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Abstract

Condensed models are used to describe the dynamic behaviour of a multilayer structure by
means of an equivalent homogeneous layer defined by intrinsic properties. Existing con-
densed models mainly describe the bending, membrane and shearing motions of the multi-
layer plate and neglect its dilatational motion. As a result, the transmission loss across the
multilayer may be underestimated if the layers are soft and thick. In this paper, a condensed
model of physically symmetric multilayer is developed. The antisymmetric and symmetric
motions of the structure are described separately by means of two equivalent admittances.
These admittances depend on three intrinsic properties: a dynamic bending stiffness and
two dynamic mass densities. The condensed model is validated comparing transmission
loss computations with the Transfer Matrix Method for multilayers with elastic or poroe-
lastic cores.
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1 Introduction

Multilayered structures have shown their interest in today’s transportation and con-
struction industries for their performances in term of high stiffness, lightweight or
controlled damping that classical materials cannot offer. They are commonly used
in automotive, aerospace or civil applications to lighten structures or reduce the
vibration level and improve the sound insulation.

In this context, several analytical models of such structures exist in literature to de-
scribes their dynamic behaviour. Carrera [1] gives an overview and classification
of most of these models. We can mention the Layer-Wise models which impose a
kinematic for each layer and have a number of kinematic variables which depends
on the number of layers. The model of Ghinet et al. [2] assumes a displacement field
of Reissner-Mindlin [3] in each layer considering bending, membrane and shearing
effects. For the special case of a three layer system, they add a dilatational term
to describe the breathing (stretching) motion of the structure. Dym and Lang [4]
also describe this phenomenon in their model separating the antisymmetric (bend-
ing, membrane and shearing) and symmetric (breathing) motion of the multilayer.
The theory of Lamb waves [5] describes the propagation of longitudinal and trans-
verse waves across each layer and is, therefore, part of the Layer-Wise models. The
Transfer Matrix Method (TMM) [6,7] uses this theory to link the state variables
(pressure, stresses and velocities) on both sides of each layer. The Zig-Zag mod-
els also impose one kinematic per layer but use continuity conditions at the inter-
face between the layers to keep a fixed number of kinematic variables. In a similar
way to Ghinet et al., Guyader and Lesueur [8] also assume a displacement field
of Reissner-Mindlin for each layer. The model of Guyader and Lesueur, originally
developed for orthotropic plates (plies aligned with the global coordinate system)
and recently extended to anisotropic structures (for any orientation of plies) [9,10],
can be applied on multilayer with any number of layer. Loredo [11] also developed
a Zig-Zag model considering bending, membrane, shearing and dilatational effects.

All the previous models are generally applied to compute the natural wavenum-
bers of the structure or the transmission loss (TL) across the multilayer [12]. Other
methodologies such as condensed models aim to identify an equivalent single layer
which describes the behaviour of the multilayer by means of dynamic intrinsic
properties. For instance, we can cite the model of Ross [13], Kerwin [14] and Un-
gar [15] (also known as RKU in the literature) which requires to define if the layer
works in bending or in shearing. Guyader and Cacciolati [16] later adapted the pre-
vious model of Guyader and Lesueur to identify equivalent properties of isotropic
multilayers. Note that this work has been recently extended to anisotropic multi-
layers [17]. Ege et al. [18] compared the equivalent models of RKU and Guyader
with the Lamb waves model and observed consistent results in terms of equivalent
stiffnesses and slightly different damping loss factors. Backström and Nilsson [19]
developed a condensed model of sandwich beams with honeycomb cores and pro-
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posed different techniques to compute the apparent loss factor of the structure.
Viverge et al. [20] used a homogenisation technique to analyse the different be-
haviours of highly contrasted laminated plates. Ruzek et al. [21] used information
criteria to compare and select the optimal model from measurements. They show
that simple models may be more adapted than complex models in some situations.
Finally, condensed models provide multiple advantages. They can be used in finite
element software to reduce the time computation substituting multilayer structures
with homogeneous layers. Then, the dynamic behaviour of the multilayer is directly
described through the equivalent parameter.

The condensed plate models cited previously essentially describes the bending and
shearing motions of the multilayer neglecting the dilatational motion since they
assume a constant normal displacement. Arasan et al. [22] have recently demon-
strated that the frequency range of validity of plate models directly depends on the
influence of the dilatational motion as compared to bending and shearing motions.
For three layer systems with soft and thick core, such as a typical double wall par-
tition widely used in building applications, the dilatational motion can happen at
low frequencies. Therefore, we propose in this paper a condensed model of thick
symmetric multilayer considering the bending, shearing and dilatational motions of
the structure. The main goal of this work consists in identifying dynamic intrinsic
properties to describe the behaviour of the multilayer and estimate the transmission
loss using these properties. The possibility to apply the proposed condensed model
on poroelastic multilayers is also addressed. The main advantage of this model is to
reduce the number of degrees of freedom in FEM and thus the computational time.

The paper is divided into four parts. The first one details the TL definition using
the equivalent methodology of condensed models and the TMM, which is used
as a reference in this paper (TMM has already proven its relevance compared to
FEM [23,22]). The second part exhibits the limits of existing condensed models
based on TL and admittances comparisons. Then, the third part presents the pro-
posed condensed model and the equivalent intrinsic parameters. Finally, TL com-
putations of multilayers with elastic or poroelastic cores are compared to validate
the proposed condensed model.

2 Analytical modelling of multilayer system

2.1 Transfer Matrix Method

The transfer matrix method describes the wave propagation in multilayered sys-
tems. Each layer is defined by a thickness hi with infinite lateral dimensions and
can be of different nature (fluid, elastic or poroelastic). The propagation in a layer
is described by a transfer matrix [T ] linking the state vector V on both sides of the

3



layer. For instance, the transfer matrix relation of layer i is:

V(Mi−1) =
[
Ti
]
V(Mi). (1)

The number of waves propagating in a layer depends on its nature (one longitudinal
wave for a fluid, one longitudinal and one transverse waves for a solid, two longitu-
dinal and one transverse waves for a poroelastic). Thus, the size of the state vector
and the transfer matrix depends also on the nature of the layer. The state vector of
a fluid layer is:

V f =
(
p v

)T
, (2)

where p and v are the pressure and longitudinal velocity in the fluid, respectively.
The state vector of a solid layer is:

V s =
(
vx vz σzz σxz

)T
, (3)

where vz and vx are longitudinal and transverse velocities and σzz and σxz are longi-
tudinal and transverse stresses, respectively. Finally, the state vector of a poroelastic
layer is:

Vp =
(
vs
x vs

z vf
z σs

zz σs
xz σf

zz

)T
, (4)

where the superscripts f and s denote the components of the waves propagating in
the fluid and solid part of the poroelastic layer.

In the case of a multilayer system, the continuity between the layers is assumed to
be perfect. The method describing the propagation through the whole multilayer
consists in assembling the transfer matrices of each layer. Coupling matrices are
used if two consecutive layers have different nature [6]. Dazel et al. [7] have shown
that this method becomes unstable for high frequencies or large layer thicknesses
and proposed to use the Stroh formalism to improve the stability of the method.

In this paper, we consider that the multilayer is surrounded by air and is excited by
a plane acoustic wave exciting the structure at an incident angle θ (see Figure 1).
The wave is defined by a transverse wavenumber:

kt = k0 sin(θ) =
ω

c0
sin(θ), (5)

where c0 corresponds to the speed of sound in the air.

Since the multilayer is surrounded by air, the state vector at the emission (M0) and
reception (MN ) sides of the multilayer can be defined as a state vector of a fluid.
Thus, the multiplication of all the transfer matrices of the layers and the coupling

4



1 … 𝑖 … 𝑁

airair

𝑥

𝑧

𝑀0 𝑀𝑖−1 𝑀𝑖 𝑀𝑁

∞

∞

𝜃

𝑦

Fig. 1. Multilayer system under a plane acoustic wave excitation.

matrices leads to a 2× 2 matrix relation:p(M0)

v(M0)

 =

T11 T12
T21 T22


p(MN)

v(MN)

 . (6)

Considering the previous matrix relation, the transmission loss (TL) across the mul-
tilayer at the incident angle θ is defined as:

TL(θ) = 10log10

(∣∣∣∣12
(
T11 + T22 −

T12
Zb
− T21Zb

)∣∣∣∣2
)
, (7)

where Zb = ρ0c0/ cos(θ) is the radiation impedance on the reception side and ρ0
corresponds to the density of air.

2.2 Existing condensed plate models

As mentioned in the introduction, existing condensed plate models [13,14,15,16,19]
generally describe the bending, membrane and shearing motions of each layer of
the multilayer assuming that the normal displacement is constant. Then, they as-
sume that, for a given frequency, the multilayer behaves as an equivalent plate.
Thus, all the behaviour of the structure is condensed in one or more dynamic in-
trinsic properties which govern the equation of motion of the equivalent plate. The
condensed models cited previously define the equivalent plate as a thin plate un-
der Love-Kirchhoff’s theory and the dynamic intrinsic parameter corresponds to
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a dynamic bending stiffness D̃eq(f) 1 . For a typical three layer system, this dy-
namic bending stiffness varies between a low frequency asymptote, which cor-
responds to the global bending of the multilayer, and a high frequency asymp-
tote, which corresponds to the bending of the skins only [24]. The transition be-
tween these asymptotes is controlled by the shearing of the core of the multilayer.
Arasan et al. [25] have recently developed a simple model to identify D̃eq(f) based
on these asymptotes and a transition frequency. We can also cite the condensed
model of Zarraga et al. [26] based on the consideration of the low-frequency bend-
ing and shear contributions. This model does not account for the high-frequency
bending behavior controlled by the inner bending of the skins and does not exhibit
the correct behaviour of a three-layer system at higher frequencies.

Other more complex theories could be chosen to define the behaviour of the equiv-
alent plate such as, for instance, a Reissner-Mindlin’s thick plate. As mentioned by
Ruzek et al. [21], this choice may be not always adapted since it is not necessarily
more accurate to use a higher number of equivalent dynamic properties.

In a similar way to the TMM, we assume that the equivalent plate is surrounded
by air and excited by a plane wave defined by the transverse wavenumber kt. The
transfer matrix of the equivalent plate is then defined as:

p(M0)

v(M0)

 =

1 Zeq

0 1


p(MN)

v(MN)

 , (8)

where Zeq is the impedance of the equivalent thin plate:

Zeq = jρhω
(

1− D̃eqk
4
t

ρhω2

)
=

1

jω

(
D̃eqk

4
t − ρhω2

)
, (9)

with h =
∑
i hi the thickness and ρ =

∑
i
ρihi∑
i
hi

the density of the plate. The reader

may notice that Zeq is composed of a mass-controlled term (ρhω2) and a stiffness-
controlled term (D̃eqk

4
t ).

Applying Eq. (7) on the previous transfer matrix (Eq. (8)), the transmission loss of
the equivalent thin plate at the incident angle θ is defined as:

TL(θ) = 10log10

(∣∣∣∣1− Zeq

2Zb

∣∣∣∣2
)
. (10)

1 The superscript ˜ is used in this paper to indicate that the variable is complex and depends
on frequency.
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2.3 Diffuse field computation

For a diffuse field excitation between the angles θmin and θmax, the transmission loss
across the structure is derived from the following integral:

TLdf = −10 log10


∫ θmax

θmin

10−TL(θ)/10 cos(θ) sin(θ)dθ∫ θmax

θmin

cos(θ) sin(θ)dθ

 (11)

The diffuse field computations presented in this paper are calculated between the
angles 0 and π/2.

3 Limitations of existing condensed plate models

This section aims to identify the limits of the existing condensed models taking as
reference the TMM. In the following paragraphs, the transmission loss computed
from the TMM and the equivalent model of Guyader and Cacciolati [16] are com-
pared for two different multilayer system. Then, the antisymmetric and symmetric
admittances of the multilayer are analysed to explain the differences between the
models.

3.1 Transmission loss

Figure 2 compares the transmission loss of a sandwich plate computed from the
TMM and the equivalent plate model. The studied sandwich plate is composed of
steel skins and a core sufficiently rigid to avoid dilatational effects but still soft
enough to exhibit shearing effects. The material properties of the layers are written
in Table 1. The transmission is globally controlled by the mass law at low frequency
and strongly decreases at the coincidence frequency, which corresponds to the fre-
quency at which the transverse wavenumber kt is equal to the bending wavenumber.
We can observe that, for this configuration of sandwich, the equivalent model gives
similar results as the TMM up to high frequency (f < 10 kHz) and correctly esti-
mates the coincidence frequency of the multilayer (f ≈ 5.2 kHz).

A similar comparison is presented in Figure 3 for a second sandwich composed
of the same steel skins and a very soft core. The elastic properties of the layers
are summarized in Table 1. We can observe that, for this case, the TL computed
from the TMM has, in addition to the coincidence frequency, another singularity
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Skins (steel) Stiff core Soft core

Thickness h (mm) 3 3 3

Density ρ (kg.m−3) 7800 1000 55

Young’s modulus E (GPa) 210 0.2 0.000043

Poisson’s ratio ν (-) 0.33 0.48 0.4

Damping η (-) 0.03 0.05 0.3
Table 1
Elastic properties of the isotropic layers used in this paper.
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Fig. 2. Transmission loss of the steel/stiff core/steel sandwich computed using the TMM
(solid blue line) and Guyader’s equivalent model (dashed red line). See Table 1 for the
material properties of the layers. Analytical simulations calculated at 60◦ of incidence.

at a lower frequency (f ≈ 260 Hz). This singularity corresponds to the mass-
spring-mass resonance of the multilayer and is called the breathing frequency. This
physical phenomenon is not described by the condensed model since the equivalent
methodology assumes a constant normal velocity. As a consequence, the TL esti-
mated by the equivalent plate model is strongly underestimated after the breathing
frequency. We can still notice that the coincidence frequency is correctly estimated
by the equivalent model.

3.2 Symmetric and antisymmetric admittances

As stated in the section 2.2, existing condensed plate models essentially describe
the flexural, membrane and shearing waves propagating in the structure by means of
dynamic intrinsic parameters. This type of waves are defined by an antisymmetric
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Fig. 3. Transmission loss of the steel/soft core/steel sandwich computed using the TMM
(solid blue line) and Guyader’s equivalent model (dashed red line). See Table 1 for the
material properties of the layers. Analytical simulations calculated at 60◦ of incidence.

motion of the plate (see Figure 4a). On the contrary, existing condensed plate mod-
els neglect the breathing or stretching motion of the system, which is considered
as a symmetric motion (see Figure 4b), since they assume no deformation in the
thickness. In order to understand the differences between the condensed model and
the full modelling of the multilayers with the TMM, this section is focused on the
analysis of the antisymmetric and symmetric motions of the structure comparing
the admittances of both motions.

(a) Antisymmetric wave (b) Symmetric wave

Fig. 4. Antisymmetric (a) and symmetric (b) waves propagating in a plate.

According to Dym and Lang [4,27], the symmetric and antisymmetric motions are
uncoupled for physically symmetric multilayer panels. This assumption is valid
since the coupling components of each symmetric layers are balanced and thus
can be neglected in the computation of the kinematic and deformation energies of
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the system. Thus, both behaviours can be separately described by means of the
symmetric (ZS) and antisymmetric (ZA) impedances of the system. Dym and Lang
define these impedances as functions of the pressure and velocity at the emission
and reception sides of the multilayer:

ZS = −p(M0) + p(MN)

v̄
= 2

p(M0) + p(MN)

v(M0)− v(MN)
, (12)

ZA =
p(M0)− p(MN)

ṽ
= 2

p(M0)− p(MN)

v(M0) + v(MN)
, (13)

where v̄ and ṽ correspond to the symmetric and antisymmetric normal velocities.
Since these definitions are only valid for physically symmetric multilayer, only this
type of multilayer is studied in this paper. From these definitions, the transfer matrix
of the multilayer can be defined as function of the antisymmetric (YA = 1/ZA) and
symmetric (YS = 1/ZS) admittances:

p(M0)

v(M0)

 =


YA + YS

YA − YS

1

YA − YS

4YAYS

YA − YS

YA + YS

YA − YS


p(MN)

v(MN)

 . (14)

Comparing Eq. (6) and Eq. (14), the symmetric and antisymmetric admittances can
be expressed as functions of the terms of the transfer matrix of the TMM:

YS =
T11 − 1

2T12
, (15)

YA =
T11 + 1

2T12
. (16)

As an example, Figure 5 presents the antisymmetric and symmetric admittances of
the steel/stiff core/steel sandwich calculated with the TMM at 60◦ of incidence us-
ing Eq. (15) and Eq. (16). We can observe that the antisymmetric admittance glob-
ally decreases with frequency except at the coincidence frequency of the structure.
On the contrary, the symmetric admittance increases with frequency until reaching
the antisymmetric admittance around 10 kHz depending on the angle of incidence.
Before 10 kHz, YS is negligible as compared to YA meaning that the behaviour
of the structure is mostly governed by the antisymmetric motion in this frequency
band. After 10 kHz, both admittances are of the same order of magnitude and the
symmetric motion can not be neglected. The results of the TMM are also compared
to the equivalent admittance (Yeq = 1/Zeq) of Guyader’s model (Eq. (9). We can
see that Yeq follows particularly well the antisymmetric admittance computed from
the TMM on the whole frequency band. The differences observed on the TL in Fig-
ure 2 after 10 kHz can be explained by the fact that the equivalent model does not
take into account YS, which becomes non-negligible in this frequency range. Such
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analysis of admittances has already been used to estimate the frequency range of
validity of plates model [22].
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Fig. 5. Absolute values of the antisymmetric (solid blue line) and symmetric (dotted black
line) admittances of the steel/stiff core/steel sandwich computed with the TMM. The
dashed red line corresponds to the equivalent admittance computed using Guyader’s model.
The elastic properties of the layers are summarized in Table 1. Analytical simulations cal-
culated at 60◦ of incidence.

A similar comparison is presented in Figure 6 for the second sandwich. In this case,
the symmetric admittance increases up to the breathing frequency of the system and
then decreases until following the antisymmetric admittance. As a consequence, the
coincidence frequency is also visible on the symmetric admittance. To explain this
phenomenon, we can study the Lamb waves model [5] which uses the same the-
ory of elasticity than the TMM. The only difference between the two approaches is
that the TMM imposes an acoustic wave defined by the transverse wavenumber kt

and the Lamb waves model identifies the natural wavenumbers of the multilayer in
vacuum. Figure 7 presents the dispersion curves of the zeroth-order antisymmetric
(A0) and symmetric (S0) motions of the second sandwich identified from the Lamb
waves model. The transverse wavenumber imposed by the TMM is also drawn for
an incidence of 60◦. We can observed that the S0 curve has a cut-on frequency and
tends to the A0 curve at higher frequency. The singularities observed on the TL
and the admittances appear at frequencies where kt crosses the natural wavenum-
bers of the multilayer (i.e. breathing and coincidence frequencies for the symmetric
motion and coincidence frequency for the antisymmetric motion). Since A0 and S0

curves are close to each other at high frequency, the coincidence frequencies of
both motions are similar.

We can also observe on Figure 6 that the equivalent admittance is again very close
to the antisymmetric admittance computed from the TMM meaning that the con-
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densed plate model gives an accurate description of the antisymmetric motion even
for sandwich structures with a soft core. Finally, the symmetric motion can not be
neglected after 150 Hz, which corresponds to the frequency where the TL com-
puted from the equivalent model of Guyader and Cacciolati begins to deviate from
the solution of the TMM (see Figure 3).
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Fig. 6. Absolute values of the antisymmetric (solid blue line) and symmetric (dotted black
line) admittances of the steel/soft core/steel sandwich computed with the TMM. The dashed
red line corresponds to the equivalent admittance computed using Guyader’s model. The
elastic properties of the layers are summarized in Table 1. Analytical simulations calculated
at 60◦ of incidence.

In the case of an excitation at normal incidence (θ = 0), the coincidence frequency
tends toward infinity for both admittances (see Figure. 8). The antisymmetric mo-
tion is then essentially controlled by the mass law of the system while the sym-
metric motion is controlled by the dilatational effect of the layers with the mass-
spring-mass resonance. The reader may also notice that the breathing frequency is
identical to the 60◦ case since it does not depend on the angle of incidence. Thus,
the low frequency behaviours of the symmetric and antisymmetric admittances are
similar at every angle of incidence.

Based on the previous observations, we can conclude that condensed plate models
correctly describe the antisymmetric motion of the multilayer but are incomplete
when the symmetric motion becomes significant since they assume no deformation
in the thickness.
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Fig. 7. Real part of the dispersion curves of the zeroth-order antisymmetric (solid blue line)
and symmetric (dotted red line) motions of the steel/soft core/steel sandwich (see the elastic
properties of the layers in Table 1) obtained from the Lamb waves model [5]. The dashed
black line corresponds to the transverse wavenumber of the plane wave at 60◦ of incidence.
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Fig. 8. Absolute values of the antisymmetric (solid blue line) and symmetric (dotted black
line) admittances of the steel/soft core/steel sandwich computed with the TMM. The dashed
red line corresponds to the equivalent admittance computed using Guyader’s model. The
elastic properties of the layers are summarized in Table 1. Analytical simulations calculated
at normal incidence.
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4 Proposed condensed model

This section focuses on the development of a condensed model of physically sym-
metric multilayer panels considering both the antisymmetric and symmetric mo-
tions of the structure. In order to describe these motions, equivalent admittances
are defined by means of intrinsic properties.

4.1 Equivalent admittances

We observed in section 3.2 that the antisymmetric and symmetric admittances
have a similar coincidence frequency, which is well estimated by the condensed
plate model. In this model, the coincidence frequency essentially depends on the
stiffness-controlled term D̃eqk

4
t . Based on these observations, we could also use

D̃eqk
4
t to identify the coincidence frequency of the symmetric motion. We also no-

ticed that the differences between the symmetric and antisymmetric admittances
essentially occur in the low frequency range around the breathing frequency. Con-
sidering that the breathing frequency does not depend on the angle of incidence and
thus on kt as we observed in section 3.2, this phenomenon can be described by an
intrinsic property that also does not depend on the transverse wavenumber kt. In
the plate model, such parameter corresponds to the mass density of the impedance.
Based on these observations, we could assume that the breathing frequency of the
symmetric motion is controlled by a dynamic mass density ρ̃S. Finally, the symmet-
ric impedance of the multilayer can be derived from the impedance of an equivalent
thin plate of Love-Kirchhoff defined by a dynamic mass and a dynamic stiffness:

ZS,eq =
1

jω

(
D̃eqk

4
t − ρ̃Shω

2
)
. (17)

We also observed that the equivalent admittance computed from the condensed
plate model gives similar results to the antisymmetric admittance of the multilayer
computed from the TMM. By analogy with the equivalent symmetric impedance (17),
we can increase the accuracy of the condensed model by considering an antisym-
metric dynamic mass density ρ̃A in the equivalent impedance:

ZA,eq =
1

jω

(
D̃eqk

4
t − ρ̃Ahω

2
)
. (18)

The advantages of ρ̃A as compared to the theoretical mass density ρ are discussed
and illustrated in sections 4.3 and 5.

From the definition of Eq. (18) and Eq. (17), the following equivalent admittances

14



can be derived:
YA,eq =

1

ZA,eq
; YS,eq =

1

ZS,eq
(19)

Finally, the coefficients ρ̃A, ρ̃S and D̃eq correspond to the dynamic intrinsic prop-
erties of the proposed condensed model since they do not depend on the angle of
incidence of the imposed acoustic wave. Doing so, we assume that the breathing
frequency of the multilayer, which is described by ρ̃S, does not depend on the angle
of incidence as we observed in section 3.2.

4.2 Identification of the equivalent intrinsic parameters

The equivalent flexural rigidity D̃eq can be identified from the existing condensed
plate model that we already discussed in section 2.2. In this paper, we use the
model of Guyader and Cacciolati [16] to identify this parameter. Note that RKU
model [13,14,15] or the simple three-layer model recently proposed by Arasan et al. [25]
could be used as well. Concerning the identification of the dynamic mass densities
ρ̃S and ρ̃A, two strategies are proposed in the following subsections.

4.2.1 Transfer matrix identification at normal incidence

The first strategy consists in calculating the transfer matrix at normal incidence.
Then, the equivalent admittances (Eq. (19)) can be identified from this matrix using
Eq. (15) and Eq. (16). At normal incidence, the equivalent admittances only depend
on the mass densities since kt = 0. Thus, the dynamic mass densities are defined
as:

ρ̃A =
1

jhωYA(θ = 0)
; ρ̃S =

1

jhωYS(θ = 0)
(20)

This method has the advantages that it can be applied on physically symmetric
multilayer composed of any number and type (fluid, solid, poroelastic) of layers.
Dilatational motions inside the layers are considered since the solid and poroelastic
layers are not modeled as plates in the TMM.

4.2.2 Mass-spring-mass simplified identification

The second strategy has been developed for sandwich structures, which are com-
posed of two stiff skins and a soft and light core. The symmetric motion of this
type of multilayer excited at normal incidence can be described by a simple mass-
spring-mass system [28]. The masses correspond to the skins (which are supposed
to be identical since the multilayer is physically symmetric) and are defined by a
surface massM = ρ1h1 = ρ3h3. The spring corresponds to the core and is defined
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by a compliance C. If the core is solid, the compliance is Csolid = h2/(λ2 + 2µ2)
where λ2 = E2ν2/ ((1 + ν2)(1− 2ν2)) and µ2 = E2/ (2(1 + ν2)) are the Lamé
coefficients of the core. If the core is poroelastic, the compliance can either be cal-
culated using the model of Biot [29,30] or can be estimated by adding the stiff-
nesses of the fluid and the solid in parallel. Thus, the compliance is Cporous =
CfluidCsolid/(Cfluid + Csolid), where Cfluid is the compliance of the fluid and can be
approximated by Cfluid = h2/P0 at low frequency for high porosity (close to 1),
with P0 the atmospheric pressure.

Using this simple mass-spring-mass system, the transfer matrix at normal incidence
can be written as:

p(M0)

v(M0)

 =

1 jωM

0 1


 1 0

jωC 1


1 jωM

0 1


p(MN)

v(MN)

 , (21)

p(M0)

v(M0)

 =

1− ω2CM jω(2M− ω2CM2)

jωC 1− ω2CM


p(MN)

v(MN)

 . (22)

Using the definition of the symmetric admittance (Eq. (15)) on the previous ma-
trix relation (Eq. (22)) and the equivalent definition of the symmetric impedance
(Eq. (17)) at normal incidence (kt = 0), the dynamic mass density ρ̃S can be de-
fined as:

ρ̃S = −4M− 2ω2CM2

hω2CM
= 2
M
h

(
1− 2

ω2CM

)
. (23)

Concerning the antisymmetric motion, the theoretical mass density is used as the
dynamic mass density: ρ̃A = ρ. In this case, the equivalent antisymmetric impedance
corresponds to the impedance of usual condensed plate models (ZA,eq = Zeq).

Finally, the mass-spring-mass assumption gives simple expressions of the dynamic
mass densities. Note that this method can be applied on a multilayer system with
any number of layers considering the mass Mi and the compliance Ci of each
layer i. Doing so, the transfer matrix can be written as:

p(M0)

v(M0)

 =

 1 jωM1

jωC1 1

 ...
 1 jωMi

jωCi 1

 ...
 1 jωMN

jωCN 1


p(MN)

v(MN)

 ,
(24)
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4.3 Comparison of the dynamic mass densities

Figure 9 compares the absolute values of the dynamic mass densities computed
on the steel/soft material/steel sandwich using the two strategies described in sec-
tion 4.2. The antisymmetric mass density ρ̃A is relatively constant on the whole
frequency band and closed to the theoretical mass density ρ. The symmetric mass
density ρ̃S decreases at low frequency until the breathing frequency and then in-
creases until reaching the theoretical mass density ρ. Both strategies give similar
results on the whole frequency band but some differences can be noticed at high
frequencies: the higher-order resonances (located in the core) are not considered by
the mass-spring-mass assumption since this method only described the first reso-
nance at the breathing frequency.
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Fig. 9. Absolute values of the dynamic mass densities ρ̃A and ρ̃S of the steel/soft core/steel
sandwich computed using the mass-spring-mass assumption (orange dotted line) and the
TMM at normal incidence (red dashed and solid black lines). The blue dashed-dotted line
corresponds to the theoretical mass density. See Table 1 for the material properties of the
layers.

5 Validation

The proposed condensed model can estimate the transfer matrix (Eq. (14)) and the
TL (Eq. (7)) of a given multilayered plate at each angle of incidence by means of
the antisymmetric and symmetric equivalent admittances (Eq (19)). These admit-
tances are derived from three dynamic intrinsic properties (D̃eq, ρ̃A and ρ̃S) that do
not depend on the angle of incidence. The flexural rigidity D̃eq can be identified
from existing condensed models. The dynamic mass densities ρ̃A and ρ̃S can be
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identified using one computation of the TMM approach at normal incidence (see
section 4.2.1) or the mass-spring-mass assumption (see section 4.2.2).

In order to validate that the intrinsic parameters are able to take into account the
effect of incident angle, this section is dedicated to the comparison between the
proposed condensed model and the TMM using TL computations under diffuse
field.

5.1 Three layer system with soft elastic core

Figure 10 compares the TL of the steel/soft material/steel sandwich computed in
diffuse field with the TMM and the proposed equivalent model using the two strate-
gies to identify the dynamic mass densities. We can observe that the breathing fre-
quency of the multilayer is correctly described by the equivalent approach. The
results are very close to the estimations of the TMM on the whole frequency band
using the TMM at normal incidence to calculate the dynamic mass densities. The
mass-spring-mass assumption gives consistent results up to 5 kHz where the higher
resonances appear. Figure 10 also presents the TL calculated using the contribu-
tion of the antisymmetric (assuming YS = 0) and symmetric (assuming YA = 0)
motions separately. We can observed that none of contributions can be used alone
meaning that both contributions should be considered simultaneously to correctly
estimate the TL.

5.2 Three layer system with poroelastic core

A similar comparison to the one of section 5.1 is presented in Figure 11 for a
steel/polyurethane/steel sandwich. The polyurethane layer is a poroelastic mate-
rial which has been described with the Biot’s model [29,30] and the Johnson-
Champoux-Allard [31,32] model for the visco-thermal dissipation in the TMM.
This latter model depends on five acoustic properties (open porosity, airflow re-
sistivity, viscous characteristic length, thermal characteristic length and high fre-
quency limit of tortuosity). The values of these parameters are summarized in Ta-
ble 2. The same elastic properties as the soft material are used. Concerning the
mass-spring-mass assumption, the polyurethane layer has been considered either as
a solid and a poroelastic material using the approximations detailed in section 4.2.2.
We can observe that the mass-spring-mass assumption gives incorrect results if
only a solid compliance is used for the polyurethane layer. The acoustic parameters
of the polyurethane are not considered using this assumption. As a consequence,
the breathing frequency is not correctly estimated. On the contrary, good results
are obtained with the mass-spring-mass assumption considering a poroelastic com-
pliance. Using the TMM at normal incidence to calculate the mass densities, the
condensed model gives a correct estimation of the TL. The separate contributions
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Fig. 10. Transmission loss of the steel/soft material/steel sandwich computed using the
TMM (thick solid blue line), the proposed condensed model with the mass-spring-mass
assumption (dashed red line) and the TMM at normal incidence (dotted black line). The
dotted-dashed gray and thin solid orange lines correspond to the contribution of the anti-
symmetric and symmetric motions respectively. See Table 1 for the material properties of
the layers. Analytical simulations calculated in diffuse field.

of the symmetric and antisymmetric motions are also drawn in Figure 11 and lead
to the same conclusions as the previous paragraph. Two additional remarks can be
noticed. First, the equivalent flexural rigidity D̃eq is still calculated using elastic
parameters only. Secondly, the breathing frequency and its resonances may change
with the angle of incidence for low resistivity values (σ < 1000 N.s.m−4). Thus,
the proposed model would not be valid for these low values of resistivity.

Open porosity φ (-) 0.97

Airflow resistivity σ (N.s.m−4) 50 000

Viscous characteristic length Λ (µm) 60

Thermal characteristic length Λ′ (µm) 160

High frequency limit of the tortuosity α∞ (-) 1.1
Table 2
Acoustic properties of the polyurethane layer.

6 Conclusion

In this paper, a condensed model of physically symmetric multilayer is developed
considering the antisymmetric and symmetric motion of the system. Both motions
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Fig. 11. Transmission loss of the steel/polyurethane/steel sandwich computed using the
TMM (thick solid blue line), the proposed condensed model with the mass-spring-mass
assumption (dashed red line and dotted-dashed purple thin line) and the TMM at normal
incidence (dotted black line). The dotted-dashed gray and thin solid orange lines corre-
spond to the contribution of the antisymmetric and symmetric motions respectively. See
Table 1 for the elastic properties of the layers and Table 2 for the acoustic properties of the
polyurethane. Analytical simulations calculated in diffuse field.

are described separately by means of the admittances of two equivalent thin plates.
It is worth mentioning that the antisymmetric (mainly bending, shearing) and the
symmetric (compression) motions can be described by three intrinsic properties: a
dynamic bending stiffness, which corresponds to the equivalent parameter identi-
fied from existing condensed plate model, and two dynamic mass densities. Two
different strategies are developed to identify the dynamic mass densities. The first
one uses the TMM approach at normal incidence to describe the breathing fre-
quency of the system and its resonances. This method, which can be applied with
any type (fluid, solid and poroelastic) and number of layers, shows very good re-
sults as compared to the full multilayer modelling with the TMM in diffuse field.
The second strategy describes the multilayer excited at normal incidence as a mass-
spring-mass system. This method gives a simple description of the breathing fre-
quency but neglects the higher resonances. Using the proposed condensed model,
the transfer matrix linking the pressure and velocity on both sides of the multi-
layer can be estimated at different angles of incidence by means of the intrinsic
properties. Finally, the proposed condensed model gives an accurate estimation of
the transmission loss describing at the same time the antisymmetric and symmetric
motions of the structure.

The first application of this work could be to use the condensed model in finite
element framework. A dedicated shell element can be developed to describe the
antisymmetric and symmetric motions of the multilayer by means of the identified
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intrinsic properties. This condensed model should considerably reduce the com-
putational time compared to a full 3D modelling of the multilayer. This FEM im-
plementation is underwork. Another perspective could be to extend this condensed
model to asymmetric multilayers.
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