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Abstract

Data from each subject in a repeated-measures experiment forms a time se-
ries, which may include trial-by-trial fluctuations arising from human factors
such as practice or fatigue. Concerns about the statistical implications of
such effects have increased the popularity of Generalized Additive Mixed
Models (GAMMs), a powerful technique for modeling wiggly patterns. We
question these statistical concerns and investigate the costs and benefits of
using GAMMs relative to linear mixed-effects models (LMEMs). In a Monte
Carlo simulation study, LMEMs that ignored time-varying effects were no
more prone to false positives than GAMMs. Although GAMMs generally
boosted power for within-subject effects, they reduced power for between-
subject effects, sometimes to a severe degree. Our results signal the im-
portance of proper subject-level randomization as the main defense against
statistical artifacts due to by-trial fluctuations.

Studies with repeated measurements on the same subjects are extremely common in the
social sciences. Because all the data for a single subject cannot be collected simultaneously,
the set of observations for that subject will comprise a time series, and the full dataset
a collection of such. Although by itself this observation may seem trivial, its statistical
implication—non-independence over time—is not. Human subjects often fluctuate in their
performance over the course of an experimental session, reflecting changing environmental,
physiological, or psychological factors as a subject completes a task. The psychological
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literature has identified a broad range of factors that can give rise to time-varying effects,
such as repetition of stimuli (Forbach, Stanners, & Hochhaus, 1974), task switching (Mon-
sell, 2003), mental fatigue (Ackerman & Kanfer, 2009), mind wandering (McVay & Kane,
2009), and statistical learning (Jones, Curran, Mozer, & Wilder, 2013). Occasionally, these
time-varying effects are phenomena of interest in their own right, but more often they are
just treated as irrelevant and ignored.

By-trial fluctuations are seen as a problem because it is believed that datasets with such
effects violate the assumption of independently and identically distributed residuals under-
lying parametric statistical analyses. When such effects are ignored in the analysis, the
residuals for each subject may show temporal autocorrelation: pairs of observations within
a series are correlated (usually positively), with the correlation strength depending on the
time lag (Baayen, Vasishth, Kliegl, & Bates, 2017). In traditional analyses using t-test and
ANOVA, trials for each subject in each condition are usually aggregated to form a set of
means, and the analysis is performed on the means rather than at the trial level. Although
aggregation reduces the degrees of freedom, it is not immediately clear that it absolves the
analyst from all concerns about effects of non-independence, since the means themselves
or their variances may be biased due to the non-independence in the raw data. In more
modern analysis approaches, the need to simultaneously model crossed random factors such
as subjects and stimuli (Baayen, Davidson, & Bates, 2008) precludes aggregation, thus ex-
posing the analyst to the potential consequences of this non-independence. Later we will
question the relevance of temporal autocorrelation for meeting statistical assumptions in
most experimental contexts; but to fully understand the nature of these concerns, let us
provisionally accept the premise.

To illustrate the potential problem, consider the contrived example in Figure 1, which
shows simple response-time data from a single participant, fluctuating around a mean of
600 milliseconds (left panel). A sinusoidal effect such as this might arise through changing
psychological factors during the experimental session. As the participant becomes familiar
with the task, reaction time speeds up (trials 1 through 12), but then boredom and fatigue
set in, gradually slowing responses (trials 12 through 36). As the end of the session comes
into view, the subject speeds up in order to finish earlier (trials 36 through 48). An tradi-
tional linear mixed-model analysis fit to a collection of such data would be likely to include
by-subject random intercepts, which would account for the mean height of the curve for
each subject (the dashed line in the left panel), but would remain static over time. We could
also envision an alternative analysis that captures the sinusoidal pattern in the data by in-
corporating a kind of time-varying random intercept (solid line). The latter model provides
a better fit to the data, and also would remove the temporal autocorrelation. Temporal
autocorrelation is usually diagnosed through an autocorrelelogram of the residuals (right
panels), which plots the correlation coefficient between any two arbitrary time points in the
series as a function of the lag between them.1 (A lag of zero always has a perfect correla-

1The validity of autocorrelation plots for psychological data is questionable. Autocorrelation plots are
only valid when the underlying process has the mathematical property of stationarity; roughly, when the
process is not itself changing over time. There is every reason to think that psychological data would not
exhibit stationarity, since human subjects in an experiment are highly reactive to changing conditions (e.g.,
the learning, practice, task switching, and mind wandering effects cited above). Moreover, such plots are
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tion of one, because it is the observation’s correlation with itself.) As can be seen in the
autocorrelation plot for the static intercept, failure to model the time-varying pattern has
induced autocorrelation with a specific decreasing pattern as a function of lag. In contrast,
the model with the time-varying intercept has removed all temporal autocorrelation.

560

600

640

0 10 20 30 40 50
trial number

re
sp

on
se

 ti
m

e 
(m

s)

raw data (points) with model fits (lines)

static intercept model time−varying intercept model

0 5 10 15 0 5 10 15
−0.25

0.00

0.25

0.50

0.75

1.00

lag

co
rr

el
at

io
n

autocorrelation plots

Figure 1 . Hypothetical observations showing a sinusoidal pattern along with model fits
(lines) and autocorrelation plots.

Models that ignore by-trial fluctuations may violate statistical assumptions, but with what
consequences? There is a large statistical literature on temporal autocorrelation and po-
tential remedies in time series analysis, with the typical message that failing to account for
autocorrelation results in underestimation of standard errors, thereby inflating false posi-
tive rates for hypothesis tests, or equivalently, producing confidence intervals that are too
narrow (e.g., Bence, 1995; Cochrane & Orcutt, 1949; Griffiths & Beesley, 1984). However,
the statistical literature largely involves the analysis of just one or perhaps several time
series—a common situation in economic forecasting or political polling—but very much
unlike the situation in experimental studies with human subjects. In contrast, the litera-
ture on temporal autocorrelation in functional magnetic resonance imaging (fMRI) supplies
examples with study designs and statistical considerations that are much closer to studies
with human subjects. In experiments using fMRI, time-varying effects in the BOLD signal
are generally seen as nuisance variation that will tend to inflate false positive rates if not
taken into account (Purdon & Weisskoff, 1998). Proposed remedies include estimating and
removing the autocorrelation parameter (‘pre-whitening,’ Bullmore et al., 1996; Woolrich,
Ripley, Brady, & Smith, 2001) or ‘coloring’ the signal with known autocorrelation using
temporal filtering (Worsley & Friston, 1995).

An alternative to these spectral approaches that is attractive for univariate situations is to
simply estimate fluctuations as part of the model by including time-based predictors. For
instance, one could include the polynomial effects of time (Mirman, 2016). To the extent
the fluctuations are accurately modeled, this would remove the temporal autocorrelation
from the residuals. However, determining the appropriate degree of the polynomial can be
challenging, and fitting such models with the appropriate random effects structure can lead
to convergence problems (Winter & Wieling, 2016). Also, polynomials do a poor job fitting
patterns with discontinuities or asymptotic effects.

not fully diagnostic: it is possible to devise a non-stationary autocorrelated process that would yield a ‘false
negative’ autocorrelation plot, i.e., one that suggests no autocorrelation.
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Recently, Baayen and colleagues presented compelling evidence for the existence of fluctu-
ating performance over time in data from three psycholinguistic datasets, and showed how
to use Generalized Additive Mixed Models (GAMMs) to model these effects. GAMMs are
different from polynomial models in that they can represent arbitrary wiggly patterns in
data as the sum of a set of mathematical basis functions, with the complexity of these func-
tions determined by cross-validation on the data itself or by Bayesian techniques (Wood,
2017). In addition, much like a linear mixed-effects model, the analyst can specify random
intercepts and random slopes for crossed random factors.

Baayen and colleagues depart from traditional approaches to analysis by construing these
fluctuating effects not as irrelevant variation but as nuisance variation—that is, variation
that is not necessarily of interest in itself, but that must be taken into account in order to
obtain precise and unbiased estimates of parameters of interest. They take it for granted
that ignoring such effects is harmful: “if the errors indeed show autocorrelational struc-
ture, evaluation of the significance of predictors in the model becomes problematic due to
potential anti-conservatism of p-values” (Baayen, van Rij, de Cat, & Wood, 2018, p. 49).
Anti-conservatism refers to the situation where p-values are smaller than they should be,
corresponding to an increase in the rate of false positives. We see nothing in the work of
Baayen and colleagues to support this assertion.

In contrast, the statistical and fMRI literatures mentioned above might be taken as support
for such concerns about anti-conservativity. However, upon closer consideration, the warn-
ings in these literatures may not be fully relevant. As noted above, statistical discussions of
time-series analyses often focus on datasets including one or only a few time series, rather
than many, and in scenarios where change over time almost always represents variation of
interest. Also, the time series are usually observational (e.g., economic or political time
series), where the timing and presentation order of interventions is not under control of
the researcher, unlike the experimental context where randomization and counterbalancing
can remove any confounding of effects of independent variables with fluctuations in perfor-
mance, likely neutralizing the kinds of problems found in other types of studies. Finally,
although addressing autocorrelation is seen as imporant in fMRI analysis, traditional fMRI
studies often used ‘boxcar’ designs that lack true randomization over time: trials from a
given experimental condition are often grouped together in ‘epochs’ because of the slowly
evolving hemodynamic response underlying the BOLD signal (Amaro & Barker, 2006). By
their very nature, boxcar designs confound treatment effects with fluctuations in the depen-
dent variable. For fMRI studies using event-related designs with true randomization, false
positives may be less of a concern than false negatives (Olszowy, Aston, Rua, & Williams,
2019).

Modeling fluctuations in performance may provide additional insight into data, but the
nuisance variation perspective suggests that such modeling is not optional. To the extent
that modeling this variation is important for inference, then re-analyses of datasets with
GAMMs should lead to substantively different conclusions from original analyses that treat
such variation as irrelevant. In one re-analysis by Baayen et al. (2017), a few effects that
were significant in the original analysis no longer were in the GAMM analysis. This might
seem to support the nuisance perspective; however, because the ground truth is unknown,
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such differences in outcome could either reflect false positives from LMEMs or false negatives
from GAMMs.

In this paper, we contend that the use of GAMMs to model by-trial fluctuations in ex-
periments with randomized presentation is generally unnecessary and potentially harmful.
Traditional LMEMs show reasonable Type I error rates in the face of temporal autocorre-
lation, so long as the presentation order has been appropriately randomized. And GAMMs
are not only harder to implement and interpret compared to LMEMs, but they may also
impair power for between-subject effects.

We begin by explaining the use of GAMMs in multi-level data, focusing on the use of factor
smooths to account for time-varying patterns in individual subjects’ data. Then, a brief
thought experiment questions the necessity of accounting for these patterns to satisfy sta-
tistical assumptions. Next, Monte Carlo simulations examined the performance of GAMMs
and LMEMs across a range of theoretical patterns, including sinusoidal and random-walk
Gaussian patterns. The simulations support the thought experiment: outcomes for mod-
els ignoring temporal autocorrelation were statistically indistinguishable from outcomes of
models fit to data with comparable residual variation but no temporal autocorrelation, with
false positive rates close to nominal, so long as the presentation of within-subject levels was
truly randomized over time. It was only in designs where the presentation order of within-
subject levels was blocked instead of random that LMEM models performed poorly relative
to GAMMs, due to their inability to deconfound treatment variation with time-series vari-
ation. In designs with fully randomized presentation order, GAMMs sometimes showed a
modest boost to power for within-subject effects, but usually at the cost of increased Type
II errors for between-subject effects.

Due to concerns about the external validity of our theoretical simulations, we undertook
a second set of simulations that were based on a real dataset, namely the Stroop task
from the Many Labs 3 mega-study (Ebersole et al., 2016). Here, we simulated data based
on estimates of fixed and random effects from the main study, ’grafting’ on real residuals
from randomly chosen subjects. Results were similar to the theoretical simulations, in that
LMEMs showed no evidence of inflated false positives, GAMMs provided a modest boost to
power for within-subject effects, but impaired power for between-subject effects when using
the recommended ’penalized’ factor smooths.

The bottom line from these simulations is that concerns about inflated Type I error rates for
LMEMs applied to experimental data that include trial-by-trial fluctuations are completely
unwarranted, so long as the presentation order of stimuli and experimental conditions have
been properly randomized. If model residuals show signs of autocorrelation, this should
not be cause for alarm, since proper randomization and counterbalancing is already a suf-
ficient remedy. GAMMs may modestly increase power for within-subject effects in these
situations, but given their complexity, and the potential costs to power for between-subject
effects, their use should be seen as optional and not mandatory. It is only where true
randomization and counterbalancing of presentation order is absent or imperfect that trial-
by-trial fluctations become a dangerous nuisance. In these circumstances, GAMMs (or other
time-series modeling) are likely to be useful to deconfound variation of interest from this
nuisance variation.



MODELING BY-TRIAL FLUCTUATIONS WITH GAMMS 6

While we question the need to model by-trial fluctuations in fully randomized experiments,
we do not doubt the utility of GAMMs in data exploration, or in situations when the
variable of time is of theoretical interest. Thus, longitudinal studies, such as in cognitive
development or language evolution, are exempt from our recommendations. We focus on
studies where each subject’s data is a series of trials with just one observation per trial.
Our recommendations therefore may not generalize to studies where multiple observations
are sampled during each trial or stimulus, as is the case in mouse-tracking, visual-world
eyetracking, MEG, EEG, and pupillometry studies, except when the data from each trial
has been reduced to a single summary statistic. We do not question the applicability of
GAMMs for investigating the time-course of effects at the trial level, such as demonstrated
by van Rij, Hendriks, van Rijn, Baayen, and Wood (2019). In short, there is still a wide
range of situations in which the use GAMMs may be advantageous. Even so, users should
be cautious about the potential dangers we document here.

How to model time-varying nuisance effects with GAMMs

In this section, we illustrate and explain those features of Generalized Additive Mixed Mod-
els that are most relevant to modeling fluctuations over time. For a more in-depth tutorial
for psychological or linguistic data, see Baayen et al. (2017), Baayen et al. (2018), Sóskuthy
(2017), and Winter and Wieling (2016). The textbook by Wood (2017) provides a more
comprehensive, technical treatment. Our investigation centers on four main considerations
in dealing with data containing by-trial fluctuations: (1) the form the pattern takes over
time, and whether individual patterns share common structure or are completely idiosyn-
cratic; (2) the consequences of the temporal structure with respect to model assumptions;
namely, whether the pattern only violates independence assumptions or whether it addition-
ally violates the assumption of normally distributed residuals; (3) whether the presentation
of the levels of any within-subject factors are randomized over time or blocked; and (4)
whether the independent variables under investigation are administered as between-subject
or within-subject factors.

Let us start by considering a contrived dataset in which we assume that subjects’ responses
exhibit a sinusoidal pattern such as that shown in Figure 1. Using the autocorr package for
R that accompanies this manuscript, we can simulate a dataset with by-trial fluctuations
using the sim_2x2() function. This function simulates data from a 2x2 mixed design with
one within-subject factor (‘A’) and one between-subject factor (‘B’), and allows the user
to explore different time-varying patterns. The resulting dataset has variables representing
either a randomized or blocked design. We will start with the randomized design.

1 ## devtools::install_github("dalejbarr/autocorr")
2 library("autocorr")
3 library("mgcv")
4 library("tidyverse")
5
6 set.seed(62) # for reproducibility
7 dat <- sim_2x2(int = 3, # set the intercept to an arbitrary non-zero value
8 version = 2L) # form of the time varying effect; see ?errsim
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This gives us a dataset with simulated data from 48 subjects, with 48 trials per subject,
and where individual subjects show a sinusoidal pattern, much like in the original example
above. Although the functions in the mgcv package are designed for fitting data with
‘smooth’ terms to capture wiggly patterns in the data, they can also be used to fit a generic
linear mixed-effects model (LMEM) if standard random effects and no smooth terms are
specified. For comparability with GAMM models, we will use the mgcv functions rather
than lme4 to fit standard LMEMs. We can use either the gam() or bam() functions from
the mgcv package. These functions are similar, except the latter function is optimized for
very large datasets.

Given the design includes one within-subject factor with multiple observations per level
per subject, an appropriate LMEM model for these data would include by-subject random
intercepts and slopes for the within (‘A’) factor.

1 mod_lmem <- gam(Y_r ~ A_c * B_c +
2 s(subj_id, bs = "re") + # by-subject random intercept
3 s(subj_id, A_c, bs = "re"), # by-subject random slope for A_c
4 data = dat)

The above model predicts the dependent variable Y_r from an (implicit) intercept plus
main effects of the within-subject factor (A_c) and the between-subject factor (B_c). The
by-subject random intercepts and slopes are included using the s() function with the option
bs="re".2

How can an analyst detect the presence of by-trial fluctuations in data? Although it is
useful and convenient to simply look at each subject’s raw data plotted over time, for the
purpose of checking assumptions it is essential to look at the residuals from a statistical
model plotted over time rather than the raw data. Autocorrelations that appear in the
raw data may be absent from the residuals of an appropriately specified model, and may
lead the analyst to pursue unnecessary remedies that may cloud interpretation or otherwise
harm inference (Huitema & McKean, 1998). Let us plot the residuals as a function of trial
number (tnum_r) for the first four subjects.

It is apparent from Figure 2 that we have time-varying effects that have not been accounted
for. Also, the residuals do not appear to be normally distributed; in fact, we prove in
the Appendix that in a hypothetical scenario where all subjects show variations on a basic
sinusoidal pattern, the residuals from a LMEM will always depart from normality.

The GAMM approach for resolving these problems of non-independence and non-normality
would be to add certain ‘smooth’ terms to the model. We can start by changing the static
intercept to a time-varying intercept, by estimating a smooth function for time (in this
case, indexed by trial number). However, if we stopped there, this would assume that
the sinusoidal pattern is identical for all subjects. So we can add factor smooths to the
model, which captures any leftover wigglyness for each subject after accounting for the
time-varying fixed intercept. The wigglyness of these smooth terms is determined by a
cross-validation procedure or by Bayesian techniques to prevent overfitting (Wood, 2017).

2Unlike a standard LMEM fit using lme4, random intercepts and slopes in a GAMM are specified indi-
vidually and treated as independent.
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Figure 2 . Residuals from a linear-mixed effects model. Top row: residuals plotted by time.
Bottom row: histogram and Q-Q plot.

Although the user can control many aspects of the estimation process (see the mgcv vignettes
and documentation), we will just use the defaults.

1 mod_gamm <- gam(Y_r ~ A_c * B_c +
2 s(tnum_r) + # time-varying fixed intercept
3 s(subj_id, tnum_r, m = 1, bs = "fs") + # time-varying random intercepts
4 s(subj_id, A_c, bs = "re"), # by-subject random slope for A_c
5 data = dat)
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Figure 3 . Residuals from a generalized additive mixed model. Top row: residuals plotted
by time. Bottom row: histogram and Q-Q plot.

The s(tnum_r) term adds a fixed time-varying intercept for the time predictor tnum_r,
estimated with the default “thin plate” basis functions. The s(subj_id, tnum_r, m = 1,
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bs = "fs") term specifies factor smooths, which allows additional subject-specific wiggly-
ness over time. The m = 1 argument specifies a penalty so that the factor smooths behave
like proper random smooths; that is, it defines them like a typical random effect rather than
a fixed effect. We kept random slopes for the within-subject factor (A_c) in the model,
because the factor smooths function as a time-varying intercept only, and do not capture
random slope variation. Checking the residuals from this model, (Figure 3), we see that
the smooth terms have removed the temporal autocorrelation, and made the residuals look
more normally distributed.

A limitation of the above model is that it treats the within-subject effect as static over time.
It is possible that the effect varies over time, and that different subjects show distinct time-
varying patterns. The model could be further enriched to capture such effects. However,
the simpler model turns out to be adequate for our simulated data, and may also generally
be so for real data; indeed, the models fit by Baayen et al. (2017) only included time-varying
intercepts with conventional random slopes, and nonetheless proved effective in removing
temporal autocorrelation.3

In the current example scenario, the fluctuations for each subject come from a simple vari-
ation on a common sinusoidal pattern. When a model ignores these patterns, the residuals
end up autocorrelated and non-normally distributed. In our simulations, we considered
additional scenarios where the time-varying patterns were unique to each subject, as well
as patterns that yielded autocorrelated residuals that were normally distributed.

Design considerations

The impact of autocorrelation on model performance is likely to depend not only on the
pattern of autocorrelation (e.g., degree of common versus idiosyncratic structure) but also
on how it interacts with the experimental design. Ideally, in experimental studies, the
presentation order of within-subject factors is randomized independently for each subject.
This subject-level randomization ensures the temporal fluctuations will not be systemati-
cally confounded with any variation of interest, possibly making it safe to ignore them. It
seems likely that modeling these effects with GAMMs could boost power, but it is unclear
whether there are any hidden costs to this approach.

Occasionally, researchers use a counterbalanced blocked presentation instead of randomized
presentation; for instance, half of the participants may receive the first half of trials in
condition A1 and the second half in condition A2, while the other half gets them in the
contrary order. In blocked designs, it may be problematic to ignore temporal fluctuations.
Although counterbalancing across subjects should keep the false positive rate in check,
power could be reduced if the variation of interest gets swamped by the nuisance variation.
GAMMs or other types of time-series models might prove especially valuable for separating
signal from noise.

As already discussed, GAMMs may increase power for within subject effects, but it is unclear
how they will perform relative to LMEMs for between-subject effects. In a linear mixed-

3For further discussion of specifying random effects with GAMMs, see van Rij et al. (2019).
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effects model, variation associated with between-subject treatment effects is confounded
with random intercept variation; for GAMMs, it is confounded with variation captured by
the factor smooths. It is important to verify whether GAMMs perform as well as LMEMs
at distinguishing these two sources of variation.

Irrelevant or nuisance variation?

We have seen how temporal fluctuations can be accounted for by GAMMs but up to now
we have deferred answering a more basic question: Is it even necessary to account for
these fluctuations? In other words, should such effects be considered as nuisance variation,
as Baayen and colleagues evidently view them when they emphasizing the importance of
‘cleaning up’ autocorrelation, or are they irrelevant? We contend that the latter view is
correct in the context of randomized experimental data. This perspective is fully confirmed
by our Monte Carlo simulations, but let us first argue the case analytically.

Imagine you are simulating data from an experiment with a single two-level within-subjects
factor. For each of 48 subjects, you simulate data from 48 trials, 24 from each of two
conditions (“main” and “control”), appearing in a random order.4 You generate observations
Yij for subject i on trial j according to the linear model

Yij = β0 + β1Xij + Si + eij

where Xij is a categorical indicator variable for condition, Si is the random intercept for
subject i with Si ∼ N(0, σs2), and eij is the residual you generated for a particular trial,
eij ∼ N(0, σe2). Let us assume a further variable tij which indexes trial number; note that
this variable is not represented anywhere in the model. Let us denote the residuals that we
generated when constructing the dataset as the ‘true’ residuals and the residuals we obtain
from fitting a random-intercepts model to the simulated data as the ‘estimated’ residuals.

Estimated residuals for three subjects are plotted against time (Figure 4, panel A) next to
autocorrelation plots for these same subjects (panel B). Because your residual data come
from a normal distribution and was generated without reference to the trial index tij , there
is no temporal pattern in the estimated residuals, nor is there any autocorrelation.

Simulating the data puts you in the privileged position of knowing the ‘true’ residual behind
each observation, and you can exploit this knowledge to induce temporal autocorrelation
simply by re-ordering the tijs, as if you had collected the observations in a different tem-
poral order. For example, you could re-define tij to follow the size of the true residuals
in descending order, such that trial 1 is assigned to the observation with the largest true
residual, trial 2 with the next largest, and so on. As would be expected, the estimated
residuals from a random intercept linear mixed-effects model for these data form a descend-
ing pattern, and we now see strong autocorrelation in the data (Figure 4, panels C and D).
This plot now suggests that the data violate independence assumptions, but only the tijs
have changed, and these play no role in the model. Each subject has the exact same set of

4R code for this demonstration is included in the project repository.
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Figure 4 . Estimated model residuals by time from original data and autocorrelation plots
(A and B); model residuals by time from data where trial number is assigned based on the
value of the true residuals in descending order (C and D) or arranged to form a sawtooth
pattern (E and F).

observations as in the original scenario; so, from the point of view of estimation, you are
fitting exactly the same model to exactly the same data. Indeed, the model would give iden-
tical results under any possible reordering of the trials; for instance, for panels E and F you
have re-defined the tijs to form a sawtooth pattern, yet the same parameter estimates are
obtained (Table 1). Put differently, what the model sees for each subject is just a collection
of unordered observations. You can change the values of the tijs variable to anything you
please—you could even go so far as to delete the variable from the data—because they are
wholly irrelevant from a modeling standpoint.

model β̂0 SE(β̂0) β̂1 SE(β̂1)
original order -0.01712 0.10303 0.02919 0.04167
trials ordered by residual -0.01712 0.10303 0.02919 0.04167
trials ordered into sawtooth -0.01712 0.10303 0.02919 0.04167

Table 1
Parameter estimates and standard errors from the three models.

Keeping in mind that we are focused on experiments with univariate data and random
presentation order, observing temporal autocorrelation in residuals from models where time
does not appear as a variable should not be cause for concern about violating independence
assumptions. If temporal autocorrelation appears in the residuals and the analyst chooses
to ignore it, it is wrong to view the analyst’s model as statistically unsound on that basis
alone. They are non-independent only with respect to a variable that is invisible to the
model. It is more accurate to view the analyst as having foregone the opportunity for
obtaining more precise estimates by incorporating the temporal structure in the model.
Opting out from doing so can be a rational choice: GAMMs are technically challenging to
use, they yield complex output that can be difficult for the average user to interpret, and
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the typical user may be insufficiently familiar with their potential pitfalls. Consequently,
using them does not guarantee better insight into data.

Lest it still seem ’wrong’ or ’inappropriate’ for an analyst to ignore residual autocorrelation
when analyzing data from a randomized experiment, let us attempt to further dislodge this
notion by considering yet another way in which experimental data form a time series. Just as
the individual measurements taken from a given subject are influenced by the characteristics
of the particular moment at which the measurement is taken, so is the overall performance of
a subject influenced by the time of day at which testing occurs, with subjects often showing
more efficient performance on tasks during afternoons compared to mornings (Blake, 1967;
Kleitman, 1963). Time of day fluctuations are very likely to induce residual autocorrelation,
at least for tasks that are minimally cognitively demanding. In a study where you attempt
to predict participants’ mean performance by experimental group, this autocorrelation could
be seen by plotting the residual for each subject against the time of day at which the session
too place. Yet despite this variable being a likely source of non-independence, and despite
it being a variable that is recorded in every experiment (if only by computer timestamps)
it is almost always ignored during analysis. Why does no one question this?

We do not worry about time-of-day effects for the same reason we need not worry about
time-of-trial effects: because we randomized. Randomization prospectively guards against
the contamination of variance we care about by variance that we don’t. Even beyond
time of trial or time of day effects, in any study there is a potentially infinite number
of measured and unmeasured variables that, if known, could potentially induce residual
autocorrelation—day of the week, season of the year, temperature of the room, degree
of ambient visual or acoustic noise, subject conscienciousness, visual angle subtended by
stimuli relative to each subject’s visual acuity, and so on. So long as we have randomized,
we don’t need to worry about any of these effects, and trial-by-trial effects are no different.

We have argued that modeling trial-by-trial fluctuations is not necessary, but we haven’t
answered the question of whether doing so is worthwhile. The rest of this article describes
two sets of Monte Carlo simulations aimed at illuminating the potential costs and benefits
of GAMM modeling so that analysts can be more informed in their decisions. The first
set of simulations is meant to illuminate properties of GAMMs and LMEMs on data with
time-varying effects by challenging them with a variety of patterns, including sinusoidal
and Gaussian random walk patterns. The second set of simulations examines more realistic
patterns, where the residuals from the simulated data contain real practice effects from a
model fit to Stroop task data from the Many Labs 3 project (Ebersole et al., 2016).

Simulation Set 1: Sinusoidal and Random Walk Patterns

Method

Different approaches for dealing with autocorrelation might impact within-subject factors
in a different way from between-subject factors. Thus, for our hypothetical experiment of
interest we chose a mixed 2x2 design, including one within-subject factor, one between-
subject factor, and their interaction. For simplicity, the design included no stimulus effects.
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Each hypothetical experiment comprised 48 time-series, each representing data from a single
hypothetical participant. The sim_2x2() function in the accompanying autocorr generated
the datasets used in the Monte Carlo study, according to the following procedure.

The Yij observations for participant i on trial j were generated according to the multi-level
linear model

Yij = β0 + S0i + (β1 + S1i)Aj + β2Bi + β3AjBi + eij

where Aj is a deviation-coded (-.5, .5) predictor representing the level of the within-subject
factor for trial j, Bi is a deviation-coded predictor representing the level of the between-
subject factor for subject i, and the eijs comprise a 48-length vector of residuals. The
by-subject random intercept and random slope for participant i, 〈S0i, S1i〉, were drawn
from the bivariate normal distribution

〈S0i, S1i〉 ∼ N
(
〈0, 0〉 ,Σ

)
where

Σ =
(

τ0
2 ρτ0τ1

ρτ0τ1 τ1
2

)
.

The sim_2x2() function generated sample datasets based on the above equations, with spe-
cific fixed-effects parameter values β0, β1, β2, β3, random-effects parameter values τ0, τ1, ρ,
and residuals (as defined in the next section). The intercept β0 remained fixed at zero for
simplicity. We considered six unique values for the main-effect of the within-subject factor,
β1: 0, .05, .10, .15, .20, and .25. We also considered six unique values for the effect of the
between-subject factor, β2, as well as for the interaction, β3: 0, .10, .20, .30, .40, and .50.
These values were determined through trial and error to yield a good range of power for
effects in the “no autocorrelation” (baseline) scenario, given the ranges for the parameters
defining the variance components. The values for β1, β2, and β3 were not varied indepen-
dently: whenever β1 was set to the nth value in the series (e.g., if n = 4, β1 = .15), then β2
and β3 were also set to their nth values (e.g., β2 = β3 = .30). This seemed like a reasonable
way to reduce the number of simulations required, since all effects are independent and the
design was always balanced.

Parameters for the variance components that define the random effects should ideally be
chosen to approximate the ratio of subject-level to trial-level noise found in real data. Since
data on this ratio are lacking, we derived values from the convenience sample of data from
13 psycholinguistic experiments provided by Barr, Levy, Scheepers, and Tily (2013) in
their online appendix. The estimated variance components from these studies, expressed
as a proportion of residual variance, are shown in Table 2 and also available as the object
blst_studies in autocorr. Each simulated dataset had parameters τ0 and τ1 drawn from
a uniform distribution spanning from the 20th to the 80th percentiles of the corresponding
empirical distribution, specifically τ0 ∼ U (0.105, 0.420) and τ1 ∼ U (0.001, 0.261). The
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ID σ τ0/σ τ1/σ

1 3572 0.216 0.000
2 8439 0.140 0.001
3 24388 0.105 0.000
4 29934 0.321 0.000
5 0.494 1.877 0.385
6 275363 0.449 0.002
7 230191 0.106 0.059
8 231824 0.172 0.003
9 51372 0.412 0.021

10 7536625 0.036 0.066
11 406043 0.229 0.222
12 0.128 0.104 0.366
13 242830 0.426 0.287

Table 2
Estimated variance components from the sample of 13 psycholinguistic studies in Barr et
al. (2013).

random correlation ρ was also from a uniform distribution, reflecting a range of realistic
values: ρ ∼ U(−.8, .8).

For each sample dataset generated by sim_2x2(), the residuals for all 48 participants ei-
ther had no autocorrelation (baseline scenario), or had the same autocorrelation structure
representing one of the eight scenarios described below. All samples were homogeneous
with respect to the autocorrelation structure. That is, the residuals for all subjects within
a sample were generated according to the same selected scenario; we did not mix scenarios
within a sample.

The scenarios of autocorrelated residuals were chosen to represent a variety of theoretically
interesting scenarios, from highly consistent and structured sinusoidal patterns to highly
idiosyncratic and unstructured ‘random walk’ patterns. Because real data is likely to have
multiple sources of autocorrelation operating at distinct time scales, we also considered
scenarios that were a mixture of the sinusoidal and random walk patterns. Figure 5 shows
example sequences from each scenario. The residuals were generated using the errsim
function of autocorr. In all scenarios, we normalized each residual time series so that
the mean was 0 and the standard deviation was 1. We also compare the autocorrelation
scenario to a baseline scenario without autocorrelation (also with SD = 1). Thus, the total
variation is identical across the scenarios; all that varies is how this variation is distributed
over time.

Scenario 1 and 2: Sinusoidal. The first two scenarios represent relatively slow processes
unfolding over the course of an experimental session, such as fatigue or practice effects. For
simplicity, we represent such processes as a single bandwidth of a sinusoidal function. A
real-world example might be a reaction time experiment where a participant speeds up
response times at the beginning of a session as they gain experience with the task, followed
by a gradual slowing due to fatigue, and ending with a final speed up as the participant
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Figure 5 . Randomly generated sequences exemplifying the eight autocorrelation scenarios.
Each line represents the residuals for a single hypothetical participant.

rallies toward the end. Another participant might show an opposite (anti-phased) pattern,
gradually slowing at the start as they learn how to maximize accuracy, followed by a gradual
speed with practice, and slowing towards the end as fatigue sets in.

Reflecting this type of scenario, the first scenario we consider is one in which participants
exhibit a common sinusoidal form offset by random phase angles, which we call the varying
phase scenario. In these simulations, the phase angle gi for the ith participant was drawn
from a uniform distribution, gi ∼ U(−π, π). Each simulated participant having a different
random phase angle implies no time-varying structure at the population level, since the
expected value of the sum of a set of sine waves with fixed amplitude and frequency but
with phase offsets randomly drawn from a uniform distribution is a flat line (i.e., the waves
tend to cancel one another out).

Of course, we also assume the presence of noise (without any temporal autocorrelation)
superimposed upon this overall pattern. Specifically, for this first scenario, we assume 90%
of the total variance is driven by the sinusoidal pattern and the remaining 10% is trial-level
noise.

It may be too extreme to assume no structure to the autocorrelation pattern at the popu-
lation level. Thus, our second varying amplitude scenario considers the opposite extreme:
What if everyone showed the exact same pattern, but with varying strength? For Scenario 2,
the residuals for each participant were represented as a sinusoidal pattern with frequency
and phase fixed, but with amplitude determined by Ai for the ith participant drawn from
a uniform distribution, Ai2 ∼ U(.2, .8) (Figure 5, second panel of the first row). Between
20% to 80% of the residual variance is driven by the sine wave signal, and the remaining
variance is Gaussian noise (σ2 = 1 − Ai2). Here, rather than canceling, the phase-locked
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patterns combine to yield a population-level effect.

Scenarios 3 and 4: Random walk. The two above scenarios assume that the time-
varying patterns on the dependent variable have a common sinusoidal form across partici-
pants. But it is also of interest to consider scenarios where the functional forms are idiosyn-
cratic. To this end, we randomly generated time series from an autocorrelated Gaussian
process, following the numerical method developed in Shinozuka and Deodatis (1991), which
we implemented in the stat_gp() function in the autocorr package. Technical details are
provided in the Appendix. The function takes two arguments, σ and γ, determining the
standard deviation and the correlation length, respectively. For Scenarios 3 and 4, σ was
fixed at 1, while γ was 1 for Scenario 3 and 2 for Scenario 4, such that the oscillatory pat-
terns in Scenario 3 were higher frequency than in Scenario 4 (see the third and fourth panels
in the top row of Figure 5). Because we are interested in patterns occurring on multiple
time scales, these two values of γ were selected so that the resulting oscillation frequencies
would be higher than the sine wave oscillations considered in Scenarios 1 and 2. We refer to
Scenario 3 as “high frequency” and Scenario 4 as “mid frequency” random walks, in contrast
with the lower-frequency sine waves.

Note that the idiosyncratic nature of these time series implies that, like the varying phase
scenario described above, the series will tend to cancel across subjects such that the depen-
dent variable would show no population-level effect.

Scenarios 5–8: Mixed timescales. The four remaining scenarios (Scenarios 5–8) reflect
time series with autocorrelation occurring on the slow, sinusoidal time scale as well as on
the faster, random walk time scales. Each scenario is simply the sum of one of the two sine
wave scenarios and one of the two random walk scenarios, as described below.

Scenario 5 and Scenario 6 had a the varying-phase sine wave (Scenario 1) mixed with the
high- and mid- frequency random walk patterns, respectively. Each vector of residuals
reflected a mix of 90% of a randomly generated sine wave pattern with 10% of the corre-
sponding random walk, with results exemplified in the first two panels of the second row in
Figure 5.

Scenario 7 and Scenario 8 had the varying-amplitude sine wave (Scenario 2) mixed with
the high- and mid- frequency random walk patterns, respectively. As described above for
Scenario 2, the amplitude Ai for the ith participant was determined by A2

i ∼ U(.2, .8), with
the remaining random walk variance scaled to comprise 1−Ai2 of the total variance.

Analysis. In contrast to the uncertain position of the analyst, a researcher working with
simulated data is in the privileged position of having complete knowledge of the process
giving rise to the data. This makes it possible to analyze data either from the uncertain per-
spective of the analyst or from the omniscient perspective of the designer of the simulation.
Because we were interested in the performance of GAMMs under ideal circumstances, we
performed our analyses from the latter perspective: the GAMM models that we fit exactly
matched the generative process.

We created the autocorr function fit_2x2 to fit models to the data generated by sim_2x2.
The function fits a GAMM as well as an LMEM style model using the bam function from
the mgcv package, version 1.8.31 (Wood, 2011).
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The model formula for fitting LMEM-style models in bam was

Y ~ W * B + s(id, bs = "re") + s(id, W, bs = "re")

which is formally equivalent to the lme4 formula

Y ~ W * B + (1 + W || id)

where the ‘double bar’ || syntax in (1 + W || id) fixes the covariance between random
intercepts and slopes to zero. The fixed part W * B specifies main effects for the within-
factor W and between-factor B and the interaction between them. The ‘smooth’ terms
s(.., bs="re") specify standard random effects where id is the subject identifier, with
s(id, bs="re") specifying the random intercept and s(id, W, bs="re") specifying the
random slope (i.e, allowing the effect of W to vary over subjects).5

For the three scenarios with the underlying phase-locked but varying amplitude sine pattern
(scenarios 2, 7, and 8) the full GAMM model formula was

Y ~ W * B + s(t, bs="tp") + s(t, id, bs="fs") + s(id, W, bs="re").

In this formula, the s(id,\nbsp{}W,\nbsp{}bs="re") term, which also appears in
the LMEM formula, specifies a random slope for the within-subject factor. The
s(t,\nbsp{}bs="tp") term specifies the (default) ‘thin plate’ smooth intended to capture
the part of the sinusoidal pattern that varies over time t and is common to all subjects. The
bs="fs" argument in s(t,\nbsp{}id,\nbsp{}bs="fs") term specifies a factor smooth, al-
lowing the time-varying pattern for each subject to diverge from the overall pattern. Note
that the factor smooth plays the role of the random intercept in the LMEM formula, with
the difference of allowing the intercept to vary over time. The default behavior for factor
smooths is to behave like a fixed effect, and so some authors have advised specifying a
penalty to the linear basis functino for factor smooths (m = 1) so that they behave more
like random effects (Baayen et al., 2017, p. 211). For simplicity, we refer to this as a GAMM
with a “penalized” factor smooth, and the previous version as “unpenalized.”

Y ~ W * B + s(t, bs="tp") + s(t, id, m=1, bs="fs") + s(id, W, bs="re").

We included results for both the unpenalized and penalized factor smooth versions because
we assume that many users will be unaware of the advice and just rely on function defaults.

The GAMM formula for the baseline “no autocorrelation” scenario as well as for the five
remaining scenarios was

Y ~ W * B + s(t, id, bs = "fs") + s(id, W, bs = "re")

for the unpenalized version, and

Y ~ W * B + s(t, id, m = 1, bs = "fs") + s(id, W, bs = "re")

5Variable names in the text have been simplified for expository purposes and do not match the names
in the datasets resulting from sim_2x2. The exact formulas used to fit models can be obtained by running
fit_2x2(NULL, cs = TRUE, dontfit = TRUE) for scenarios 2, 7, and 8 and fit_2x2(NULL, cs = FALSE,
dontfit = TRUE) for the remaining scenarios.
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for the penalized version. Both forms which are the same as above except the fixed smooth
term s(t, bs="tp") was omitted, since these patterns have no common time-varying struc-
ture across participants. We used the Wald z statistic to derive p-values for fixed effects,
defined as the ratio of the parameter estimate to its estimated standard error.

An important aspect of GAMM modeling involves setting the type and number of basis
functions. We opted to stick with the defaults provided by the mgcv package, reasoning
that this is what a typical user would do. This implies that the smooth terms introduced by
s(t) will use about 10 basis functions (see ?choose.k and ?tprs for details). This seems
sufficiently large given there are only 48 observations in each time series.

Software. We ran the simulations and analyzed the results using R version 3.6.2 (R
Core Team, 2019). Simulations were run using the function mcsim() in the R autocorr
package (https://github.com/dalejbarr/autocorr). We bundled all necessary software
infrastructure in a Singularity 3.5 software container (https://sylabs.io/singularity).
The simulations can be reproduced by the command

singularity run library://dalejbarr/talklab/autocorr

which activates the shell script acsim inside the container. The script’s default action is to
invoke mcsim() to run 1,000 Monte Carlo simulations at each of the 54 unique combina-
tions of Monte Carlo parameters (six effect size settings times nine scenarios, including the
baseline scenario).

Results from the simulation are available through the project repository at https://osf
.io/cp9z8, which also includes source code files for reproducing analyses and for compiling
this manuscript.

Results and Discussion

We completed 25,000 simulation runs at each of the 54 unique parameter settings (six effect
size settings times the nine scenarios including baseline). The raw results are available in
the data_derived subfolder of the project repository.

False positive rate. We calculated false positive rates for GAMM and LMEM models
applied to data with time-varying effects across the 48 different combinations obtained by
factorially combining the three effect types (within, between, interaction) with the two
presentation orders (random and blocked) and the eight autocorrelation scenarios. The
p values were computed based on Wald z statistics. It is well-known that this method
tends to be slightly anti-conservative—that is, yielding false positive rates above the α level
(Baayen et al., 2008; Luke, 2017). A key question of the current investigation was whether
the naïve application of LMEMs to data with known autocorrelation would yield additional
anti-conservativity beyond this baseline. As Figure 6 illustrates, with some exceptions, most
false positive rates were acceptably close to the nominal α level.

We compared the false positive rates to the 99% Agresti-Coull confidence interval for LMEM
models applied to baseline data with no trial-by-trial fluctuations (Gaussian noise). Overall,
false positive rates for eight of the 48 LMEM cases exceeded the confidence interval, with

https://github.com/dalejbarr/autocorr
https://sylabs.io/singularity
https://osf.io/cp9z8
https://osf.io/cp9z8
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Figure 6 . False positive rates. The shaded region represents the 99% Agresti-Coull con-
fidence interval of the false positive rate obtained for LMEMs applied to data without
temporal autocorrelation.

a maximum false positive rate of .059. This was no worse than for GAMMs, where the
false positive rate exceeded the upper bound in nine cases for the unpenalized version, with
a maximum false positive rate of .060. For the penalized version, the false positive rate
exceeded the confidence interval in 12 cases, with a maximum false positive rate of .060 In
sum, for multi-level data from designs with appropriate counterbalancing of presentation
order, there is no reason to think that application of LMEMs to data with trial-by-trial
fluctuations increases the rate of false positives.

For designs with blocked presentation, there were three scenarios where LMEMs were ex-
tremely conservative; specifically, in Scenarios 2, 7, and 8, no false positive ever occurred for
the test of the within-subject effect. GAMMs with unpenalized factor smooths exhibited
moderate conservativity for tests of the between-subject factor in Scenario 1, with a false
positive rate of about .044 across both presentation orders. In short, applying LMEMs to
data with trial-by-trial fluctuations may lead to extreme conservativity in blocked designs,
but general concerns about increased false positive rates for LMEMs find no support in
our data, despite the fact that these models had residuals that were not independent with
respect to time, and violated normality assumptions in all scenarios except 3 and 4.

Power for randomized designs. The power functions for GAMMs and LMEMs depend
in a complex way on the type of effect (between or within), whether presentation order was
random or blocked, and scenario (Figure 7). For comparison, in each plot the curves for the
GAMM and LMEM approaches are plotted against the averaged performance of GAMMs
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Figure 7 . Power curves. Note that the range of effect sizes considered for the within-subject
effect is half that used for the between-subject and interaction effects.
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and LMEMs in the baseline scenario where the residuals contained a corresponding amount
of white noise. The curves for the interaction effect patterned nearly identically to the
corresponding curves for the within-subject effect, albeit with the former exhibiting exactly
half of the power of the latter (note the difference in range of the x-axis scale).

Across all effects and scenarios within the random presentation order, power for LMEMs
that ignored time-varying effects was identical to power for LMEMs on datasets with un-
correlated Gaussian noise. The power curves for the two sets are indistinguishable. Viewed
in one way, this result is not surprising: as we noted in the Introduction, the temporal
ordering of each subject’s residuals is unimportant in a model where time plays no role in
the model. Still, it is somewhat surprising that LMEMs performed so well even in cases
where underlying sinusoidal patterns introduced non-normality into the residuals. This
confirms our contention at the outset: that from the point of view of a garden variety
mixed-effects model, when each participant receives a different random presentation order,
any temporal structure in the residuals is essentially irrelevant; each subjects’ residuals are
fully exchangeable over time.

However, when there is temporal ordering in the residuals, this can be exploited to improve
power over the baseline for within-subject effects. In all scenarios with random presentation,
GAMMs yielded modest improvements in power over LMEMs for within-subject factors as
well as for any interactions involving these factors. We calculated the average percentage
gain for GAMMs over LMEMs in each of the 8 scenarios, combining data from the within-
subject and interaction effects given their near identical patterning. For GAMMs with
unpenalized factor smooths, power gains as compared to LMEMs ranged from 2% (scenario
3) to 37% (scenario 6) with a median of 27%. For GAMMs with penalized factor smooths,
power gains as compared to LMEMs ranged from 7% (scenario 3) to 36% (scenario 6) with
a median of 25%.

However, the power gains with GAMMs for within-subject effects in randomized designs
typically came at the price of impaired power for between-subject effects. Power for GAMMs
on between-subject effects never exceeded power for LMEMs, and was very poor in five of the
eight scenarios (1, 4, 5, 6, and 8). At best, GAMMs were equivalent to LMEMs (scenario 2)
or only slightly worse (scenarios 3 and 7, where average power for GAMMs with unpenalized
factor smooths was 85% and 90% of LMEM power, respectively; for GAMMs with penalized
factors smooths, it was 70% and 81% of LMEM power, respectively). At worst, across the
range of effect sizes examined, power for GAMMs with unpenalized factor smooths remained
stuck at the α-level (.05) while LMEMs approached 100% power (scenarios 4 and 8). In these
scenarios, the variance associated with the between-subject manipulation was fully absorbed
by the factor smooths, rendering even extremely large effects completely undetectable.

When comparing penalized and unpenalized GAMMs for randomized designs, both versions
yield identical performance for within-subject effects across scenarios, but show varying
patterns for between-subject effects. Apart from Scenario 2, where between-subject power
was equivalent, the unpenalized version outperformed the penalized version in Scenarios 1,
3, and 7, with gains of about 22%, 19%, and 7%, respectively. The penalized version
outperformed the penalized version in Scenarios 4, 5, 6, and 8, with gains of about 337%,
44%, 103%, and 419%, respectively.
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Power for blocked designs. Turning now to datasets with blocked presentation order,
where variation of the within-subject effect is confounded with time-varying effects, GAMMs
show drastically improved detection of within-subject effects relative to LMEMs for all
but the pure random walk cases (Scenarios 3 and 4). In Scenarios 2, 7, and 8, which
included a common underlying sinusoidal pattern, power for detecting the within-subject
effect or interaction effect with LMEMs remained at floor over the full range, while both
GAMM versions performed vastly better, matching (or nearly matching) baseline power in
Scenarios 1, 2, 5, and 6. In Scenarios 7 and 8, power for GAMMs was impaired relative
to baseline, but still vastly superior to LMEM power. Unexpectedly, the relationship was
reversed in random walk Scenarios 3 and 4, where LMEMs outperformed both GAMM
versions. Relative to unpenalized GAMMs, LMEMs improved power by 33% and 43%
respectively; relative to penalized GAMMs, LMEMs improved power by 84% and 58%. In
sum, power for within-subject effects in designs with blocked presentation tended to be far
superior for GAMMs except in purely random walk scenarios, where LMEMs were superior.

For the between-subject factor under the blocked presentation, LMEMs matched baseline
performance, while GAMMs showed an unacceptable degree of conservatism. Indeed, the
curves were equivalent to those from the random presentation condition.

Comparing the performance of penalized and unpenalized GAMMs on power for the within-
subject effect in blocked designs showed variation across scenarios. Apart from Scenario 2,
where performance was equivalent, unpenalized GAMMs always outperformed the penalized
versions. Average gains in power ranged from 6% (Scenario 5) to 43% (Scenario 3).

The relative performance of penalized and unpenalized GAMMs on power for the between-
subject effect showed exactly the same patterns as for the randomized designs.

Bias and precision. To assess the bias and precision of the parameter estimates, we
calculated the difference between each parameter estimate and the true population value,
and then formed distributions (Figure 8). All of the distributions are centered at zero,
which indicates no bias across any effects under either presentation order and across all
scenarios. The precision data closely mirrors the main findings from the power curves: (1)
estimates for between-subject effects were imprecise under GAMMs relative to LMEMs,
especially for the unpenalized versions; (2) GAMMs improved precision for within-subject
effects and interactions under the random presentation order; and (3) under the blocked
presentation order, LMEMs estimates for within-subject effects and interactions were tended
to be imprecise compared to the two GAMM versions, except in the two random walk
scenarios (Scenarios 3 and 4).

Simulation Set 2: Many Labs 3 Stroop Dataset

The previous simulations illuminated properties of LMEMs and GAMMs by challenging
them with a variety of artificial time-varying patterns in the residuals. The patterns were
based on theoretical criteria and were not intended to form a representative sample of
real-world patterns. The findings lend overwhelming support to our claim that ignoring
trial-by-trial fluctuations in studies with randomized presentation order does not increase
false positive rates. They also suggest scenarios where the use of GAMMs will enhance
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Figure 8 . Bias and precision of parameter estimates.

power for within-subject effects or impairing power for between-subject effects. To show
these findings have external validity, it would be advantageous to reproduce them with real
rather than artificial data.

For this second set of simulations, residuals were drawn directly from a real dataset con-
taining practice effects. The American Psychological Association’s online dictionary defines
practice effects as “any change or improvement that results from practice or repetition of
task items or activities” (https://dictionary.apa.org/practice-effect). In the case
of repeated measures designs, participants are likely to respond more quickly and accurately
on later trials than on earlier trials as they master task demands and become familiar with
stimuli. While we know of no overview study estimating their prevalence, the sheer volume
of literature on this topic suggests they are a common feature in datasets with repeated mea-
surements, appearing across a variety of measurement types and time scales (e.g., Keuleers,
Diependaele, & Brysbaert, 2010).

As source data, we used the Stroop Task dataset from the Many Labs 3 mega-study (Eber-
sole et al., 2016). This is a very large dataset containing response latencies from 3,337
distinct participants performing 63 trials of a version of the Stroop task (Stroop, 1935), for
a total of 210,231 observations. In the basic Stroop task, participants must identify the

https://dictionary.apa.org/practice-effect
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font color of a word. Although the actual identity of a word is irrelevant for reporting its
color, the basic finding is that people are slower and less accurate in reporting the color
of words whose semantics are incongruent with the color (responding “green” to the word
RED presented in a green font) relative to when the semantics of the word are congruent
(responding “green” to the word GREEN presented in a green font).

In the Many Labs 3 version of the task, participants saw the color words RED, GREEN,
and BLUE presented in red, green, or blue font, with each color word appearing 21 times,
seven times in each font color. They identified the font color by pressing one of three
assigned response keys, and the response and its latency (in milliseconds) were recorded.
Details about randomization are not provided, but to all appearances, each participant
received the stimuli in a different random ordering. Further details about the procedure are
available in the Many Labs 3 repository at https://osf.io/csj7r/.

session_id: 7539290 session_id: 7570750 session_id: 7573086 session_id: 7574202 session_id: 7616908
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Figure 9 . Trial-by-trial patterns in residuals for 20 participants in the Many Labs 3 Stroop
dataset, chosen to illustrate the variety of patterns.

We downloaded the data from the Many Labs 3 repository at https://osf.io/n8xa7/, pre-
processed it and bundled it as part of the accompanying {autocorr} R package, available
as the object stroop_ML3. Consistent with the Many Labs 3 procedures, we removed any
incorrect responses as well as response latencies greater than 10 seconds (replacing them
with NA values). To estimate parameters for data generation and extract residuals, we fit a
linear mixed effects model containing a single fixed predictor for congruency (the congruency
of the color word with the font color) and by-subject random intercepts and a random slope
for congruency. The parameter estimates and residuals are stored in the object stroop_mod
in the {autocorr} package.

Figure 9 presents a sample of residuals from 20 participants, chosen to illustrate the variety
of patterns observed in the data, while Figure 10 shows the overall pattern averaged across

https://osf.io/csj7r/
https://osf.io/n8xa7/
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Figure 10 . Mean patterns in the residuals of the Many Labs 3 Stroop dataset.

all 3,337 participants. Although this was not reported in the Many Labs 3 documention,
discontinuities in the residuals suggest that the 63 trials were divided into three blocks of 21
trials, with a practice effect at the start of each. Inclusion of data with such discontinuities
could cause problems for GAMMs. To keep our models simple, we opted to use only those
residuals from the first block.

Method

The data generating process and the parameter value distributions were identical to the
first set of simulations except for the following differences. Given the identical patterning of
the interaction and within-subject effects in the previous simulation, we interaction effect
to zero and excluded it from our models. All simulated datasets had 48 participants and 20
trials, 10 of which were in the congruent condition, and 10 of which were in the incongruent
condition.

The residuals for each participant in each simulated dataset were sampled from the set of
residuals from a linear mixed-effects model fit to the Stroop dataset, which had the syntax
below

lmer(latency ~ cong + (cong || session_id), stroop_ML3)

where latency is the response latency and cong is a deviation-coded predictor for congru-
ency. We used the estimates of variance components from the model (by-subject random
intercept and random slope for cong) as generative parameters. The random intercept stan-
dard deviation, τ0, was estimated as 165 and the random slope standard deviation, τ1, as
18. The random correlation was fixed to zero.

After randomly generating the individual subject random effects for each dataset, these
were combined with the fixed effects to calculate the fitted values, and we then ’grafted’
a randomly sampled set of 48 real residual vectors onto these fitted values to calculate
response latencies. Each set of 48 vectors were sampled from the 3,337 vectors of residuals
without replacement, so that the same residual vectors would not appear twice in the same
dataset. The logic is implemented by simulate_stroop() in {autocorr}. We only used
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the first 20 residual values from each vector to avoid including the discontinuities noted
above, and because the design required an even number of trials.

After generating each dataset, we fit the same three models to the data as in the first set
of simulations: two GAMM models, one with penalized and one with unpenalized factor
smooths, and one linear mixed effects model. Both GAMMs included a ’common smooth’
to account for shared variance in practice effects across participants. The code is available
in fit_stroop() in {autocorr}.

To estimate power and Type I error, we ran 10,000 Monte Carlo simulations at each
of six parameter settings for the fixed effects: at β1 = {0, 14, 28, 42, 56, 70} and β2 =
{0, 44, 88, 132, 176, 220} where β1 and β2 are the within-subject and between-subject fixed
effects, respectively.

Results and Discussion

model within between
1 GAMM-penalized-fs 0.038 0.055
2 GAMM-unpenalized-fs 0.038 0.055
3 LMEM 0.040 0.053

Table 3
Type I error rates for within-subject and between-subject effects by model, Stroop simulations.

within between

0 14 28 42 56 70 0 44 88 132 176 220
0.00

0.25

0.50

0.75

1.00

effect size

pr
op

or
tio

n 
si

gn
ifi

ca
nt

model

GAMM−penalized−fs

GAMM−unpenalized−fs

LMEM

Figure 11 . Power curves for LMEMs and GAMMs with and without penalized factor
smooths, for within-subject and between-subject effects.

As with the previous simulations, there was no evidence that LMEMs applied to data with
trial-by-trial fluctuations inflated false positive rates beyond the specified α level (Table 3).
All error rates were close to α. Also consistent with the previous simulations, GAMMs
boosted within-subject power while impairing between-subject power (Figure 11). The
enhancement to within-subject power did not depend upon whether factor smooths were
penalized or unpenalized; on average, GAMMs boosted power by 10%, with a maximum of
18%. LMEMs showed superior power for between-subject effects relative to GAMMs with
the recommended penalized factor smooths, with an average gain of 6% and a maximum of
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Figure 12 . Bias and precision for within-subject and between-subject effects by model.

10%. Between-subject power for GAMMs with unpenalized factor smooths showed no such
impairment. These main patterns are echoed in the plot of bias and precision of parameter
estimates (Figure 12).

General Discussion

Experts have suggested that fitting standard linear mixed-effects models to data with resid-
ual autocorrelation inflates false positive rates. Our simulations demonstrate that this most
certainly not the case for experiments with randomized presentation order. For these stud-
ies, it is perfectly safe to ignore residual autocorrelation. Finding structure when plotting
residuals against the irrelevant variable of time merely implies the possibility of increasing
power and precision; it does not imply that a model that ignores time is inadequate, nor
that it violates statistical assumptions. That power could be improved by using GAMMs
does not entail that one should use them, since using complex, advanced techniques that are
not fully understood itself has costs: costs of acquiring the relevant technical skills; costs of
having to estimate a more complex model and the increased computing time and potential
convergence issues this entails; costs to reproducibility due to greater analytic flexibility;
and the potential hidden costs of using highly complex techniques whose proper use and
potential side-effects are not yet fully understood.

We investigated the costs and benefits of modeling by-trial fluctuations using Monte Carlo
simulations, comparing the performance of Generalized Additive Mixed Models (GAMMs)
versus conventional Linear Mixed-Effects Models (LMEMs) in the analysis of multi-level
data with a variety of types of by-trial fluctuation. According to our findings, using GAMMs
to remove time-varying effects in residuals is unnecessary and sometimes even counterpro-
ductive. Although GAMMs with factor smooths offer minor improvements to power for
within-subject effects, this benefit was often accompanied by unacceptably low power for
between-subject effects.

For experiments with random presentation where time is not a variable of interest, it is
unnecessary and potentially misleading for researchers to look for temporal structure in
the residuals during the model checking stage. By-subject autocorrelation plots may be
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especially misleading, because they assume that the underlying process is stationary; in
other words, for any given lag k, they assume the same correlation between residuals for
trials i and i+ k as between those for trials m and m+ k. For instance, in an experiment
with n trials this assumes that the correlation of residuals for trials 1 and 2 be the same
as for any other two trials separated by a lag of 1. Stationarity seems extremely unlikely
in human data due to learning, fatigue, and mind-wandering effects. Autocorrelation plots
are therefore likely to be deceptive. If one is looking for temporal structure, the best place
to look is in a simple plot of the residuals by trial (or time).

When deciding whether or not to account for by-trial fluctuations in data with GAMMs,
considerations of experimental design are crucial. Our analysis suggests that designs where
all factors are administered within sampling units (typically, subjects or stimuli), GAMMs
could moderately increase power. However, if any factors have been administered between
sampling units, results from GAMMs for these factors may be misleading, due to the poten-
tial for increased false negatives. Applying GAMMs to a 2x2 experiment where both factors
are between-subjects could be potentially catastrophic for power. For designs with mixed
between and within factors, it would seem prudent to analyze between subjects factors
and within subject factors in separate models, one using factor smooths to improve power
for within-subject effects, and one without them to test between-subject effects without
compromising to power.

With blocked presentation order, the nuisance perspective on by-trial fluctuation is forced
upon us, because such designs naturally confound treatment variation with by-trial vari-
ation. Although LMEM performance was extremely poor for within-subject effects with
sinusoidal patterns, we must note that the simulations presented a worst-case situation
wherein the frequency of the sine wave was identical to the frequency of the condition
indicator variable (considered as a square wave). For the fixed phase/varying amplitude
scenarios, treatment variation was nearly perfectly confounded with variation related to the
by-trial fluctuations. In real situations, this is unlikely to be the case, and so our results
dramatically overestimate the impairment to within-subject power. A further observation
that is of interest is that GAMMs actually performed worse than LMEMs on blocked de-
signs with the random walk patterns even for within-subject effects. Thus, GAMMs are not
guaranteed to do better than LMEMs on data from experiments with blocked presentation.

All our simulated experiments conformed to an ideal experimental design, with full coun-
terbalancing, a presentation order that was randomized independently for each subject (or
blocked but perfectly counterbalanced), and no missing data. Real datasets often—perhaps
usually—fall short of this ideal. Researchers sometimes do not randomize independently
for each subject, but instead re-use a small number of random orders, or randomize only
at the level of the presentation list. Missing data—a factor less under the researcher’s
control—may also give rise to imbalances in the design. Our investigation suggests that if
trial-by-trial fluctuations in performance are present, partial randomization and unbalanced
data may be problematic, at least to the extent that they confound trial-by-trial fluctua-
tions with variability from independent variables. However, from the current results it is not
entirely clear how much this should be cause for concern, nor how well using GAMMs would
ameliorate these problems. To gain better insight, more simulations are needed that vary



MODELING BY-TRIAL FLUCTUATIONS WITH GAMMS 29

a greater range of factors. For now, we recommend that researchers randomize trial order
independently at the subject level to minimize the potential impact of by-trial fluctuations.

We did not intend for the autocorrelation scenarios we explored to comprise a representative
sample of the set of time-varying nuisance patterns found in real datasets. Although we
sought to make the ratio of residual variance to random effect variance realistic, our choice
of autocorrelation patterns in the first set of simulations was intended to map out the space
of possibilities and highlight properties of GAMMs. We confirmed the general pattern
with real data in the second set of simulations, but it would be worthwhile to examine
additional natural datasets. Also, we have not considered the effects of subject sample size
nor number of trials. We would expect the problems we uncovered to be exacerbated with
smaller samples, where estimation is more difficult.

To simplify our investigation, our simulated data and the models we fit only assumed that
fluctuations affected the time-varying intercept, but was unrelated to the expression of
effects of the independent variables. In other words, we assumed time-varying random
intercepts but time-independent random slopes. This is similar to the models that Baayen
et al. (2017) fit to real datasets, which also assumed static random slopes. However, any
manipulation that depends on subjects’ attention to some distinction may show an effect size
that fluctuates along with fatigue. The logic of the analysis we presented in the introduction
suggests this is still not a problem—so long as presentation order is random, it is entirely
valid to estimate the mean effect and ignore fluctuations in its manifestation over time.
Although precision may be improved by estimating such effects, we see no basis for assuming
that assumptions would be violated by not doing so.

We have also only considered univariate data where there is a single observation per trial.
This excludes from consideration many types of research such as visual world eyetracking,
EEG/MEG, pupillometry, and longitudinal studies. Our intention is not to dampen enthu-
siasm for the use of GAMMs in analyses where time is a critical variable. Indeed, GAMMs
strike us as a promising approach in these contexts (van Rij et al., 2019).

GAMM experts may be able to improve model performance for some of the cases we ex-
amined, or perhaps even altogether eliminate some of the problems we have diagnosed by
using values other than the mgcv defaults. However, this would not undermine our main
contention that trial-by-trial fluctuations can usually be safely ignored. Moreover, this
would reinforce our point that GAMMs are probably too risky for the typical user. A far
simpler and more broadly accessible defense against statistical artifacts from trial-by-trial
fluctuations is to exert care over randomization and counterbalancing when conducting an
experiment.
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Appendix

Generating correlated residuals

We use the numerical method developed in Shinozuka and Deodatis (1991) to generate
correlated residuals. Residuals are modeled as a zero-mean stationary stochastic process
X(t), which we express in its temporally discretized spectral form as (Papoulis & Pillai,
2002)

X (p∆t) = Re
{
M−1∑
n=0

Bn exp [i(n∆ω)(p∆t)]
}
, (1)

for p = 0, . . . ,M − 1 and Bn =
√

2An exp(iαn) for n = 0, . . . ,M − 1. The coefficients An
are given by An =

√
2S(n∆ω)∆ω with αn uniformly distributed on [0, 2π] and A(0) = 0

for S(0) 6= 0. S(ω) denotes the spectrum (see below). We discretize time and frequency in
steps of ∆t and ∆ω, respectively.

The spectrum S(ω) is the Fourier transform of the ACF R(t) and is given by

S(ω) = 1
2π

∫ ∞
−∞

γ(t)e−iωtdt . (2)

In the present study, we empployed the squared-exponential function

R(t) = σ2 exp
(
− t2

2γ2

)
. (3)

https://www.R-project.org/
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For practical reasons, we cannot evaluate the integral in (2) for limits at infinity, but require
some finite limit Tmax. Since realistic ACFs decay towards zero for large times, we choose
Tmax such that |γ(t)| < δ for t > Tmax and some δ with 0 ≤ δ � 1. In other words, the
ACF is very small for times larger than Tmax, so that we make a vanishingly small error
by excluding these values in the evaluation of the integral. ACFs for stationary stochastic
processes are symmetric around t = 0, so that the entire time domain for the integral in (2)
is [−Tmax, Tmax].

As Eq. (1) shows, there is a maximal frequency (M − 1)∆ω — which results from setting
n = M−1 in the sum — for which we need to compute the spectrum. In other words, there
is a critical cut-off frequency ωc for the spectrum, which we determine by demanding that∫ ωc

0
S(ω)dω = (1− ε)

∫ ∞
0

S(ω)dω , (4)

for 0 < ε� 1. Equation (4) states that we choose ωc in such a way that we only lose a small
fraction ε of the total power, i.e. the integral over the spectrum. The practical steps for
determining ωc are as follows. We first divide the time domain [Tmax, Tmax] into 2Nt grid
points and then use the fast Fourier transform (FFT) to evaluate the integral in Eq. (2).
The FFT yields 2Nt values of the spectrum evaluated at [−Nt∆ωS, (Nt − 1)∆ωS], where
∆ωS = (2π)/(2Tmax) denotes the fundamental frequency (Briggs & Henson, 1995). Note
that we work with the angular frequency ω, and not the frequency f , hence a factor of 2π.
The cut-off frequency ωc follows by numerically evaluating the integrals in Eq. (4) based on
the computed spectrum on the frequency domain [−Nt∆ωS, (Nt − 1)∆ωS].

With the critical frequency ωc determined, we introduce the spectral discretisation ∆ω =
ωc/N and the corresponding spectral grid [−N∆w, (N−1)∆w] for the the stochastic process
in Eq. (1). We can choose N to be different from Nt and hence ∆w may differ from ∆ωS.
Because X(t) in Eq. (1) has a period of T0, i.e. X(t+T0) = X(t), we arrive at the constraint

M∆t = T0 = 2π
∆ω . (5)

In other words, we can either fix M , and obtain ∆t, or we fix ∆t, and hence obtain M .
Because we can choose ∆t, the time discretisation of X(t) can be different from the time
discretisation that we used for determining the cut-off frequency for the spectrum, ∆tS =
Tmax/Nt.

A key issue in spectral reconstruction is known as aliasing. Essentially, components with
certain frequencies, i.e. certain values of n in Eq. (1), cannot be distinguished (hence the
name alias). To avoid this, the critical frequency in the spectral decomposition (fc) needs
to be smaller than the so-called Nyquist frequency, which is half the sampling frequency fs,
i.e.

fc <
fs
2 ⇐⇒ ωc <

2πfs
2 = 2π

2∆t . (6)

Here, we used the fact that the sampling frequency is the inverse of the time discretization
∆t of X(t): fc = 1/∆t. Equation (6) entails that given a cut-off frequency ωc, the time
discretization of X(t) needs to satisfy

∆t < 2π
2ωc

. (7)
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In other words, there is a maximal time step for the numerical construction of X(t). Using
Eq. (5) and the definition of ∆ω from above, this relates M and N via

∆t = 2π
M∆ω = 2πN

Mωc
<

2π
2ωc

⇐⇒ 2N < M . (8)

This constrain needs to be observed when implementing Eq. (1). A final consideration is
worth noting. As mentioned above, the spectral discretization for computing the cut-off
frequency, ∆ωS , may differ from the one for constructing X(t), ∆ω. If this is the case, we
need to recompute the spectrum since the computation of X(t) in Eq. (1) relies on S(n∆ω)
via the coefficients An, while the integration in Eq. (2) is based on S(n∆ωS). In order to
recompute the spectrum for the frequency domain [−N∆w, (N − 1)∆w] using FFT and
Eq. (2), we require a new time discretization. Neither ∆t, which enters the computation of
X(t), nor ∆tS from above are appropriate. The new time discretisation follows from the
frequency discretization ∆ω and the fact that there are 2N grid points as

∆t∆f = 1
2N ⇐⇒ ∆t = 2π

2N∆ω = 2π
2ωc

. (9)

As a consequence, the length of the time domain for the integral in Eq. (2) is

2N∆t = 2πN
ωc

= 2π
∆ω = T0 , (10)

where we used Eq. (5). Hence, the total time over which we integrate the ACF to obtain the
spectrum and the total time of X(t) are identical. What differs is the time discretization.

Probability densities for sine waves

We here derive the probability density for the residuals when they are described by a sum
of Gaussian white noise with either a sine function with fixed amplitude/random phase or
a sine function with fixed phase/random amplitude. These two cases are labelled 1 and 2 in
Figure 5. Let X denote the random variable involving the sine function and Y ∼ N (0, σ2)
the Gaussian white noise. When we set Z = X + Y , the probability density for Z is given
by (Papoulis & Pillai, 2002)

pZ(z) =
∫

Ω
pX(x)pY (z − x)dx, (11)

where the possible values of X are collected in the set Ω. For the first case when we fix the
amplitude and randomize the phase, we use X = sin(ωt+ Φ) in our study where ω = 2π/T
is the frequency of the sine function and Φ ∼ U [−π, π] is a uniformly distributed random
phase. Note that we use ∆ = 48 and t ∈ [0,∆] throughout, see e.g. Figure 1. Because t
is a deterministic variable on [0,∆], we can also interpret it as a random variable drawn
uniformly from the same interval, i.e. T ∼ U [0,∆]. With that, it is evident that (2πT+Φ) is
a uniformly distributed random variable, which we can replace with Ψ ∼ U [−π, π] because of
the periodicity of the sine function. Hence, we require the probability density for X = sin Ψ.



MODELING BY-TRIAL FLUCTUATIONS WITH GAMMS 34

Since the range of X is [−1, 1], we can restrict Ψ to the interval [−π/2, π/2]. Due to the
conservation of probability, we obtain (Papoulis & Pillai, 2002)

pX(x) = pΨ(ψ)
∣∣∣∣dψdx

∣∣∣∣ = 1
π

1√
1− x2

, (12)

where we used that dx = cosψdψ and

cos2(ψ) = cos2(arcsin x) = 1− x2 , (13)

since cos2(x) = 1− sin2(x). Note that the restriction of Ψ to [−π/2, π/2] also insures that
we can invert the sine function, since it is strictly monotonically increasing in this interval.
From Eq. (11), we therefore find that

pZ(z) = 1
π

∫ 1

−1

F (z − x, σ)√
1− x2

dx , (14)

where

F (x, σ) = 1√
2πσ2

exp
(
x2

2σ2

)
(15)

is the Gaussian probability distribution. In the second case, when the phase is constant,
but the amplitude is randomized, we generate the residuals with X = A sin(ωt), where
A ∼ U [0, α]. Based on the considerations above, we can replace X with X = A sin(Ψ) where
Ψ ∼ U [−π/2, π/2]. Hence, X is the product of two random variables A and B = sin(Ψ)
with the probability density (Papoulis & Pillai, 2002)

pX(x) =
∫ 1

−1
pB(b)pA

(
x

b

) 1
|b|

db . (16)

Because of the absolute value in Eq. (16), it is instructive to consider the two cases b ∈ [−1, 0]
and b ∈ [0, 1] separately. Starting with the latter, we need to evaluate

pX(x) =
∫ 1

0
pB(b)pA

(
x

b

) 1
b

db . (17)

Since b > 0 and a > 0, x > 0. Moreover, as maxA = α, we require x/b ≤ α in Eq. (17),
which leads to

pX(x) =
∫ 1

x/α
pB(b)pA

(
x

b

) 1
b

db . (18)

When b ≤ 0, x ≤ 0. Because x/b ≤ α still holds, we now have the restriction, b ≤ x/a, so
that

pX(x) =
∫ x/α

−1
pB(b)pA

(
x

b

) 1
b

db , (19)

which can be rewritten (transforming b 7→ −b) as

pX(x) =
∫ 1

|x|/α
pB(−b)pA

(
−x
b

) 1
|b|

db , (20)
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As pB(b) = pB(−b) (see Eq. (12)) and pA = 1/α, we can combine Eqs. (18) and (20) into

pX(x) = 1
πα

∫ 1

|x|/α

1
z
√

1− b2
db ,

= 1
πα

ln

√1− x2

α2 + 1

− ln
( |x|
α

) . (21)

Using Eq. (11), we finally obtain the probability density for the case of a randomized
amplitude as

pZ(z) =
∫ α

−α
pX(x)F (z − x)dy . (22)
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