 507 

underground space information database for the evaluation of city urban underground space resources, as shown 508 

in Figure 10. 509 

 510 
(a) 511 
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 512 
(b) 513 

Figure 9 Steps and tools involved in a creation of stratigraphic columns, correlation and geological profile for 514 

a case study located in metropolitan area of Barcelona, NE Spain; (b) Geological model generated for the studied 515 

area and the corresponding meshed model. Modified from (Velasco et al., 2013). 516 

517 
Figure 10 An intelligent GIS-based engineering geology system developed for resources evaluation of urban 518 

underground. Reproduced from (Zhu et al., 2016a). 519 
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From the standpoint of an institutional data paradigm where observations are maintained on a jurisdiction-520 

wide basis, the corresponding regional geology data at Victoria state level, for example, is collected mainly for 521 

the purpose of mineral prospectivity with 3D geological models established at the regional scale. Urban or 522 

project-scale models of higher precision are often not publicly accessible and subjected to proprietary. To 523 

overcome the data sharing challenges, countries such as Germany and the Netherlands are making publicly 524 

available geological models and all relevant data, such as the “Borehole Map Germany” (BGR Germany, 2019) 525 

and “Data and Information on the Dutch Subsurface (DINOloket Netherlands, 2019)” (see Figure 11). Moreover, 526 

a sensible degree of data openness has been leveraged by countries like Singapore and the UK to develop large-527 

scale geological understanding incorporating GIS databases. For example, the data of up to 60,000 boreholes 528 

drilled throughout Singapore was collected and compiled in a GIS system to facilitate the establishment of 3D 529 

geological model for the entire country (Pan et al., 2018), with a web-based geo-data modelling and management 530 

system, GeM2S developed for its future underground projects (Pan et al., 2020), as shown in Figure 12. 531 

Moreover, 2D geospatial datasets, including the hydrogeological GIS are used for the application of a 3D 532 

geological model maintained to support the sustainable development of urban underground at Earls Court, 533 

London, UK (Price et al., 2018). 534 
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535 
Figure 11 Demonstration of using DINOloket for creating synthetic borehole and cross-section; Both scenarios 536 

engaged model selection and user-defined location; the results are shown on the bottom. Accessed from: 537 

https://www.dinoloket.nl/en/subsurface-models 538 
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539 
Figure 12 Workflow of a web-based 3D geo-data modelling and management system (GeM2S). It consisted of 540 

9 steps that begin with collection, processing and evaluating the geo-data (steps 1-3), moving on to establishing 541 

a series of collaborative management tools incorporating web-GIS and 3D geo-model (Steps 4-7), and 542 

progressing to online applications implementing the tools to Singapore’s urban redevelopment master plan 543 

(URA) and land transport projects (URA) (Steps 8-9). Reproduced from (Pan et al., 2020). 544 

Efforts have also been devoted to establishing platforms for more automated and systematic geological 545 

quantification and interpretation using GIS. For example, Utsuki and Tsuruta (2018) describe a centralised 546 

management system incorporating artificial intelligence, construction information modelling, and image 547 

processing technology to help determine the geological conditions of the excavation sites. In addition, 548 

jurisdiction-wide model establishment combining building information and geological data, such as the joint 549 

research project between the Swiss Cadastral Survey and the University of Applied Sciences of Geneva has 550 

proved that there exist enormous potentials for better standardisation and multidisciplinary collaboration. Figure 551 

13 illustrates the overall model incorporating surface and subsurface building information and geological data 552 

(Baumberger et al., 2019).  553 
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554 
Figure 13 Integrated model of the city of Geneva incorporating surface and subsurface building information and 555 

geological data. Modified from (Baumberger et al., 2019). 556 

3.2 GIS for BIM  557 

GIS facilitates more than the spatial context for ground conditions, but also the localisation for physical 558 

constraints and emergency situations. Provision of GIS services has been found in earlier lifecycle stages of an 559 

underground infrastructure project’s lifecycle. Included are route design and site selection of utility networks 560 

and rock cavern (Cheng and Chang, 2001), digital recording of geological and geomechanical surveying data 561 

during tunnel excavation (Thum and Paoli, 2015), as well as supporting risk assessment of geohazards such as 562 

water inrush during tunnel construction (Li and Li, 2014). Moreover, GIS-based monitoring of tunnel 563 

deformation (Liu et al., 2009), underground mine subsidence (Li and Li, 2014), mining-induced surface 564 

deformation (Spreckels et al., 2001), underground pipeline surveying (Zhang et al., 2016b) and underground 565 

utilities mapping integrating augmented reality (Fenais et al., 2019) have also been implemented. In addition, 566 

Borrmann et al. (2015) proposed an IFC-based multi-scale tunnel model inspired by the CityGML’s intrinsic 567 

LoD representations.  568 

A number of online GIS-based application platforms are maintained at different administrative levels. 569 

For example, AURIN, the Australian Urban Research Infrastructure Network, provides integrated GIS, data 570 

release and delivery service for researchers, industry and all levels of government. AURIN facilitates access to 571 
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a large data collection from both public and private sources through the AURIN “infrastructure”, including a 572 

portal, an application programming interface, and a map. Application of AURIN portal in browsing the 573 

geological map (in polygon form) of the Central Business District (CBD) of Melbourne, Australia, as illustrated 574 

in Figure 14. Engaging QGIS – an open-source desktop GIS application, an example of coordinating GIS 575 

datasets GIS data for major infrastructures, such as the currently ongoing Metro Tunnel Project in Melbourne 576 

is shown in Figure 15.  577 

578 
Figure 14 Demonstration of using AURIN Portal v 1.5 (Accessed from: https://portal.aurin.org.au/) to create a 579 

geological map leveraging GIS. The new project starts with Australia selected as the highest level of geography. 580 

Melbourne CBD (Local Government Areas in 2018 with code 24600) was then selected and placed with a 581 

bounding box (red rectangle, activating and dragging the red circles to reshape if required); For data retrieval, 582 

the keyword “geology” was used for accessing relevant dataset. The geological polygons at a scale of 1: 250,000 583 

were selected and added for visualisation; using function of “Interactive Maps & Charts”, polygons were 584 

mapped with the attribute “UNITNAME” to produce the resulted map. 585 
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586 
Figure 15 Coordinated visualisation of tunnel tracks and station entrances of the Metro Tunnel Project in 587 

Melbourne. The project GIS data can be accessed from 588 

https://unimelb.libguides.com/victorianmapresources/victorianGISdata. Both the geological map retrieved 589 

from AURIN and the project GIS data in shapefile can be imported to QGIS for visualisation and interpretation; 590 

(a) tracks and station entrances artificially positioned on a perspective view of a 3D textured mesh of city of 591 

Melbourne supported by GIS web-viewer (accessed from: 592 

https://cityofmelbourne.maps.arcgis.com/apps/webappviewer3d/index.html?id=b555219a327b4535a89d8ec6e593 

97780cf; source data can be downloaded from https://data.melbourne.vic.gov.au/Property/City-of-Melbourne-594 

3D-Textured-Mesh-Photomesh-2018/d5tb-r7a6), (b): enlarged view concentrates on the area of Melbourne 595 

CBD with densely distributed high-rise buildings, and (c) the geological cross-section corresponding to the 596 

location of a section of tracks.  597 

Finally, there have also been scientific initiatives to investigate the state-of-the-art implementation of 598 

open standards towards integrating BIM and geospatial views. The GeoBIM benchmark project, for instance, 599 

aims to “provide a framework describing the present ability of existing software tools to use CityGML and IFC 600 

models and understand their performance while doing so”, and one of the tasks carried out during the 601 

examination is the conversion between the two schemas (GeoBIM benchmark, 2019). Reports on the initial and 602 

intermediate results of the projects can be found in (Noardo et al., 2019; Noardoa et al., 2019). 603 

3.3 IFC extensions for tunnelling   604 

The tunnel construction methods can be broadly classified into mechanised and conventional tunnelling 605 

approaches by whether a tunnelling boring machine (TBM) is involved. There has been extensive research 606 

covering aspects concerning both mechanised and traditional tunnelling. Included were TBM performance in 607 

adverse ground conditions (Barla and Pelizza, 2000; Barton, 2000; Gong et al., 2016; Zhao et al., 2007), the 608 

influence of mechanical properties of geomaterials over tunnelling performance (Liu et al., 2017a; Nilsen et al., 609 

2006; Ramezanzadeh et al., 2008), numerical simulation of excavation process (Kasper and Meschke, 2004; 610 
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geological cross-section chainage 
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Lambrughi et al., 2012; Mroueh and Shahrour, 2008), settlements induced by tunnel construction (Fargnoli et 611 

al., 2013; Koukoutas and Sofianos, 2015) as well as monitoring of operation (Huang et al., 2018c; Shen et al., 612 

2014).  613 

One fundamental premise of BIM is to create a collaborative environment by providing interoperability 614 

and consistent data structure. This section examines the existing customised extensions of IFC-schema for 615 

representing tunnelling-related content. However, standardisation of IFC-schema for tunnel and its related 616 

facilities (e.g. stations) is still in progress (bSI, 2019b). This implies that there could hitherto exist significant 617 

ambiguities in terms of format, process and meaning of the project product model. Without the universality, the 618 

concept of “Open BIM” that stresses the use of neutral data exchange formats (Borrmann et al., 2018) cannot 619 

be fully implemented.  620 

3.3.1 Conventional tunnelling 621 

Conventional tunnel methods such as the New Austrian Tunnelling Method (NATM) and the Analysis 622 

of the Controlled Deformation in Rocks and Soils (ADECO-RS) do not engage TBMs, so that excavation and 623 

support installation are performed as separate procedures, which is denoted as cyclic tunnel advance. Karakuş 624 

and Fowell (2004) and Lunardi (2008) detail the tunnelling philosophies of NATM and ADECO-RS.  625 

The German Tunnelling Committee, DAUB (2019) introduced a new term “Level of Geometry (LoG)” 626 

along with the recommendations to future standardisation and activities within the scope of BIM in tunnelling. 627 

Defined as the “degree of geometrical detailing of the model with reference to the modelled content of the 628 

construction elements”, Figure 16 illustrates the increasing geometrical complexity for conventional tunnelling 629 

on a scale from LoG 100 to LoG 400. In terms of IFC schema developed for conventional tunnelling, Lee et al. 630 

(2016) extended the existing IFC model by comparing it with the design elements for a NATM tunnel, and 631 

added the identified elements to fully represent the NATM tunnel. The schema expansion following the structure 632 

of IFC data model (i.e., in hierarchical order) included both the spatial and physical entities as well as their 633 

corresponding attributes and relationships.  634 
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635 
Figure 16 Level of Geometry (LoG) in conventional tunnelling. Reproduced from (DAUB, 2019). 636 

3.3.2 Mechanised tunnelling 637 

Mechanised tunnelling implies the use of TBM that excavates the ground driven by a cylindrical cutting 638 

wheel. TBMs are generally classified into open TBMs and shield machines. In case of open TBM tunnel advance, 639 

if necessary, the excavated rock is supported with shotcrete, anchors and steel arches. On the contrary, shield 640 

TBM advance and installation of segmented tunnel lining is carried out under the protection of a steel shield 641 

that advances along the tunnel axis, resists surrounding ground pressure while preventing water inflow until the 642 

installation of temporary or final support lining is completed (Maidl et al., 2012). Since the excavation and 643 

support implementations are carried out almost simultaneously, shield tunnelling is referred as continuous 644 

tunnel advance. 645 

In recent years, the research in the area of information modelling for underground infrastructure was 646 

driven in an effort to extend IFC data schema, covering contents related to the activities, machineries and 647 

systems of underground infrastructure. Through the initial efforts of  (Yabuki, 2009), a generalised data model 648 

for shield tunnels, named IFC-ShieldTunnel was established to include tunnel-specific members, such as shafts, 649 
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segments (of various types), waterproofing elements, segment joint elements, and ring joint elements. In the 650 

later research, Yabuki et al. (2013b) proposed a conversion technique through effective mapping, which enabled 651 

the automatic data adaption from Revit Structure 2011 (i.e. IFC 2×3) to IFC-ShieldTunnel. Borrmann and 652 

Jubierre (2013) have presented a comprehensive product model based on the previous work by Yabuki et al. 653 

(2013b) with a focus placed on preserving semantic-geometric coherence of the model. Figure 17 illustrates the 654 

proposed shield tunnel product model, which is a generalised data model that empowers the exchange of data 655 

specifics of a shield tunnel, including geometric shapes, properties, and relationships (Borrmann and Jubierre, 656 

2013).  657 
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 658 

(a) 659 

 660 

 661 

(b) 662 

Figure 17 (a) A proposed shield tunnel product model incorporating (b) a coherent multi-scale representation 663 

of semantics and geometry. Reproduced from (Borrmann and Jubierre, 2013). 664 

Vilgertshofer et al. (2016) further enhanced the approach by placing emphasis on the downward 665 

compatibility of the expanded IFC data schema, which considered the implementation of semantic entities 666 

associated with a particular LoD to prepare for LoD-dependent visualisation in any IFC-viewers. Zhong et al. 667 
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(2018) presented a similar approach to develop an IFC-based data model of shield tunnel. Based on the product 668 

model, a shield tunnel assembling method was proposed as well as a parametric modelling method. Additionally, 669 

Zhou et al. (2018) presented an extended IFC data model compatible with a typesetting algorithm designed for 670 

deviation control during the segment assembly of a shield tunnel, and a series of spatial and physical entities 671 

for the process of segment assembly have been identified and combined in the extended IFC schema. The 672 

extension model based on IFC has been applied in the Wuhan Yangtze River Tunnel in China to confirm the 673 

validity.   674 

Research has also been directed to model the TBM by IFC-compatible classes. Hegemann et al. (2012) 675 

introduced a detailed IFC product model for a specific type of TBM commonly used in unstable ground 676 

conditions – Earth Pressure Balance (EPB) machines. A series of components consisting of the EPB machines 677 

were considered in the newly established IFC product model, such as the cutting wheel, excavation chamber, 678 

and screw conveyors. Similarly, Koch et al. (2017) presented a tunnel information modelling framework that 679 

accommodates four interactive subdomain models, including a ground model, a boring machine model, a tunnel 680 

lining model, and a built environment model. These models were individually established and integrated via an 681 

IFC environment (Figure 18). Gueulet and Milesy (2018) proposed a 4D visualization tool for TBM worksites 682 

that promoted the instant generation of 3D models owing to database connection. Models integrated into the 683 

system include the TBM model, segmental lining model, 2D tunnel alignment, geological block model, stations 684 

BIM models, and city buildings model.  685 

 686 
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(a) 687 

 688 
(b) 689 

Figure 18 (a) Added element classes within extended TBM IFC model, and (b) part of modelled TBM elements 690 

corresponding to (a). Reproduced from (Koch et al., 2017). 691 

 The concept of differentiating morphological features of building parts has been extended for tunnels 692 

and components involved in tunnelling projects. Borrmann et al. (2014) introduced a multi-scale modelling 693 

approach that considers the widely different scales in an inner-city tunnelling project. The methodology is 694 

composed of two aspects aiming at building a multi-scale model of shield tunnel and a conceived collaboration 695 

platform. The shield tunnels constructed in the project were modelled with five different LoDs representing the 696 

different levels of abstraction required in the planning stage. The collaborative design is achieved by employing 697 

procedural modelling techniques, which help establish explicit dependencies between the geometric entities on 698 

different LoDs and facilitate consistency preservation between LoDs. Osello et al. (2017) proposed a BIM-699 

based methodology for implementing in a tunnel project. To determine the appropriate LoD for the respective 700 

project, it examined the notion of “level of (model) definition” in accordance with PAS 1192-2:2013 set out by 701 

the British Standards Institution (BSI). Level of definition includes both “level of model detail” and “level of 702 

information detail”, i.e. degree of graphical and non-graphical details of the models. In this study, the level of 703 

definition 4 was ascertained to provide sufficient parametric information required in developing the BIM model 704 

of the tunnel. Moreover, Ninić et al. (2020) introduced a multi-level information and numerical modeller for 705 

mechanised tunnelling projects. The work emphasises on the flexibility of modelling components of building, 706 

tunnel lining and soil at different LoDs to predict tunnelling-induced damage to buildings, soil stability around 707 

excavation and damage in the segmental lining (Figure 19).  708 



34 

 

709 
Figure 19 Alternatives for selection of LoDs for individual components based on analysis objectives. 710 

Reproduced from (Ninić et al., 2020). 711 

3.4 Geometrical and numerical modelling 712 

Tunnel design assisted by numerical modelling often involves the construction of 3D models (2D models 713 

can be acceptable in certain circumstances), consisted of the structures and the ground. Machines, such as a 714 

TBM, used to excavate can also be modelled to simulate the machine-ground interaction as detailed in (Zhao et 715 

al., 2012). The geometrical models are traditionally generated in a CAD application software and imported to 716 

the numerical modelling software, or directly built in the numerical modelling software. Numerical simulation 717 

is performed to identify safety concerns and design inadequacy. Under soil conditions, the surface settlement is 718 

often the main safety concern, whereas geological structure induced instability is more related to tunnelling 719 

through rock mass. Therefore, numerical models established for rock tunnel simulation should always 720 

encompass major geological structures. Another concern of underground construction demanding numerical 721 

simulation is the deformation of large-span caverns (created to accommodate underground stations, i.e., integral 722 

part of a tunnel infrastructure), with their formation similar to conventional tunnelling, characterised by separate 723 

excavation and support installation procedures. 724 

BIM-based design can effectively moderate the computation and data sourcing processes for numerical 725 

simulation by leveraging the already-established geometrical BIM components (Alsahly et al., 2020). For 726 

example,  Ninić et al. (2019); Ninić et al. (2017); Ninić et al. (2020) demonstrated the use of a unified numerical 727 

and information modelling platform named SATBIM, which is consisted of 1) multi-level tunnel information 728 

modelling using Autodesk Revit and Dynamo; 2) geometrical model and finite element mesh generation 729 

applying the pre/postprocessor; and 3) numerical analysis employing a process-oriented numerical framework 730 
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for high-performance computing, as shown in Figure 20. The platform allows the automatic instantiation and 731 

execution of numerical model based on the BIM model and visualisation of the numerical simulation results in 732 

the BIM environment. The source code of SatBimModeller can be obtained from https://github.com/satbim.  733 

734 
Figure 20 A modelling platform (SATBIM) developed for simulating interactions in tunnelling based on a multi-735 

level design. Reproduced from (Ninić et al., 2020). 736 

3.5 Multi-components interactive platforms 737 

A multi-components interactive platform can be defined as a service platform consisted of different 738 

functional systems. One example is proposed by Koch et al. (2017), as illustrated in Figure 21. Included are an 739 

interactive platform designed to aggregate data sources, a tunnel information model (TIM) container consisted 740 

of models representing ground, TBM, tunnel and built environment, and an integration layer. Finally, the 741 

application layer underpinned by IFC-based access allows applications such as visualisation and numerical 742 

simulation to gather relevant data from the TIM container and provides analysis to its users. 743 

Similarly,  Zhu et al. (2017) introduced the infrastructure Smart Service System (iS3) that integrates data 744 

acquisition and analysis with tunnelling services by combining software and hardware. A range of modules is 745 

developed to incorporate geospatial engineering, high-precision modelling and stability analysis. From the 746 

application point-of-view, the integrated platform facilitates data management and decision-making efficiency 747 

and provides both downloadable and web-based versions of the product. An example of engineering application 748 

of iS3 is the prediction of excavation in the Ningbo subway station (Tang et al., 2020). More information about 749 

this system can be found on https://github.com/iS3-Project.  750 
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 751 

(a) 752 

 753 

(b) 754 

Figure 21 (a) An interactive platform developed for tunnel information modelling and (b) subdomain models 755 

contained in the tunnel information model (TIM). Reproduced from (Koch et al., 2017) 756 

To summarise and identify gaps of BIM-based model establishment for underground construction 757 

(mainly includes tunnels and underground stations), Table 2 is prepared. A general observation is that a wide 758 
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range of components has already been covered by existing research. However, owing to the lack of 759 

standardisation, the model LoD definitions are prone to ambiguities. In addition, the existing ground models are 760 

generally for tunnelling in soil mass that is absent of geological structures, and thus are inappropriate to be 761 

implemented in rock tunnel simulation.  762 

Table 2 Examples of existing models by components for shield/TBM tunnelling. 763 

Ground 

model 

Building 

model 
Stations TBM 

Tunnel 

alignment 

Segmental 

linings 
References 

     ✓ 
(Yabuki, 2009; Yabuki 

et al., 2013a) 

   ✓   
(Hegemann et al., 2012) 

 

    ✓ ✓ 
(Borrmann and Jubierre, 

2013) 

    ✓ ✓ 
(Vilgertshofer et al., 

2016) 

✓ ✓  ✓ ✓ ✓ (Koch et al., 2017) 

✓ ✓  ✓ ✓ ✓ 

(Ninić et al., 2019; 

Ninic et al., 2017; Ninić 

et al., 2020) 

✓ ✓ ✓ ✓ ✓  
(Gueulet and Milesy, 

2018) 

    ✓ ✓ (Zhong et al., 2018) 

     ✓ (Zhou et al., 2018) 

 764 

To address the identified gaps and conform to discussions made in the above sections, a model is proposed 765 

taking the Metro Tunnel Project in Melbourne as an example (Figure 22a) consisted of the building (Victoria 766 

State Library), ground with geological structures, tunnel related structures, underground stations and TBM. The 767 

models are established based on the LoD concept (Figure 22b). For example, the station model at LoD 4, apart 768 

from the main structure, will also contain structural support, the shotcrete (as temporary support), rock bolts, 769 

canopy tubes and columns to facilitate numerical simulation of interaction (Figure 22c).  770 

 771 

(a) 772 
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 773 
(b) 774 
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 775 
(c) 776 

Figure 22 (a) Schematic of an integrated 3D model of the building (State Library of Victoria), ground, tunnel, 777 

station and TBM of Melbourne metro. (To visualise the multi-components, the scale and locations of 778 

buildings are slightly different from the site.), (b) multi-component BIM model at different levels of IFC for 779 

the underground station, and (c) numerical modelling of shotcrete (as temporary support), rock bolts, canopy 780 

tubes and columns performed at LoD 4 to assist construction. 781 

3.6 Some innovative construction technologies 782 

This subsection considers the contemporary design and construction techniques emerged in tunnelling 783 

and underground construction, including prefabricated construction and non-circular TBMs (ENAA, 2019; 784 

Hanshin Expressway, 2020; Li, 2017; Yang et al., 2019) that can also be using BIM for the digital representation 785 

of their physical and functional characteristics, but each of them individually is associated with unique features 786 

to warrant considerations. 787 

Modularisation or prefabricated construction refers to the practice of assembling large building 788 

components at the manufacturing site and transporting the assemblies to the construction site where they are to 789 

be installed. Prefabricated technologies have been widely adopted in underground construction since it provides 790 

excellent benefits to enhancing safety, quality and efficiency. TBM tunnel space sustained with segmental rings 791 

consisted of prefabricated concrete segments is a form of underground engineering that engages prefabricated 792 

technology. Unlike tunnels that can detour to avoid unfavourable ground conditions and be built at a certain 793 

depth, underground stations are often constructed in densely populated regional centres and at shallow depth 794 
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prone to create a ground disturbance. Prefabricated technology provides an alternative construction strategy for 795 

the construction of underground stations. With structures pre-assembled, the construction period can be greatly 796 

reduced, and thus facilitating settlement control and fast road reinstatement. An example of such prefabricated 797 

underground station (Changchun Metro line 2) is shown in Figure 23 consisted of a photograph taken onsite 798 

when the main structure is completed (Figure 23 a) (Yang et al., 2019) and its BIM model (Figure 23 b). 799 

 800 
(a) 801 

 802 
(b) 803 

Figure 23 (a) Photo taken after completion of the main structure of prefabricated underground station on 804 

Changchun Metro line 2. Reproduced from (Yang et al., 2019), (b) BIM model for this station (Courtesy of 805 

Fang Lin and Xiuren Yang for providing the CAD files and construction information) 806 

Non-circular TBMs and shield machines such as double-O-tube, multi-circular face, rectangular, and 807 

horseshoe-shaped TBMs have been employed in creating cross-sections for the development of fit-to-purpose 808 
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underground space (ENAA, 2019; Hanshin Expressway, 2020; Li, 2017). The horseshoe-shaped cross-sections 809 

are advantageous over conventional circular cross-sections in terms of higher utilisation ratio and better 810 

mechanical behaviour (Figure 24a). Variations of Kawasaki's APORO Cutter can excavate differently shaped 811 

sections, and for example, the rectangular one (Figure 24b) is for Tokiwa work section of Hanshin Expressway 812 

Yamatogawa route (Hanshin Expressway, 2020). The erection, installation and bearing capacity of segments 813 

are the key technologies involved in non-circular TBMs. The geometrical irregularity of segments used to form 814 

a ring may increase the probability of segment dislocation, which requires a higher degree of precision control 815 

in segment transport and installation (erection operation) to facilitate the automation of this process.  816 

 817 
(a) 818 

 819 

 820 
 821 

(b) 822 

Figure 24 (a) Horseshoe-shaped TBM (left) and segmental rings (right). Reproduced from (Li, 2017); (b) 823 

APORO rectangular shield machine (left) and segmental rings (right). Reproduced from (Hanshin Expressway, 824 

2020) 825 

4. Machine learning and computer vision in underground construction  826 

Sensing technologies have been extensively adopted in underground construction for a variety of 827 

applications, including geological abnormality prediction, stability and structural health monitoring, and as-828 

built quality control. Traditional geotechnical underground sensing and monitoring engages instruments such 829 

as strain gauges, load cells, piezometers, extensometers, inclinometers, and accelerometers for measuring strain, 830 
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load, pressure, deformation, tilt and vibration, respectively (Iskander, 2017). Strategies implemented in the 831 

tunnel and underground infrastructure maintenance and inspection will not be systematically reviewed, 832 

interested readers are referred to Federal Highway Administration (FHAOBS US, 2015) and (Pamukcu and 833 

Cheng, 2017) for details. The emerging sensing technologies leverage advances in both hardware and software 834 

to create monitoring systems embedded with improved communication efficiency and information richness.  835 

During tunnelling and post-construction operation and maintenance, a significant volume of data is 836 

produced through geophysical prospecting and sensing deployment. While machine learning algorithms have 837 

been widely applied on data obtained from geo-prospecting (Alimoradi et al., 2008; Pasolli et al., 2009) and 838 

machine operation (Benardos and Kaliampakos, 2004; Mahdevari et al., 2014), breakthroughs in the domain of 839 

deep learning are increasingly used in combination with traditional computer vision techniques in infrastructure 840 

inspection and monitoring (Bao et al., 2019; Koch et al., 2015; Spencer et al., 2019). 841 

The section reviews and provides examples of machine learning and computer vision-based techniques 842 

that are broadly applied to underground construction (Section 4.1) and post-construction operation and 843 

maintenance (Section 4.2), with Figure 25 schematically depicts a typical workflow. In general, with increasing 844 

breadth and diversity of sensor deployment (e.g., TBM’s built-in sensors, interferometric Synthetic Aperture 845 

Radar (InSAR), ground-penetrating radar (GPR), imaging, and laser scanning), a large volume of data will be 846 

acquired that is interpretable by machine learning and computer vision-based techniques. Visualisation and 847 

manipulation of the analysis assisting evaluation and decision-making tasks (e.g. seismic-event prediction and 848 

classification of lining damages) can be achieved by establishing an application layer (e.g. a graphical user 849 

interface).   850 

851 
Figure 25 Workflow of data acquisition, analysis and evaluation based on machine learning and computer vision 852 
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4.1 Construction stage 853 

A large volume of data is produced during the construction stage, that can be broadly classified as from 854 

waveform-based geological prospecting (mainly acoustic/seismic wave and electromagnetic wave, i.e. GPR), 855 

machine operation, and ground prediction and evaluation. The below subsections will briefly review these 856 

sensing methods while examining the applications of machine learning in interpreting the data. 857 

4.1.1 Waveform-based geological prospecting 858 

A range of geological ahead prospecting harnessing geophysical methodologies is applied in tunnelling 859 

and underground construction to obtain knowledge of local geological conditions. A thorough review of the 860 

technological principles and applications of geophysical ahead prospecting methods to tunnelling can be found 861 

in (Li et al., 2017).  862 

Full-wave inversion plays a vital role in subsurface characterisation, which has been considered by (Wu 863 

and Lin, 2018) proposing the InversionNet, a data-driven model that learns a mapping from seismic waves to 864 

the subsurface velocity models. For detecting geological discontinuity such as faults and dykes, seismic-wave 865 

based methods are commonly used in both drilling-and-blasting (Alimoradi et al., 2008) and TBM tunnels 866 

(Yokota et al., 2016). Seismic waves are generated by using explosives, hammers or vibration sources with 867 

sensors installed on the tunnel face, sidewalls, TBM shields or on the surface. Seismic methods distinguish 868 

different rock types based on the time contrast for waves to be reflected due to lithological discontinuities. 869 

ANNs have been employed to predict weak geological zones during the construction of a water supply tunnel 870 

by deducing a relationship between the TSP-203 (Tunnel Seismic Prediction) (Amberg, 2002) resulted seismic 871 

properties and those of RMR (rock mass rating) (Alimoradi et al., 2008). Wu et al. (2019b) proposed to train 872 

3D synthetic data sets of seismic images using supervised fully CNN simplified from U-Net (Ronneberger et 873 

al., 2015) that consists of a contracting path for context capturing and a symmetrical-expanding path for 874 

localisation (Figure 26). The fault detection is treated as a binary image segmentation problem of labelling 875 

images with ones on faults and zeros elsewhere, and a balanced cross-entropy loss function can be used. 876 

 877 
(a) 878 
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 879 
(b) 880 

Figure 26 (a) A simplified U-Net structure proposed for 3D fault detection, and (b) detected fault and fault 881 

likelihood based on the CNN model. Reproduced from (Wu et al., 2019b). 882 

Microseismic (MS) mainly functions to assess rock mass stability and predict hazardous rockburst in both 883 

hard rock and coal. Rocks and most of brittle solids emit low-level acoustic or seismic signals when they are 884 

stressed (Hardy, 2003); therefore, MS monitoring systems deployed underground can precisely locate the 885 

seismic source through signal interpretations and incorporate adequate ground control in a timely manner to 886 

help improve excavation safety. The resulted signal waveforms can be used in training neural networks for 887 

pattern recognition and feature extraction, as shown in Figure 27 (Kong et al., 2018). Another example can be 888 

found in (Zhu and Beroza, 2019), which proposed a deep neural network algorithm, named the PhaseNet, that 889 

is fed with three-component waveforms to predict the probability distributions of P-wave, S-wave, and noise. 890 

Huang et al. (2018b) employs CNN in a method developed for identifying the Time Delay of Arrival taking 891 

cross-wavelet transform power and phase as inputs, and subsequently locating the MS events. 892 
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893 
Figure 27 (a) A cartoon schematic illustrating CNN for the generalised phase detection (GPD), a new category 894 

of earthquake detection algorithms that trains CNN to learn generalised representations of seismic waves from 895 

a substantial number of seismograms. The CNN feature extraction system operates in combination with fully 896 

connected neural network to produce class probabilities for noise, P and S waves. (b) An application example 897 

of GPD to waveforms obtained from a seismic event. Red and blue colours indicate P and S waves, respectively. 898 

Reproduced from (Kong et al., 2018). 899 

Before carrying out additional excavation, identification of existing underground infrastructure and utility 900 

network is required for the efficient planning and management of underground space. Driven by the land 901 

shortage, countries with limited national terrestrial areas such as Singapore and UK have initiated programmes 902 

dedicating efforts into digitalising underground space by mapping and assessing the built infrastructure such as 903 

utilities to create 3D shareable model (Metje et al., 2007; Schrotter and van Son, 2019). This starts with 904 

capturing data on the ground surface using conventional surveying tools such as geophysical techniques like 905 

GPR (Van Son et al., 2018).  906 

GPR based on electromagnetic methods is a useful tool to identify alien substances or discontinuities by 907 

detecting signal attenuation of the backscattered radiation from targeted objects (Daniels, 2004; Wai-Lok Lai et 908 

al., 2018). Pasolli et al. (2009) proposed a pattern-recognition system involving pre-processing to reduce noise, 909 

followed by feature extraction and finally an SVM classifier for the identification and classification of buried 910 

objects from GPR imaging. Reichman et al. (2017) discussed employing and comparing three CNN 911 
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configurations for detecting buried threats and concluded that detection performance can be improved by 912 

pretraining and dataset augmentation. Moreover, Kim et al. (2019) proposed to train a deep CNN on 913 

multichannel 3D GPR data of both B-scan and C-scan images for underground object classification (Figure 28). 914 

 915 
(a) 916 

 917 

 918 
(b) 919 

Figure 28 (a) Illustration of orthogonal slice planes of 3D GPR data; (b) cavity (cavity, pipe, manhole, subsoil) 920 

classification probabilities produced by a CNN method with the 3D GPR data (grid image). Reproduced from 921 

(Kim et al., 2019). 922 

Along with being employed for above-surface surveying for already laid utility networks, GPR is also 923 

used in ahead geological prospecting in tunnelling. The contrast in electromagnetic properties of geological 924 

heterogeneity such as groundwater, faults and fractured rock can be detected and depicted by GPR when the 925 

image is examined by analysts. However, condition differentiation and severity evaluation of GPR images are 926 

highly dependent on the analyst’s experience and are varied case by case (Abouhamad et al., 2017). The 927 

database containing GPR imageries can form an essential part of a management system to enable collaborative 928 

interpretation and decision-making based on functional visualisation. An example of such visualisation platform 929 
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can be found in (Wei et al., 2019) where a back-end database containing data acquired onsite using GPR and 930 

seismic methods is used for expert interpretation to obtain geological insights as well as an imagery evidence 931 

base. With the establishment of such database, deep neural networks can be applied to extract features and learn 932 

patterns. An example is found in (Liu et al., 2019), which introduced a deep neural network architecture for 933 

mapping GPR data to permittivity maps and has been applied to reconstruct tunnel lining defects. Apart from 934 

the above examples, a review on the applications of ANN and machine learning techniques to GPR can be found 935 

in (Travassos et al., 2018). 936 

Besides GPR, water-bearing bodies can also be uncovered by using electrical resistance tomography 937 

(ERT) by measuring the apparent electrical resistivity structure ahead of the tunnel face. ERT combines the 938 

technology of traditional electrical probing with tomography inversion to reconstruct the image based on the 939 

calculated subsurface distribution of electrical resistivity from extensive resistance measurements (Daily et al., 940 

2004). Deep learning techniques have been applied for ERT image reconstruction, such as in (Chen et al., 2020; 941 

Tan et al., 2018). 942 

4.1.2 TBM performance 943 

Machine learning has been broadly used on machine operational data, especially in TBM tunnelling, such 944 

as cutting force, thrust load, cutter torque and penetration, mainly for two purposes: predict TBM performance 945 

and forecast geological conditions. The prediction of TBM performance utilising machine learning algorithms 946 

on embedded-sensor data has been widely studied (Alvarez Grima et al., 2000; Benardos and Kaliampakos, 947 

2004; Erharter and Marcher, 2020; Liu et al., 2017b; Mahdevari et al., 2014; Marcher et al., 2020; Mokhtari and 948 

Mooney, 2020; Salimi et al., 2019; Salimi et al., 2016; Xu et al., 2019; Yoo and Kim, 2007). For example, 949 

Benardos and Kaliampakos (2004) developed a model for predicting TBM advance rate by employing an ANN 950 

for determining the influence of parameters such as RQD on TBM performance. Figure 29(a) shows the surface 951 

plot of the proposed model predicting the advance rate with respect to RMR and UCS (uniaxial compressive 952 

strength) for a given RQD. Mahdevari et al. (2014) have developed a TBM penetration rate (PR) prediction 953 

model based on SVM algorithm with the predicted values closely approximate measured values as shown in 954 

Figure 29(b), where the dashed line represents the line of equality. In addition, ANN-based tunnelling 955 

performance prediction has been integrated into the GIS platform harnessing its data management and 956 

visualisation capability to improve decision-making for routine tunnel design works (Yoo and Kim, 2007). 957 

Besides supervised machine learning methods, unsupervised approaches have also been applied in analysing 958 

TBM monitoring data during tunnel construction. For example, Zhou et al. (2019a) proposed to integrate 959 

spectral clustering and complex network theory for shield tunnelling machine monitoring data based on multi-960 

dimensional datasets. The classification results were analysed to infer the geological condition adaptability and 961 

cutter maintenance of the shield machine. Gao et al. (2019b) applied three types of RNNs (i.e., traditional RNN, 962 

LSTM network, and GRU: gated recurrent unit network) to predict the real-time operating parameters (i.e., the 963 

torque, velocity, thrust and the pressure of chamber) based on in-situ operating data, as shown in Figure 29(c)  964 

Moreover, deep learning techniques have also been applied in predicting the position of tunnelling machines to 965 
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foster construction quality and update as-built information. Zhou et al. (2019b) proposed an integrated deep 966 

learning model consisting of the wavelet transform, CNN, and LSTM for predicting the attitude and position of 967 

the shield machine. 968 

 969 
(a) 970 

 971 
(b) 972 

 973 

(c) 974 
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Figure 29 (a) A surface plot of an ANN model developed for predicting TBM advance rate based on influence 975 

parameters, the monograph is constructed in relation with the RMR and UCS parameters for a given RQD value 976 

of 0.5. Reproduced from (Benardos and Kaliampakos, 2004), (b) Graphical output provided by regression 977 

analysis for the normalised testing data. Reproduced from (Mahdevari et al., 2014), (c) real-time prediction of 978 

TBM operating parameters using three RNNs and three classical regress models (SVR: support vector 979 

regression, RF: random forest and Lasso). Modified from (Gao et al., 2019b). 980 

4.1.3 Ground prediction and evaluation  981 

The ground deformation induced by underground construction mainly includes the convergence of the 982 

tunnel wall, the settlement at the ground surface, and the damage assessment of existing structures. Machine 983 

learning algorithms have been widely applied for the prediction of surface settlement induced by TBM 984 

tunnelling (Ninić and Meschke, 2015; Suwansawat and Einstein, 2006; Zhang et al., 2020a; Zhang et al., 2019b) 985 

and evaluation of geological conditions (i.e., strength, crack frequency and weathering) of tunnel faces (Tsuruta 986 

et al., 2019). Traditionally terrestrial measurement techniques may introduce interruptions to the construction 987 

process and are time and material consuming (Kavvadas, 2005; Lunardi, 2008). With the increased power of 988 

remoting sensing techniques, InSAR enables the accurate measurement of tunnelling-induced change detection, 989 

4D mapping and environmental monitoring with millimetre accuracy in near-real-time (Barla et al., 2016; 990 

Moreira et al., 2013; Rucci et al., 2012). Typical examples of applying InSAR include monitoring and 991 

assessment of ground settlement (Schindler et al., 2016), landslide deformation (Bayer et al., 2017) and building 992 

damages (Giardina et al., 2019) induced by tunnelling. Moreover, Schindler et al. (2016) proposed a 4D BIM 993 

concept for visualising settlement data and incorporating TBM performance parameters (thrust force) in a 3D 994 

VR environment. Research efforts have been primarily made on improving the methods and capacities of 995 

processing the large volume of images, while information accuracy is heavily relied on manual inspection and 996 

expert interpretation. An example of research aims to address this can be found in (Anantrasirichai et al., 2020), 997 

where a CNN-based framework is developed to automatically detect the ground deformation induced by coal 998 

mining and tunnelling (London-Northern line extension) using high-resolution InSAR images (5 m/pixel) and 999 

UK velocity maps (2015-2019), as shown in Figure 30. Zhu et al. (2020) conducted a comprehensive review of 1000 

the recent advances and existing benchmark datasets in the utilisation of different deep learning techniques on 1001 

various SAR applications.  1002 



50 

 

 1003 
(a) 1004 

 1005 
(b) 1006 

Figure 30 (a) InSAR-Cumulative displacement map over London during April 2011-December 2015 with 1007 

negative values indicating the ground settlement above the Crossrail twin tunnels (LOS: the satellite line of 1008 

sight). Modified from (Giardina et al., 2019); and (b) CNN-based detection of London – Northern line extension 1009 

(g.  raw data; h. the wrapped and interpolated velocity map, and i. probability map overlaid on the raw data, and 1010 

the brighter yellow shows the higher probability.).  Reproduced from (Anantrasirichai et al., 2020) 1011 

Machine learning algorithms are also applied to predict geological conditions based on TBM operating 1012 

parameters (Erharter and Marcher, 2020; Liu et al., 2020; Zhang et al., 2019a). Zhang et al. (2019a) applied a 1013 

SVM classifier with an average precision of 98.6% to predict geological conditions of changing rock mass type 1014 

after compressing big TBM operational data using an unsupervised algorithm. Liu et al. (2020) have developed 1015 

a hybrid algorithm which integrated ANN with simulated annealing for the prediction of rock mass parameters, 1016 

the distance between the planes of weakness, and the orientation of discontinuities based on TBM driving 1017 

parameters. Erharter and Marcher (2020); Erharter et al. (2019a); Erharter et al. (2019b) developed an 1018 

unsupervised machine learning-based framework for TBM data-driven rock mass classification and applied it 1019 

to predict the TBM performance and rock properties in the Trenner Base Tunnel in Italy.  1020 

4.2 Operation and maintenance stage 1021 

With growing deployment of optical sensors, computer vision and deep learning techniques have been 1022 

increasingly applied in the general inspection and monitoring of civil infrastructures (Fathi et al., 2015; Feng 1023 

and Feng, 2018; Koch et al., 2015; Shakhatreh et al., 2019; Soga and Schooling, 2016; Spencer et al., 2019; Ye 1024 

et al., 2019). Inspection tasks are mainly consisted of two steps: data acquisition and computer vision-based 1025 
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data processing to effectively detect damage and change on the structure surface. Whereas monitoring through 1026 

the quantitative measurements using sensors such as strain gauges, load cells, and extensometers are useful to 1027 

obtain an understanding of structural integrity. However, results achieved this way typically have a low spatial 1028 

resolution or require dense sensor deployment, and thus not necessarily efficient if only occasional monitoring 1029 

is required (Spencer et al., 2019). Alternatively, vision-based, non-contact monitoring frameworks using 1030 

photogrammetric techniques can resort for change detection while allowing high maintenance flexibility and 1031 

spatial resolution. In the following subsections, application examples of machine learning and computer vision 1032 

for inspection and monitoring of underground construction, especially tunnels, will be examined from the aspect 1033 

of damage and change detection based on point-sets and images. The discussed algorithms and techniques are 1034 

environment insensitive, and thus have universal applications to all civil infrastructure; nevertheless, additional 1035 

lighting may be required for acquiring images in visual degraded environment. These techniques and 1036 

applications are necessarily developed for improved infrastructure condition assessment and facilitating as-built 1037 

BIM accuracy. 1038 

4.2.1 Point sets-based change detection  1039 

Terrestrial laser scanning (TLS) and mobile laser scanning (MLS) have increasingly been applied for 1040 

underground geotechnical applications such as tunnel deformation measurements (Cui et al., 2019; Nuttens et 1041 

al., 2010; Wang et al., 2014; Xie and Lu, 2017), water leakage (Xu et al., 2018; Yu et al., 2018) and detection 1042 

of structural discontinuities (Fekete et al., 2010). A point cloud dataset covering the full surveyed area is 1043 

achievable via an automatic rotation up to 360o. The conversion process from point cloud to a visual 1044 

representation is applied to provide geotechnical insights, as shown in Figure 31a (Fekete et al., 2010).  1045 

Moreover, as-built models based on data acquired by 3D laser scanning have been successfully integrated 1046 

with BIM (Brilakis et al., 2010; Randall, 2011; Wang et al., 2016; Wei et al., 2018). Based on the image- and 1047 

geometry-collaborative hierarchical segmentation, Yi et al. (2019) proposed a hierarchical framework to model 1048 

the tunnel structures from the LiDAR point cloud captured by a TLS. Figure 31b shows the modelling process 1049 

of the tunnel with a staggered joint pattern.  Not only point-clouds data can be reconstructed to as-built BIM 1050 

models (Cheng et al., 2019; Pärn and Edwards, 2017; Tang et al., 2010), BIM model can also transfer semantic 1051 

information to point clouds. Czerniawski and Leite (2019) proposed a method for creating large labelled datasets 1052 

of point clouds by transferring BIM semantics through geometry extraction and point-to-point copying of 1053 

semantics. The labelled point clouds dataset can then be used for training deep neural networks saving 1054 

significant manual labelling efforts. 1055 
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Figure 31 (a) Procedures involved in processing point-cloud data from raw point clouds to a visual 1060 

representation for a drill and blast tunnel (final shotcrete profile on the as-designed tunnel profile). Modified 1061 

from (Fekete et al., 2010), and (b) procedures involved in modelling tunnel with a staggered joint pattern, 1062 

engaging image segmentation and point cloud segmentation. Reproduced from (Yi et al., 2019). 1063 
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4.2.2 Image-based damage and change detection  1064 

Deep learning and computer vision techniques have been widely applied for the general inspection and 1065 

monitoring of civil infrastructures (Fathi et al., 2015; Feng and Feng, 2018; Koch et al., 2015; Shakhatreh et al., 1066 

2019; Soga and Schooling, 2016; Spencer et al., 2019; Ye et al., 2019) that include the detection of structural 1067 

deterioration such as cracks, spalling and seepage using image data obtained from the inspection (Cha et al., 1068 

2018; Cha et al., 2017; Gao et al., 2019a; Huang et al., 2018a; Nash et al., 2018; Ren et al., 2020; Xue and Li, 1069 

2018). Specific inspection vehicles and robotic systems equipped with cameras for the acquisition of 2D and 1070 

3D profiles of the recorded surface have been engaged in tunnel lining inspection (Attard et al., 2018; Montero 1071 

et al., 2015). For example, in a review on research and development for infrastructures maintenance in Japan by 1072 

Fujino and Siringoringo (2020), a high-speed (50-70 km/h) mobile road tunnel inspection vehicle named 1073 

MIMM-R is described as an integrated mobile platform mounted with the laser scanner, camera and 1074 

electromagnetic wave radar devices (Figure 32a). In addition, Huang et al. (2018a); Huang et al. (2017) 1075 

introduced a CCD-camera based rapid damage detection system for railway tunnel structures with images 1076 

captured by a continuously scanned image acquisition equipment, named Moving Tunnel Inspection (MTI-1077 

100/200a) (Figure 32b).  1078 

Traditional computer vision methods engaging low- to intermediate-level image processing techniques 1079 

and conventional machine learning algorithms have been applied to damage and change detection of tunnel. 1080 

Recent research efforts include using photogrammetric techniques, such as Structure from Motion (SfM), to 1081 

facilitate 3D scene reconstruction using only 2D images based on the extraction of invariant features from 1082 

overlapping (Westoby et al., 2012). An example is illustrated in Figure 32(c), where a 3D tunnel surface model 1083 

is reconstructed from a series of reference images using SfM that allows change detection by accurately 1084 

localising new images within the model. This forms part of an automated system, producing ranked clusters of 1085 

detected changes (Stent et al., 2016). Image stitching/mosaicking for the generation of panoramic images are 1086 

also adopted to facilitate tunnel interior inspection (Kim et al., 2018; Zhu et al., 2016b).  1087 
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Figure 32 Multi-component mobile inspection platform: (a) a high-speed (50-70 km/h) mobile road tunnel 1097 

inspection vehicle (left) deployed with a range of surveying devices, including GPS antenna, laser scanners, 1098 

cameras and radars (right). Reproduced from (Fujino and Siringoringo, 2020); (b) a camera-based tunnel 1099 

inspection equipment enforced with on-board computer and light source. Reproduced from (Huang et al., 2017), 1100 

and (c) a tunnel lining inspection framework (i. a camera-based tunnel inspection device used to ii. produce 1101 

overlapping images of tunnel linings. By applying SfM and image registration, surface reconstruction and 1102 

change detection are facilitated, with iii. detected tunnel lining damages illustrated in clusters). Reproduced 1103 

from (Stent et al., 2016) 1104 
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Periodic tunnel inspection can produce a large amount of 2D images. Wang and Cheng (2020) proposed 1105 

a pixel-level semantic segmentation of closed-circuit television (CCTV) images of underground pipes using a 1106 

unified network, named DilaSeg-CRF that incorporates a deep CNN and the dense Conditional Random Field 1107 

(CRF) method to improve segmentation accuracy. Figure 33 shows that the integration solution (DilaSeg-CRF) 1108 

enhances segmentation performance in comparison with the fully convolution network (FCN-8s), dilated 1109 

convolution (DilaSeg-Basic) and multiscale dilated convolution (DilaSeg). Zhao et al. (2020) proposed an 1110 

image recognition algorithm for object detection, semantic segmentation and instance segmentation of leakage 1111 

defects of metro shield tunnel by employing Mask R-CNN. Besides defect detection of tunnel lining, deep 1112 

learning algorithms have been used on sewer pipe condition assessment (Hassan et al., 2019; Kumar et al., 1113 

2020).  1114 

1115 

Figure 33 Comparison of segmentation results on multiple defects of closed-circuit television (CCTV) images 1116 

from a sewer pipe inspection in the United States (FCN-8s: fully convolutional network, DilaSeg: a network 1117 

with dilated convolution proposed by the authors, CRF: conditional random field). Reproduced from (Wang 1118 

and Cheng, 2020). 1119 

Apart from interpretable data captured as 2D images. 3D data are less vulnerable to lighting conditions 1120 

and having better information presentation with a reduced amount of noises. Examples of using 3D data can be 1121 

found in pavement crack detection, such as in  Zhang et al. (2017) that combined 3D laser imaging of pavement 1122 

surface with a CNN architecture, named CrackNet. The architecture emphasised on pixel-perfect accuracy by 1123 

removing the pooling layers and designing feature extractor specifically enhancing the contrast between crack 1124 

and background, the proposed network outperformed traditional algorithms of machine learning and image 1125 

processing. Fei et al. (2020) improved the original CrackNet by deepening the network structure with a reduced 1126 

number of parameters for enhanced computational efficiency. However, these advances in 3D data 1127 

interpretation leveraging deep learning are yet to be applied in damage and change detection of underground 1128 

structures. 1129 
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5. Discussion and perspectives 1130 

In this section, we examine the opportunities and challenges faced by adopting BIM, computer vision and 1131 

their related technologies from four perspectives: 1) incorporating GIS and 3D geological modelling into the 1132 

as-designed BIM workflow; 2) construction simulation and machine sensing techniques for modelling of the 1133 

dynamic ground-machine-structure interaction; 3) computer vision-based infrastructure sensing and analysis 1134 

that ensures the accuracy and reliability of the as-built BIM model; and 4) the capabilities of robotics and 1135 

automation in collaboration with machine learning and computer vision techniques. 1136 

5.1 As-designed BIM, GIS and 3D geological modelling  1137 

At the design and construction stages, as-designed (can also be referred to as-planned) BIM models intend 1138 

to enhance the efficient collaborations among participants from different disciplines. Geospatial information as 1139 

an important stream of data should be used with other systems that collectively form a repository centring around 1140 

infrastructure-related information. The couplings of lifecycle information management capacity provided by 1141 

BIM and locational clarity offered by GIS showed prospective benefits. However, technical issues still remain 1142 

in the consolidation processes. Apart from the dissimilarities between IFC and CityGML data structure, 1143 

immaturity of infrastructure specific IFC data schema also hinders the establishment of an effective 1144 

confederation of the two systems. Nevertheless, significant steps are taken towards formalising BIM application 1145 

and its data exchange technologies by developing schema standardisation for infrastructure (roads, bridges, 1146 

tunnels, etc.), which will become an integral part of IFC 5.0. The two domains can expect more accessible and 1147 

reliable interaction for the planning of future infrastructure projects.  1148 

 3D Geological modelling integrated with GIS in a spatial context is substantial for the construction of 1149 

underground infrastructure. This imperative piece of information can be effectively incorporated into 1150 

geotechnical modelling and analysis to provide design validation and stability assurance of the buried structures. 1151 

The acquisition of the information, however, is only possible when the geological data is maintained in an 1152 

accessible environment. Collaborative efforts from both government and industry are required in upholding the 1153 

creation of open-data environments that will benefit future underground construction projects by improving the 1154 

shareability of information. Examples of promoting data openness have been made for buried utility 1155 

infrastructure, such as the Yarra Valley Water (YVW, an Australian water network operator) (YVW Australia, 1156 

2020) and Scottish Road Works Commissioner (SRWC) (SRWC Scotland, 2018b). YVW Australia (2020) 1157 

provided full public access to its buried asset data via an interactive online map through a GIS system, and 1158 

SRWC Scotland (2018b) is developing a dataset named the Scottish Community Apparatus Data Vault that will 1159 

link with the Scottish Road Works Register (SRWC Scotland, 2018a) for access to information on the location 1160 

of underground pipes and cables.  1161 

5.2 As-built BIM and image-based 3D computer vision  1162 

BIM models can be used for as-designed visualisation with accurate 3D geometrical and semantic 1163 

information of underground structures, but still lack the capabilities to recognise construction state, predict 1164 
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engineers/machines activities, and manage the construction schedule. With the increased availability of 3D 1165 

sensing technologies (e.g., RGB-D and multi-view cameras, and laser scanners) and machine learning 1166 

algorithms, great efforts have been made in the fields of collaborative 4D BIM simulation in surface construction 1167 

(Braun and Borrmann, 2019; Khosrowpour et al., 2014; Kropp et al., 2018; Turkan et al., 2012). Although 1168 

machine learning and computer vision algorithms have been successfully implemented at different stages of 1169 

underground construction, an increasing volume of data requires the design of sophisticated feature extractors, 1170 

and powerful computational capabilities to improve the accuracy and performance for real-time applications.  1171 

Underground space (indoor) modelling/monitoring and VR/AR systems are on the rising need for 1172 

incorporating depth into semantic segmentation of the objects. Garcia-Garcia et al. (2017) conducted a 1173 

comprehensive review on deep learning techniques for image semantic segmentation, the popular large-scale 1174 

segmentation datasets, including the number of classes, training splits, and data format (2D/2.5D/3D) are 1175 

summarised. 2D dataset and its applications in underground construction are presented in Sections 2.2.2 and 1176 

4.2.2. RGB-D or 2.5D dataset and pure volumetric or 3D datasets and reconstructed scene meshes are being of 1177 

great interest for computer vision and machine learning researchers in the field of indoor environments. The 1178 

proper selection of 3D sensing technology is an essential step to ensure accurate monitoring. The advantages of 1179 

multi-view or RGB-D cameras are as a low-cost alternative for quantitative monitoring (Franco et al., 2019), 1180 

which can be robustly incorporated with robotic systems such as drones to perform monitoring tasks (Freimuth 1181 

and König, 2019; Kalaitzakis et al., 2019). RGB-D cameras have been increasingly employed in real-time 1182 

surface mapping and reconstruction of the complex and arbitrary indoor environment for their affordability 1183 

(Avetisyan et al., 2019; Dai et al., 2017b; Newcombe et al., 2011). An example is illustrated in Figure 34a (Dai 1184 

et al., 2017a), where the RGB-depth data was captured and processed through surface reconstruction and 1185 

instance-level semantic labelling. The benchmark tasks using the established 3D dataset and deep learning-1186 

based 3D scene understanding included 3D object classification, 3D object retrieval and semantic voxel 1187 

labelling. In addition, stereoscopic 3D-360 video systems have been developed for capturing and rendering 3D 1188 

360 videos and images that are suitable for viewing in virtual/augmented reality (VR/AR), such as Facebook’s 1189 

open-source Surround 360 (Facebook, 2016). The most well-known 2.5D/3D indoor databases include 1190 

NYUDv2 (Silberman et al., 2012), SUN3D (Xiao et al., 2013), SceneNN (Hua et al., 2016), Stanford 2D-3D-S 1191 

(Armeni et al., 2017), ScanNet (Dai et al., 2017a) and Matterport3d (Chang et al., 2017). Interested readers are 1192 

referred to (Naseer et al., 2018) for a detailed comparison among various 2.5/3D datasets. 1193 

3D computer vision offers a more quantitative method to understand the condition of underground 1194 

infrastructure. For example, structural deformation and vibration can be measured by implementing 3D digital 1195 

image correlation (3D-DIC) in combination with object tracking and image registration techniques (Franco et 1196 

al., 2019). Other 3D representations such as point clouds and voxels produced by image-derived methods, RGB-1197 

D cameras, LiDAR and SAR systems have also attracted attention from computer vision and machine learning 1198 

communities (Xie et al., 2020). Figure 34b demonstrates a framework named SegCloud for voxel-based 1199 

semantic segmentation that combines 3D FCN with trilinear interpolation and fully connected conditional 1200 

random fields (Tchapmi et al., 2017).  1201 
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These hot topics in deep learning and computer vision demonstrate great potentials for escalating the 1202 

degree of automation in any construction environment. Meanwhile, through actively engaging robotic systems, 1203 

they present even greater values for underground construction that often take on activities in compromised 1204 

conditions. In addition, this automation in data acquisition, analysis and application facilitates the provision of 1205 

maintenance scheme and resources coordination. Among the applications, 3D scene acquisition, object 1206 

detection, segmentation and 3D model alignment (can easily be replaced by instance-level BIM models at higher 1207 

LoDs) could be effectively applied to the simulation models (VR/AR) of underground infrastructure.  1208 

 1209 
(a) 1210 

 1211 
(b) 1212 

Figure 34 3D image and point segmentation: (a) overview of a framework constituted of RGB-D scanning to 1213 

3D surface reconstruction and segmentation to instance-level semantic labelling and CAD model alignment. 1214 

Reproduced from (Dai et al., 2017a), and (b) a framework for voxel-based semantic segmentation named 1215 

SegCloud, where raw point clouds are voxelised and processed by 3D FCNN (fully CNN) in combination with 1216 

trilinear interpolation and 3D FC-CRF (3D fully connected conditional random fields). Reproduced from 1217 

(Tchapmi et al., 2017)  1218 

5.3 Integration of BIM and modelling/monitoring 1219 

Simulation and modelling are another central technology to support Industry 4.0, which can be applied 1220 

to improve the design of underground infrastructure and enhance the safety of humans, machines, excavated 1221 

ground and existing buildings. With reference to the simulation of ground-machine-structure interactions 1222 

involving numerical calculations, some existing research on the unified information and numerical modelling 1223 

has been discussed in Section 3.4. BIM for underground structures examines a range of factors different from 1224 

that for surface buildings (e.g., geological, geotechnical and geographical). The popular BIM 1225 

modelling/simulation tools on-market are falling short of interfacing with specific underground applications 1226 

(e.g., numerical modelling for geotechnical problems). This urges the development of IFC standards and 1227 
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coordination tools based on understanding the BIM workflow within underground construction; otherwise, 1228 

extensive customisation would be required (e.g. plug-ins, middleware, code-based execution environment), 1229 

which can be costly and time-consuming. 1230 

Simulation regarded as a visualisation tool facilitates early identification of physical constraints and 1231 

uncertainties to allow the timely implementation of mitigation measures. The BIM-based simulation also offers 1232 

enormous opportunities for construction monitoring by helping identify and quantify any mismatches (e.g. 1233 

misalignments, deviations from schedules) between the as-designed (or the simulated, i.e. projected 1234 

development) and the as-built models (i.e. completed construction). Centralised information management can 1235 

be enhanced by incorporating real-time data and interpreted information into the federated BIM model. 1236 

However, with different data acquisition and processing methods, the data features and applications take diverse 1237 

forms. Therefore, the integration will be determined upon project specifics. For example, in a task of applying 1238 

a CNN-based instance segmentation algorithm to detect damages such as leakage, cracks and spalling on tunnel 1239 

linings, photos obtained from the inspection can each be assigned a unique identification (ID) number associated 1240 

with the ID/location along the tunnel where the photo has been taken. Therefore, the information regarding the 1241 

damage (e.g. whether damage occurs, if yes, damage type and severity) can be updated to the BIM model for 1242 

further actions, such as scheduling maintenance. This example demonstrates a possible use case of the BIM 1243 

process that largely leverages computer vision-based techniques and the 4D concept. In addition, BIM models 1244 

enriched with geometric and semantic information can effectively be used to constitute datasets for VR/AR-1245 

based 4D simulation of underground construction, serving as valuable training resources.  1246 

5.4 Automation and robotics  1247 

An emerging trend intended to sustain a safe subsurface excavation and operation environment is to 1248 

introduce robots on top of traditional ahead-prospecting, machine and structural monitoring gadgets. A key 1249 

aspect of achieving digital twin is fully automated data acquisition and processing (Uhlemann et al., 2017), 1250 

which inevitably requires the use of robotic systems. The research efforts have mainly been two-fold. One is an 1251 

automated data acquisition and processing engaging robotic systems. The other has been navigation in a dark 1252 

environment and mapping the underground areas without necessarily demanding GPS and ambient light. Both 1253 

views are serving the purpose of assisting human engineers in construction and maintenance related tasks that 1254 

are challenging and potentially dangerous in an underground environment. With many examples explored in 1255 

Section 4 actually employed autonomous systems, there have also been efforts emphasising robotics techniques 1256 

for tunnel inspection, such as (Cipolla, 2015; Loupos et al., 2018; Menendez et al., 2018), as well as 1257 

investigations into improving the underlying algorithms and data fusion robustness to support the physical-1258 

world applications, some examples can be found in (Imani et al., 2018; Lech et al., 2016; Zeng et al., 2019). 1259 

TBM can be regarded as a semi-autonomous robotic system excavating ground constituted of varied 1260 

geological conditions, which are anticipated through a series of surveying and geophysical prospecting 1261 

techniques. Meanwhile, modules constitute a TBM such as the cutterhead is often a sensor-embedded unit that 1262 

collects data for potential real-time interpretation. Autonomously operating tunnelling systems that aim to 1263 
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remove machine operators from the dangerous underground environment have been realised. One of such 1264 

solutions is the autonomous pilot system designed for TBM navigation that is capable of on-board map 1265 

generation and path planning (Ferrein et al., 2012). Other solutions include the BADGER (RoBot for 1266 

Autonomous unDerGround trenchless opERations, mapping and navigation) that incorporates robotics control 1267 

techniques, sensor fusion and machine learning (BADGER Consortium, 2017), TBM-cutter changing robot 1268 

(Yuan et al., 2019), and CPS-enabled autonomous supporting pressure balance control for TBMs (Zhang et 1269 

al., 2020b). Moreover, web-based application platform, as illustrated in Figure 35, has been developed for 1270 

providing visualisation and automatic feature detection based on real-time TBM parameters, sensing data (e.g. 1271 

GPR and seismic data) and geological map for collaborative interpretation and decision-making (Wei et al., 1272 

2019). The real-time insights into the ahead geology are favourable in underground excavation; however, the 1273 

algorithms or models used in these scenarios may not necessarily generalise well to unseen data if they are 1274 

deduced based on certain ground types. Adaptive selection of machine learning models is thus essential. 1275 

 1276 
(a) 1277 
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(b) 1279 

Figure 35 (a) An example of visualising GPR data in cylindrical and planar view as a function provided by the 1280 

(b) visualisation platform, forming part of the workflow connecting management and analysis of imaging and 1281 

contextual data for tunnel ground. Reproduced from (Wei et al., 2019). 1282 

Aerials and legged robots have been developed to carry out autonomous exploration and mapping in 1283 

underground areas. For details of robotics, refer to Springer Handbook of Robotics (Siciliano and Khatib, 2016). 1284 

A review on the research advances and findings of employing ground robotics in tunnel-like environments, 1285 

focusing on topics of localisation, navigation, and communications can be found in (Tardioli et al., 2019). Most 1286 

recently, the 3-year (2018-2020) Subterranean (SubT) Challenge launched by DARPA (Defense Advanced 1287 

Research Projects Agency) inspiring robotic solutions for underground mapping and rescue. The results have 1288 

demonstrated the capability of robotic systems, in collaboration with computer vision techniques, for 1289 

autonomous navigation and extensible subsurface applications such as structural inspection and abnormality 1290 

detection particularly in GPS-denied environments (DARPA, 2020). Team Explorer (Explorer, 2020) and team 1291 

CoSTAR (CIT, 2019) of the Systems track are the winners for the Tunnel Circuit and Urban Circuit, respectively. 1292 

Example of a mapping and navigating system that realises commercialisation is the Hovermap for drones based 1293 

on LiDAR (Jones et al., 2020). The scanning unit has claimed for the completion of the first autonomous 1294 

beyond-visual-line-of-sight flight in an underground mine in 2018 and has been paired with legged robots in 1295 

the SubT Challenge (CSIRO, 2020).  1296 

5.5 Summary and an interactive platform 1297 

Ripe with enhanced data storage and transmission capability, extensive sensor deployment forms the IoT 1298 

of underground infrastructure to enable real-time information feedback regarding the location and condition of 1299 
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both personnel and equipment to provide better control over the underground environmental safety. This 1300 

requires extensions of IFC-based object definitions correspondingly to accommodate the information. 1301 

Meanwhile, the data generated at a rapid rate demands faster processing and analysis, and thus is highly reliant 1302 

of robust hardware and software. Tesla’s driverless cars is an example of such a need (Talpes et al., 2020). 1303 

Within underground infrastructure network, this trend can also be envisioned by having pilot projects initiated 1304 

to implement high-speed image capturing and processing devices on operating trains to assess tunnel-lining 1305 

conditions (Hayakawa et al., 2018). 1306 

BIM within underground infrastructure shares similarities with that for surface building in the majority 1307 

of the technical perspectives, such as procedures engaged in the graphical model establishment, data schema for 1308 

maintaining interoperability, as well as safety assurance (e.g., natural and human-induced disasters: earthquake 1309 

and fire) of as-built model underpinned by infrastructure sensing (Lu et al., 2020). However, the underground 1310 

construction faces unique challenges in visually interpreting the ground-machine-structure interaction through 1311 

an opaque medium featured with huge uncertainties. To mitigate these challenges, an interactive platform 1312 

(Figure 36) is taking the Metro Tunnel Project in Melbourne as an example, depicting the comprehensive, 1313 

integrated solutions discussed above. It consists of four modules with interaction supported by data exchange 1314 

protocols. By drawing on knowledge from project-specific ground investigations and existing GIS data, 1315 

geological and geotechnical quantifications are realised to provide a foundation for BIM-based structural design, 1316 

with its feasibility verified by numerical simulation. During construction and operation, autonomous or semi-1317 

autonomous devices are engaged to acquire data that reflects the ground-machine-structure interactions and 1318 

structural integrity. The BIM model is then reconciled with as-built data for improved accuracy and reliability. 1319 

Within this interactive platform, we regard the BIM environment as a digital repository, a modeller and a 1320 

visualisation tool to correctly reflect the status of the infrastructure throughout its lifecycle. 1321 
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1322 
Figure 36 Interactive workflow of GIS, 3D geological modelling, underground construction and BIM for 1323 

underground infrastructure. 1324 

6. Conclusions  1325 

With a digital transformation agenda expanding into the domain of underground, we examined the state-1326 

of-the-art applications, limitations and future opportunities of BIM, machine learning and computer vision-1327 

based techniques that are believed to demonstrate huge potential in the digitisation of tunnelling and 1328 

underground construction. 1329 

BIM enables the information collection, exchange and linking throughout a project’s lifecycle. The 1330 

visualisation and interoperability facilitated by BIM processes are especially important to underground 1331 

construction that engages interdisciplinary participation and multi-environment interaction. The geological 1332 

uncertainties and localisation difficulties of already laid infrastructure are challenges not seen in building 1333 

construction. Underground BIM thus requires consideration of geographical and geological features, and 1334 

harnessing data exchange solutions to establish comprehensive and integrated information resource.  1335 

As key AI technologies, machine learning and computer vision are consolidating into a powerful tool for 1336 

big data analysis. Machine learning algorithms, with profound history in helping computers to learn from data 1337 

by automatically extract patterns, have established wide applications in data interpretation of the underground 1338 
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environment and machine performance. Meanwhile, advances in both optical and non-optical devices coupled 1339 

with accessible robotic systems have produced a large volume of images or image-like data that have effectively 1340 

boosted the development of deep learning and stimulated recent advances in computer vision. The evolution in 1341 

data analytics in conjunction with the increase of sensing deployment helps capture the situational variations 1342 

during system interaction and operation monitoring. In combination, they offer to provide reconciled BIM 1343 

model updated with as-built data, and thus supporting engineers to make informed decisions.  1344 

We also introduced an interactive platform by taking the Metro Tunnel Project in Melbourne as an 1345 

example. This platform considered the comprehensive and collaborative integration of GIS, 3D geological 1346 

modelling, construction methods, and sensing technologies into BIM in order to form a reliable basis for 1347 

decisions and management during the lifecycle of an underground project. Finally, challenges and opportunities 1348 

were identified to assist the set-up of the future research plan.  1349 
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