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Abstract—Effective implementations of Memetic Algorithms
often integrate, within their design, problem-based pieces of
information. When no information is known, an efficient MA can
still be designed after a preliminary analysis of the problem. This
approach is usually referred to as Fitness Landscape Analysis
(FLA). This paper proposes a FLA technique to analyse the
epistasis of continuous optimisation problems and estimate those
directions, within a multi-dimensional space, associated with
maximum and minimum directional derivatives. This estimation
is achieved by making use of the covariance matrix associated
with a distribution of points whose objective function value is
below (in case of minimisation) a threshold. The eigenvectors and
eigenvalues of the covariance matrix provide important pieces of
information about the geometry of the problem and are then used
to design a memetic operator that is a local search belonging to
the family of generalised Pattern Search. A restarting mechanism
enables a progressive characterisation of the fitness landscape.
Numerical results show that the proposed approach successfully
explore ill-conditioned basins of attractions and outperforms the
standard pattern search as well as a pattern search recently
proposed in the literature and partially based on a similar design
logic. The proposed local search based on FLA also displays a
performance competitive with that of other types of local search.

Index Terms—Memetic Algorithms, Fitness Landscape Analy-
sis, Pattern Search, Covariance Matrix, Local Search

I. INTRODUCTION

In many research studies, Memetic Algorithms (MAs) are
interpreted as an extension of Evolutionary Algorithms (EAs):
MAs are often seen as EA frameworks endowed with Local
Search (LS) to accelerate the search of the algorithm, see
[1]–[3]. However, for over a decade now, MAs are no longer
identified with a specific algorithm composed of an EA and
LS. In recent studies, MAs are considered as instances of
a broader subject namely Memetic Computing (MC). This
subject investigates the design of optimisation algorithms
composed of multiple and diverse search operators/memes, see
[4].

The success of MC should be put in relation with the No
Free Lunch (NLF) Theorems [5]: since there is no universal
optimiser, the flexible nature of MC design promotes the
definition of algorithmic frameworks that integrate pieces of
information about the problem into algorithmic design. Typical

examples of knowledge integration in MA design is in domain-
specific search operators [6]–[8]. In [9] known instructions to
solve the knapsack problem are the memes that evolve at run
time, see [10]–[12].

An interesting modern tendency in MC is multi-tasking that
is the simultaneous search within a domain of the optimum of
multiple problems [13], [14]. This research sub-field is based
on the idea that a solution of one problem can be related to
the solution of another problem, see [15]–[17], and thus there
is exportable knowledge among problems.

When a problem is unknown and thus there is no prior
information available about the problem an effective MC
design must analyse the problem to collect some hints that
may enable the design of a high-performance MA. The process
of analysing the problem and use the result of this analysis to
design the search algorithm is often termed Fitness Landscape
Analysis (FLA) [18] which has some early very successful
implementations of MAs in the discrete domain, see [19]–
[21]. In recent years, FLA in the continuous domain attracted
the attention of researchers [22]–[24].

In [25] a FLA based LS was proposed. The FLA in
[25] samples points in the domain to generate a data set of
candidate solutions whose objective function value is below
a prearranged threshold (in a minimisation scenario). This
data set provides some useful pieces of information about
the geometry of the problem. This information is exploited
by calculating the covariance matrix associated with the data
and then its eigenvectors. These eigenvectors are then used
as a basis (reference system) to explore the space. More
specifically, in [25], [26] the eigenvectors of the calculated
covariance matrix are used to build the Pattern Matrix of an
implementation of generalised Patter Search (PS) [27]. In [28],
the same FLA has been successfully implemented in three LS
algorithms composing Multiple Trajectory Search [29].

The present paper moves a step further with respect to
the FLA and PS in [25]. We propose to use the eigenvalues
of the covariance matrix to set the exploratory radius along
each search direction (the directions of the eigenvectors).
Furthermore, a restarting mechanism has been implemented
to update the result of the FLA and progressively adapt the
algorithm to the fitness landscape. This restarting mechanism
also prevents from the manual setting of a problem-based978-1-7281-8393-0/21/$31.00 ©2021 IEEE



threshold, see [25].
The remainder of this paper is organised in the following

way. Section II introduces the notation, the Covariance Pattern
Search (CPS) presented in [25] and outlines its theoretical
principles. On the basis of these theoretical principles, Section
III provides new theoretical observations which are the basis
of the design of the proposed LS which is named Covariance
Pattern Search with Eigenvalue-determined Radii and briefly
indicated with eigenCPS. Section IV displays the numerical
results of this study. Finally Section V provides the conclu-
sions of this study.

II. BACKGROUND: COVARIANCE PATTERN SEARCH

In order to clarify the notation used in this article, we will
refer to the minimisation problem of an objective function
f (x) in the continuous domain. The candidate solution x is a
vector of n design variables in a hyper-cubical decision space
D ⊂ Rn:

x = (x1, x2, . . . , xn)
T
.

Each vector x ∈ D is expressed in the orthonormal refer-
ence system of its variables. This means that any vector x can
be represented as the linear combination of the orthonormal
basis Be = {e1, e2, . . . , en, } where ek is a vector of length
n composed of all zeros and a 1 in the kth design variable,
see [30].

Generalised PS is a family of LS algorithms that makes use
of a basis of vectors to explore the space by performing a
step in each direction identified by the vectors composing the
basis. Although in [27] it was conceptualised that any basis
of vectors can be used, most of the implementations use the
orthonormal basis Be. In this paper we focus on the algorith-
mic structure proposed in one of the LS algorithms of of the
Memetic Frameworks [29], [31], [32]. This implementation,
from a candidate solution x and an exploratory radius ρ, for
each direction i at first attempts to sample the trial solution
xt:

xt = x− ρ · ei (1)

and then if this move fails, i.e. f
(
xt
)
≥ f (x), PS attempts

to explore the opposite direction

xt = x +
ρ

2
· ei. (2)

If all the moves generating trial solutions failed then ρ is
reduced, usually halved.

In [25], [28], this logic has been coupled with a FLA. After
having set a problem specific threshold thre, several points
are sampled within D and their objective function calculated.
Those points whose objective function value is such that
f (x) < thre are stored in a data structure V:

V =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
. . . . . . . . . . . .
xm,1 xm,2 . . . xm,n



With the points (vectors) in V mean vector and covariance
matrix C are calculated. The mean vector µ is calculated as

µ = (µ1, µ2, . . . , µn) =
1

m

(
m∑
i=1

xi,1,

m∑
i=1

xi,2, . . . ,

m∑
i=1

xi,n

)T
and the generic element cj,l of the covariance matrix C is:

cj,l =
1

m

m∑
i=1

((xi,j − µj) (xi,l − µl)) .

The eigenvectors P =
(
p1,p2, . . . ,pn

)
of C are calculated

(by Cholesky Factorisation). Since C is symmetric, it is
diagonalizable and an orthogonal basis of its eigenvectors can
be found, see [30]. These eigenvectors are used as the basis
to explore the space in a PS logic. This means that CPS
differs from PS from the equations used to calculate the trial
solutions, that is eq. (1) and eq. (2) are replaced with

xt = x− ρ · pi (3)

and
xt = x +

ρ

2
· pi. (4)

The pseudocode of the resulting CPS is displayed in Algo-
rithm 1.

Algorithm 1 Covariance Pattern Search
INPUT x, f (x), D, sample size, thre and budget
for s = 1 : sample size do

Sample a point x in D and store in V
end for
Keep samples with f (x) < thre in V
Process V to calculate the covariance matrix C
Apply Cholesky Factorisation on C to calculate the eigen-
vectors P =

(
p1,p2, . . . ,pn

)
ρ = width of D
while budget and precision conditions on ρ do

xt = x
for i = 1 : n do

xt = x− ρ · pi

if f
(
xt
)
< f (x) then

x = xt

else
xt = x + ρ

2 · p
i

if f
(
xt
)
< f (x) then

x = xt

end if
end if

end for
if x has not been updated then
ρ = ρ

2
end if

end while
RETURN x



The rationale behind the choice of using the eigenvectors
pi is due to the fact that the matrix P whose columns are the
eigenvectors pi

P =
(
p1,p2, . . . ,pn

)
is the transformation matrix that diagonalizes the matrix C
that is

Λ = P−1CP = PTCP (5)

where Λ is a diagonal matrix whose diagonal elements are the
eigenvalues of C and P−1 = PT since P is an orthogonal
matrix. The directions of the eigenvectors can be interpreted as
a new reference system characterised by a lack of correlation
between pairs of variables. Thus, the new reference system
exploits the available information about the the geometry of
the problem. This concept is broadly used in other contexts,
especially in Data Science, and is closely related to Principal
Component Analysis [33].

Furthermore, it was shown in [28] that, if the sampling of
points in V describes the geometry of the basins of attraction,
the directions of the eigenvectors identify the maximum and
minimum directional derivative. Numerical results in [25] and
[28] show that CPS consistently outperforms the PS that uses
Be.

In order to highlight the rationale of CPS, Fig. 1 displays the
directional derivatives along the directions of the eigenvectors
(solid line) and the orthonormal vectors of Be (dashed lines)
passing through the optimum. Fig. 1 refers to the shifted and
rotated ellipsoid function in two dimensions:

INPUT x
z = Q (x− o)

f (x) =
∑2
i=1

(
106
) i−1

1 z2i

where the shift vector is

o =

(
−21.98
11.55

)
and the rotation matrix is

Q =

(
−0.502 −0.864
−0.864 −0.502

)
.

We may observe that the directions of pi identify the
maximum and minimum directional derivatives, that is the di-
rections alongside fitness landscape is steepest and nearly flat.
The choice of these directions enables quick improvements
and detection of high-quality solutions.

III. COVARIANCE PATTERN SEARCH WITH
EIGENVALUE-DETERMINED RADII

The rationale of CPS synthetically outlined in Fig 1 induces
the following observation: since the directions of eigenvectors
identify the steepest and flattest directions of the fitness land-
scape, an effective CPS should exploit this piece of informa-
tion by connecting the exploratory radius ρ with the directional
gradients. More specifically, an effective LS would move large
steps when the fitness landscape is flat as we know, on the basis
of the FLA, that no major changes in the objective function

Fig. 1. Directional derivatives along the directions of the eigenvectors of the
covariance matrix pi and the orthonormal vectors ei

values are expected in short steps. Conversely, alongside the
steepest directions we would like that the algorithm performs
small steps so that the large variations of the fitness landscape
are not neglected during the search.

Thus, we propose to set an exploratory radius for each
search direction, that is each eigenvector pi. To set the
exploratory radius we use the vector

d =
(
d1, d2, . . . dn

)T
which contains a piece of information about the directional
derivative alongside the directions of the n eigenvectors.

Unfortunately, the directional derivatives are not directly
known since they require the knowledge of the optimum. In or-
der to address this issue, this paper proposes a FLA technique
to estimate the directional derivative alongside the directions
of the eigenvectors and integrate the achieved knowledge in
the setting of the exploratory radii.

Let us consider again the covariance matrix C calculated as
in CPS in Section II. Let

P =
(
p1,p2, . . . ,pn

)
be a matrix whose columns are the eigenvectors of C and let
us indicate with

diag(Λ) = (λ1, λ2, . . . , λn)

the corresponding eigenvalues.
It must be observed that since C is symmetric then the

eigenvalues are all real numbers, see [30]. Furthermore, the
eigenvectors can be chosen as an orthonormal basis (every pair
of vectors is orthogonal and each vector has modulus equal to
1) of a vector space which we refer to as eigenspace. These
eigenvectors span the domain D.

Thus, if we consider a vector x ∈ D expressed in the basis
Be, we may express it by the corresponding vector y in the
reference system/basis of the eigenvectors

y = PTx.



Since the mean vector µ calculated from the vectors in V
is also an element of D then we can express it in the basis of
eigenvectors

µy = PTµ.

Let us now introduce the covariance matrix Cy of the data
in V in the reference system identified by the eigenvectors.
This is expressed by

Cy = (PTXc)(P
TXc)

T = PTXcX
T
c P = PTCP (6)

where
Xc = (x1 − µ,x2 − µ, ...,xm − µ).

From Eq. (5) and Eq. (6), it follows that

Cy = Λ. (7)

Thus, the diagonal elements of Cy are the eigenvalues of C
while the extradiagonal elements are zero. Since the diagonal
elements of a covariance matrix are the variances σ2

i of the
data along the direction pi, it follows that

σ2
i = λi

The samples used to calculate the covariance matrix C are
selected to ensure that f(x) ≤ thre. In a basin of attraction,
these samples would be distributed around a local optimum.
Let us suppose for simplicity of notation that the optimum
is in the null vector o. The directional derivative along some
direction pi is

∂f (x)

∂pi
≈ f(xi)− f(o)

|xi − o|
=
f(xi − f(o))
|xi|

.

Let us observe that f(o) is a constant, xi = l · pi with l
modulus of xi and |pi| = 1 since it is a versor. When we pose
f(x) = thre, we have that f(xi) − f(o) = thre∗ is also a
constant. Thus,

∂f (x)

∂pi
≈ thre∗

|l|

that is the directional derivative along the eigenvector pi is
inversely related to the modulus l.

The standard deviations of vectors in the basis of eigenvec-
tors is the square root of corresponding variance. A larger
deviation in a direction where samples spread wider, thus
the corresponding xi has a larger l and a smaller directional
derivative. Consider xi and −xi are two points along the
same direction pi, which are the leftmost and rightmost points
whose objective function values are thre. The deviation of
these two points is their average modulus, as√

λi =

√
1

2
((xi − 0)2 + (−xi − 0)2) = l

Thus, for a given direction pi, the square root of eigenvalue√
λi closely relates to the average modulus of vectors along

this direction. We can conclude that the modulus l of a point
xi along that direction is directly correlated to the eigenvalue
λi.

Fig. 2. Distribution of points in V, directions of the eigenvectors and meaning
of eigenvalues (λ1 = 1.5221 and λ2 = 4324.1) in the domain for the rotated
and shifted ellipsoid in two dimensions.

The meaning of eigenvalues is highlighted in Fig. 2 where
for the rotated and shifted ellipsoid in two dimensions, the
points in V, the directions of the eigenvectors, and the eigen-
values are displayed. It must be noticed that the eigenvalues
are λ1 = 1.5221 and λ2 = 4324.1. These numbers reflect the
distribution of the points which appear like a thin and long
line. Also, as shown by the contour, along the direction of the
first eigenvector the fitness landscape is very steep whereas
along the direction of the second eigenvector the landscape is
nearly flat.

For this reason, we propose to set the elements of the vector
d associated with the direction of the eigenvector pi equal to
the square root of the corresponding eigenvalue λi:

di =
√
λi

Each di value is multiplied by the exploratory radius ρ
whose functioning is the same as that of CPS described in
Algorithm 1. Thus, we may consider that each search direction
i has its own exploratory radius ρ · di.

The proposed eigenCPS also overcomes one of the limita-
tions of the CPS, that is the setting of the parameter thre for
each optimisation problem. The algorithm is run iter times.
In each sub-run, the FLA is performed and then CPS is run
with the eigenvalue determined radii. During the first sub-run
sample size points in V are sampled within the entire D and
the best accept size are retained. In the following sub-runs,
sample size points in V are sampled within that portion of
D that is within the distance KV × ρ from the current best x
where the values of ρ and x are those returned by the previous
sub-run. The best accept size points are retained in V.

In addition to the above issue, eigenCPS employs a restart-
ing mechanism. The radius ρ is then re-initialised to Kρ × ρ
at each restart. The logic is to link the initialisation to the
success of the previous local run. If the previous local run



was unsuccessful, a large exploratory radius searches in a a
large space to possibly detect a better solution.

We may observe that the logic of CPS is retained and the
threshold thre is implicit: it is in each sub-run, the worst ob-
jective function value among those of the accept size selected
points. In this way, eigenCPS at each sub-run moves and, with
progressive accuracy, characterises the fitness landscape.

Although eigenCPS is a LS which can be considered a
valuable meme for continuous optimisation, it has some global
propertied and is thus able to handle simple multimodal land-
scapes. Algorithm 2 displays the functioning of the proposed
eigenCPS.

Algorithm 2 Covariance Pattern Search with Eigenvalue-
determined Radii (eigenCPS)

INPUT x, f (x), D, sample size, accept size, iter and
budget
ρ = width of D
for i = 1 : iter do

for s = 1 : sample size do
Sample a point in D around the current best x in radius
KV × ρ and store in V

end for
Keep accept size samples with best values f (x) in V
Process V to calculate the covariance matrix C
Apply Cholesky Factorisation on C to extract the
eigenvectors P =

(
p1,p2, . . . ,pn

)
and eigenvalues

(λ1, λ2, . . . , λn)
Calculate square root of eigenvalues λ as d =
(d1, d2, . . . , dn) =

(√
λ1,
√
λ2, . . . ,

√
λn,
)

ρ = Kρ × ρ
while budget and precision conditions on ρ do

xt = x
for i = 1 : n do

xt = x− ρ · pi · di
if f

(
xt
)
< f (x) then

x = xt

else
xt = x + ρ

2 · p
i · di

if f
(
xt
)
< f (x) then

x = xt

end if
end if

end for
if x has not been updated then
ρ = ρ

2
end if

end while
RETURN x

end for

IV. NUMERICAL RESULTS

In order to experimentally demonstrate the effectiveness of
the proposed eigenCPS, a set of functions from the IEEE

CEC2013 benchmark [34] has been selected and adapted.
Since eigenCPS is a LS we selected all the unimodal problems,
hence reproducing the testbed of CPS used in [25]. We also
reproduced both the versions of ellipsoid presented in [25]
(f2 and f3). The condition number of these two ellipsoids
worsen with dimensionality at different speeds. Finally, in
order to show that eigenCPS is capable, to some extent, to
handle multimodal fitness landscapes, we included two simple
multimodal functions from [34]. The list of the functions used
in this study is displayed in Table I. As shown in Table I,
each problem has been shifted and rotated: the variables x
is transformed into z. The shifting vector o of [34] has been
used. The rotation matrices Q have been randomly generated.
One matrix Q has been generated for each problem and
dimensionality value.

TABLE I
OBJECTIVE FUNCTIONS USED IN THIS STUDY

Domain
[−100, 100]n

Shift and Rotation
INPUT x

z = Q (x− o)

function name function calculation
sphere f1 =

∑n
i=1 z

2
i

ellipsoid 1 f2 =
∑n

i=1 50
(
i2zi

)2
ellipsoid 2 f3 =

∑n
i=1

(
106
) i−1

n−1 z2i
bent cigar f4 = z21 + 106

∑n
i=2 z

2
i

discus f5 = 106z21 +
∑n

i=2 z
2
i

sum of powers f6 =

√∑n
i=1 |zi|

(
2+4 i−1

n−1

)
Schwefel 2.21 f7 = maxi=1,...,n |zi|

Rosenbrock f8 =
∑n−1

i=1

(
100

(
z2i − zi+1

)2
+ (zi − 1)2

)
Rastrigin f9 = 10n+

∑n
i=1

(
z2i − 10 cos (2πzi)

)
The numerical results are presented in two blocks of re-

sults. At first we test the effectiveness of FLA and different
exploratory radii for each direction. To pursue this aim with
comparing the performance of eigenCPS against that of its
predecessors, that is we run

• Patter Search (PS) [29];
• Covariance Patter Search (CPS) [25];
• Covariance Pattern Search with Eigenvalue-determined

Radii (eigenCPS).
These three algorithms have been run with initial ρ = |D|

where |D| indicates the width of the domain (all the problems
are hypercubical and |D| = 200), precision condition to stop
the search ρ ≤ 10−15.

The threshold values thre required by CPS are listed below

n f1 f2 f3 f4 f5 f6 f7 f8 f9
10 104 109 5 × 108 2 × 1010 2 × 106 104 102 5 × 109 3 × 104

30 8 × 104 1012 2 × 109 1011 106 5 × 105 1.5 × 102 5 × 1010 105

50 2 × 105 1013 5 × 109 2 × 1011 2 × 107 106 1.5 × 102 1011 2 × 105

The eigenCPS uses iter = 5 outer loops, each divided into
samplesize = 200 × n function calls for FLA, in which
acceptsize = 5 × n best samples are used to build the



covariance matrix C, and budget = 800× n function calls to
execute the pattern search. In the first iteration of eigenCPS,
the sampling center is zero vector and radius is ρ. In addition,
ρ is not increased before the local run. The parameters KV

and Kρ are set equal to 100 and 10, respectively.
All the algorithms in this study have been run on the

problems in Table I in 10, 30 and 50 dimensions. All the
experiments have been run for 5000 × n function calls. The
budget of CPS include the budget used for the FLA: 2500×n
function calls have been used to build the covariance matrix C
whilst 2500× n function calls have been spent to execute the
algorithm. The budget of eigenCPS includes 1000×n function
calls to build the covariance matrix C. The bound handling
has been performed by saturating the design variable to the
bound.

Each algorithm in this study for each problem had been
run 30 times. We strengthen the statistical significance of
the tests by the application of the Wilcoxon rank-sum test.In
the Tables in this section, a “+” indicates that eigenCPS
significantly outperforms the competitor algorithm indicated
in the heading of the corresponding column, a “-” indicates
that eigenCPS is significantly outperformed by the competitor
algorithm and a “=” indicates that there is no significant
difference in performance.

Numerical results in 10, 30 and 50 dimensions are displayed
in Tables II, III, IV, respectively.

TABLE II
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE

PROBLEMS f1 − f9 IN 10 DIMENSIONS.

PS CPS eigenCPS
µ± σ W µ± σ W µ± σ

f1 0.00e+00±0.00e+00 = 7.74e-29 ±1.18e-28 + 6.73e-30 ±3.63e-29
f2 1.64e+04 ± 1.02e+04 + 1.10e+03 ± 2.75e+03 + 7.96e-03 ± 2.42e-02
f3 9.48e+04 ± 9.67e+04 + 9.92e+03 ± 9.23e+03 + 1.31e+03 ± 1.83e+03
f4 1.36e+04 ±8.31e+03 + 1.08e+04 ±8.14e+03 = 8.84e+03 ±6.33e+03
f5 6.12e+04 ± 1.65e+04 + 4.21e+02 ± 8.22e+02 + 1.97e-13 ± 1.06e-12
f6 1.07e-04 ± 2.95e-05 + 6.42e-05 ± 2.67e-05 + 6.04e-07 ± 3.61e-07
f7 1.56e+01 ± 1.99e+01 = 3.70e+00 ± 5.02e+00 - 9.36e+00 ± 1.29e+01
f8 6.06e+01 ± 1.67e+02 + 3.30e+01 ± 1.10e+02 + 8.59e+00 ± 3.58e+01
f9 6.79e+01 ± 3.47e+01 = 5.98e+01 ±2.78e+01 = 6.40e+01 ±2.89e+01

TABLE III
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE

PROBLEMS f1 − f9 IN 30 DIMENSIONS.

PS CPS eigenCPS
µ± σ W µ± σ W µ± σ

f1 2.37e-31 ±3.62e-31 - 4.93e-28 ±2.95e-28 = 3.71e-28 ±2.23e-28
f2 2.63e+06 ±1.80e+06 + 2.15e+06 ±1.67e+06 + 1.11e+06 ±9.86e+05
f3 2.97e+05 ±1.06e+05 + 1.10e+05 ±7.82e+04 + 2.67e+04 ±1.56e+04
f4 1.19e+04 ±7.16e+03 + 7.65e+03 ±7.03e+03 = 7.89e+03 ±7.19e+03
f5 1.59e+05 ±3.45e+04 + 3.64e+01 ±6.14e+01 + 1.15e-17 ±2.65e-17
f6 1.51e-04 ±2.84e-05 + 1.47e-04 ±3.40e-05 + 4.76e-06 ±1.12e-06
f7 6.07e+01 ±1.80e+01 + 2.09e+01 ±8.45e+00 - 4.54e+01 ±1.39e+01
f8 2.80e+03 ±4.62e+03 + 1.22e+03 ±2.68e+03 + 1.21e+02 ±2.87e+02
f9 3.72e+02 ± 1.05e+02 = 3.69e+02 ±1.34e+02 = 3.23e+02 ±1.18e+02

Numerical results show that eigenCPS consistently outper-
forms PS. The only exception is f1 in 30 and 50 dimensions.
This result is expected since PS already uses the optimal

TABLE IV
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE

PROBLEMS f1 − f9 IN 50 DIMENSIONS.

PS CPS eigenCPS
µ± σ W µ± σ W µ± σ

f1 6.11e-31 ± 5.35e-31 - 1.01e-27 ± 5.06e-28 = 9.92e-28 ± 3.22e-28
f2 8.78e+07 ± 6.12e+07 + 3.65e+07 ± 3.46e+07 = 2.76e+07 ± 2.10e+07
f3 5.31e+05 ± 1.34e+05 + 1.74e+05 ± 7.60e+04 + 7.92e+04 ± 2.94e+04
f4 2.04e+04 ± 1.37e+04 + 1.90e+05 ± 6.86e+05 + 9.99e+03 ± 9.64e+03
f5 1.97e+05 ± 2.77e+04 + 2.30e+02 ± 4.29e+02 + 2.78e-19 ± 1.38e-18
f6 1.97e-04 ± 3.71e-05 + 2.42e-04 ± 5.95e-05 + 1.02e-05 ± 2.68e-06
f7 7.53e+01 ± 1.15e+01 + 4.03e+01 ± 7.64e+00 - 5.30e+01 ± 1.09e+01
f8 1.81e+01 ± 2.60e+01 = 6.43e+02 ± 1.83e+03 + 6.89e+01 ± 1.78e+02
f9 7.26e+02 ± 1.71e+02 = 8.16e+02 ± 2.93e+02 = 7.67e+02 ± 1.67e+02

directions and step size for the sphere function f1. The
proposed eigenCPS employs part of budget to analyse a
fitness landscape to identify the working conditions of PS. The
comparison between eigenCPS and CPS show that eigenCPS
on average outperforms CPS. The performance of eigenCPS
appears to be superior to that of CPS for problems with
one sensitive direction such as the discus function f5, see
[34]. The only case where CPS outperforms eigenCPS is f7
Schwefel 2.21. This problem is characterised by a central
symmetry. Thus, after the rotation angle (that is the basis
of eigenvectors) has been identified, the best exploratory is
the same alongside all the directions identified by the basis.
However, Since eigenCPS estimates the eigenvalues on the
basis of the samples in V, the elements of the vector d (which
determine the exploratory radii) are similar but not identical
to each other.

Fig. 4 depicts one example of performance trend of the PS,
CPS, and eigenCPS. We may observe that eigenCPS at each
restarts better characterises the fitness landscape and detects
new promising search strategies.

Fig. 3. Performance trend (logarithmic scale) of PS vs CPS vs eigenCPS for
the Discus Function f5 in 50D

To further study the performance of eigenCPS, we compared
it against the following LS algorithms



• Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
[35] with an estimation of the gradient such that it may
be applied to black-box problems;

• Rosenbrock Method (Rosenbrock) [36].
We chose two algorithms that search the closest local

optimum by employing alternative logics with respect to
eigenCPS. More specifically, BFGS has been chosen since it
is a Quasi-Newtonian algorithm that estimates the gradient
while Rosenbrock modified the search directions on the basis
of their success and performs an orthogonalisation to build a
new basis. Tables V, VI, and VII display the results in 10, 30
and 50 dimensions respectively.

TABLE V
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE

PROBLEMS f1 − f9 IN 10 DIMENSIONS.

BFGS Rosenbrock eigenCPS
µ± σ W µ± σ W µ± σ

f1 3.87e-21 ± 5.33e-21 + 8.84e-30 ± 3.76e-29 = 6.73e-30 ±3.63e-29
f2 8.07e-13 ± 3.10e-13 - 4.14e+04 ± 3.92e+04 + 7.96e-03 ± 2.42e-02
f3 5.52e-11 ± 1.04e-11 - 1.34e+05 ± 1.16e+05 + 1.31e+03 ± 1.83e+03
f4 2.47e-01 ± 5.92e-01 - 1.28e+04 ± 9.47e+03 = 8.84e+03 ±6.33e+03
f5 1.99e-10 ± 2.52e-11 + 3.81e+04 ± 1.86e+04 + 1.97e-13 ± 1.06e-12
f6 6.92e-08 ± 2.77e-08 - 1.01e-04 ± 3.50e-05 + 6.04e-07 ± 3.61e-07
f7 6.72e+01 ± 3.84e+01 + 1.04e+00 ± 4.75e+00 - 9.36e+00 ± 1.29e+01
f8 9.30e-01 ± 1.69e+00 - 1.65e+02 ± 2.81e+02 + 8.59e+00 ± 3.58e+01
f9 6.27e+02 ± 2.54e+02 + 6.79e+01 ± 3.23e+01 = 6.40e+01 ±2.89e+01

TABLE VI
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE

PROBLEMS f1 − f9 IN 30 DIMENSIONS.

BFGS Rosenbrock eigenCPS
µ± σ W µ± σ W µ± σ

f1 1.19e-20 ± 1.49e-20 + 5.26e-31 ± 2.32e-30 - 3.71e-28 ±2.23e-28
f2 5.28e-10 ± 1.22e-10 - 3.40e+07 ± 3.54e+07 + 1.11e+06 ±9.86e+05
f3 3.26e-11 ± 1.84e-12 - 5.66e+05 ± 3.38e+05 + 2.67e+04 ±1.56e+04
f4 5.69e-01 ± 2.94e+00 - 7.22e+03 ± 7.16e+03 = 7.89e+03 ±7.19e+03
f5 1.90e-10 ± 1.65e-11 + 1.29e+05 ± 3.39e+04 + 1.15e-17 ±2.65e-17
f6 9.99e-08 ± 1.22e-08 - 1.23e-04 ± 2.39e-05 + 4.76e-06 ±1.12e-06
f7 1.19e+02 ± 3.97e+01 + 8.11e+01 ± 1.50e+01 + 4.54e+01 ±1.39e+01
f8 1.33e+00 ± 1.88e+00 - 1.48e+03 ± 4.31e+03 = 1.21e+02 ±2.87e+02
f9 1.98e+03 ± 4.80e+02 + 3.76e+02 ± 1.05e+02 + 3.23e+02 ±1.18e+02

TABLE VII
AVERAGE ERROR AVG ± STANDARD DEVIATION σ OVER 30 RUNS FOR THE

PROBLEMS f1 − f9 IN 50 DIMENSIONS.

BFGS Rosenbrock eigenCPS
µ± σ W µ± σ W µ± σ

f1 3.03e-20 ± 2.59e-20 + 1.74e-30 ± 9.06e-30 - 9.92e-28 ± 3.22e-28
f2 7.52e-08 ± 1.18e-08 - 3.70e+08 ± 4.45e+08 + 2.76e+07 ± 2.10e+07
f3 1.07e-10 ± 7.21e-12 - 7.69e+05 ± 5.03e+05 + 7.92e+04 ± 2.94e+04
f4 3.60e-01 ± 1.52e+00 - 1.07e+04 ± 9.99e+03 = 9.99e+03 ± 9.64e+03
f5 1.18e-10 ± 8.29e-12 + 1.45e+05 ± 2.75e+04 + 2.78e-19 ± 1.38e-18
f6 1.25e-07 ± 1.58e-08 - 1.40e-04 ± 2.64e-05 + 1.02e-05 ± 2.68e-06
f7 1.25e+02 ± 3.39e+01 + 9.76e+01 ± 1.23e+01 + 5.30e+01 ± 1.09e+01
f8 9.30e-01 ± 1.69e+00 - 4.23e+02 ± 1.79e+03 = 6.89e+01 ± 1.78e+02
f9 2.91e+03 ± 7.72e+02 + 9.88e+02 ± 1.69e+02 + 7.67e+02 ± 1.67e+02

Numerical results show that eigenCPS has a similar or a
better performance than Rosenbrock in most cases. It can be
noticed that Rosenbrock performs very well in f1, which is the
multi-dimensional sphere. Like in the case of PS, Rosenbrock

initialises its search directions along the variables and with the
same step size in all directions. This choice is the one the best
suits the geometry of the sphere and Schwefel 2.21.

The comparison between eigenCPS and BFGS highlights
the different working logic of the two algorithms. The re-
sults clearly show that in about half cases eigenCPS out-
performs BFGS while in the other half of cases BFGS
outperforms eigenCPS. Most importantly, the comparison be-
tween eigenCPS and BFGS highlights the limitations and thus
room for improvement for the proposed eigenCPS. Problems
f2 − f4, where BFGS yields results orders of magnitude
better than those detected by eigenCPS, are characterised by
some directions with high (directional) derivatives and other
directions with low derivatives. Furthermore f2 and f3 are
ill-conditioned. Although the eigenvalue-determined radii of
eigenCPS appear to improve upon the CPS logic, the direct
estimation of the gradient of BFGS seems to be more efficient
than the estimation of derivative through data set proposed in
this study. Further studies are needed to enhance the estimation
of directional derivatives through the proposed FLA approach.

Fig. 4 displays the performance trend of BFGS, Rosenbrock,
and eigenCPS for the discus function f5. In this case, unlike
f2 − f4 the proposed FLA effectively detects the sensitive
direction of the discus function, see [34], and leads to a
performance superior to that of BFGS. According to our
interpretation, the proposed FLA is very effective to detect one
direction whose derivative is larger than others. Conversely,
when the derivative are more similar to each other (as in the
case of ellipsoid) a correct estimation of derivatives according
to the proposed FLA would require a large number of data in
V.

Fig. 4. Performance trend (logarithmic scale) of BFGS vs Rosenbrock vs
eigenCPS for the Discus Function f5 in 50D

V. CONCLUSION

This paper proposes a novel FLA to determine the directions
of the landscape characterised by minimum and maximum
derivatives and to estimate the value of derivatives alongside



these directions. The proposed FLA is based on sampling
points below an implicit threshold and interpreting their distri-
bution. The directions of interest are those of the eigenvectors
of the covariance matrix associated with the sampled points
while the derivatives alongside these directions are identified
with the corresponding eigenvalues. This FLA is integrated
in a resampling LS belonging to the family of generalised
Pattern Search whose pattern is built through the basis of
eigenvectors while a direction-specific exploratory radius re-
lated to the corresponding eigenvalue is associated with each
search direction. A large exploratory radius is used to explore
those directions corresponding to a flat landscape while a small
radius is employed where the landscape is estimated to be
steep.

Numerical results prove that the proposed logic outperforms
its predecessor that uses eigenvectors to explore the space but
the same radius alongside all the directions considered during
the exploration. The comparison with other LS algorithms
shows that the proposed eigenCPS displays a performance
comparable to that of a gradient-based (Quasi-Newtonian)
algorithm. The proposed eigenCPS can be considered as
a LS with a learning element in it to be integrated into
Memetic Frameworks. Future research directions will include
more sophisticated mechanisms to collect data to support the
accuracy of FLA.
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