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Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective
eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based
membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are
employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant
World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate
structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method
which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by
detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more
precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and
immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to
establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although
the need for product-specific approaches will apply, especially for themore complex vaccines. An overview of current and emerging
analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper.
This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
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Introduction

According to a systematic analysis performed for The Global
Burden of Disease Study (GBD) in 2019, the diarrhoeal disease
was ranked as the third leading cause of mortality in children and
the ninth among all age groups worldwide, contributing to a total
of 1.53 million deaths per year (Global Burden of Diseases 2019;
Global Burden ofDiseases 2019Risk Factor Collaborators 2020).
Bacterial pathogens such as Salmonella subspecies enterica
serovar Typhi (S. Typhi), Shigella spp., E. coli and rotavirus
account for the largest proportion of deaths from all infectious
diseases. The fast emergence of antibiotic resistance observed in
bacterial enteric pathogens is of global significance (Humphries
and Schuetz 2015; Tribble 2017; Khalil et al. 2018). The Global
Antimicrobial Resistance Surveillance System (GLASS) listed
these as priority pathogens in 2018 (WHO 2018).

Estimates from TheGBD Study suggested that the burden of
enteric fevers was around 9.24 million due to S. Typhi in 2019
and 14.3 million from S. Typhi and S. Paratyphi together in
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2017. Of 136,000 deaths, the vast majority of deaths (86%)
were due to typhoid fever from S. Typhi, of which 67% of
deaths occurred in South Asia (Stanaway et al. 2019). Young
children and endemic populations for these pathogens in South
and Southeast Asia and sub-Saharan Africa are at themost risk.
S. Paratyphi A results in the most enteric fever cases in Asia,
while bacteraemia in children in Africa is mainly caused by S.
Typhimurium and S. Enteritidis (MacLennan et al. 2014). The
main risk factors are unsafe water, inadequate hand hygiene
and poor sanitation (Global Burden of Diseases 2019; Global
Burden of Diseases 2019 Risk Factor Collaborators 2020).
High prevalence of the disease in low- and middle-income
countries (LMICs), as well as its spread into the wider popu-
lation highlight the urgent need for effective protection.

In addition to S. Typhi and S. Paratyphi, other Salmonella
enterica serovars are responsible for a high burden of disease-
causing death and morbidity globally (0.6 to 3.4 million cases
annually, especially among children in sub-Saharan Africa
(MacLennan and Steele 2019). The most important etiological
agents of invasive nontyphoidal Salmonella (iNTS) disease are
S. Typhimurium and S. Enteritidis. Nontyphoidal Salmonella
are responsible for up to 29% of community-acquired (non-
malarial) bloodstream infections in sub-Saharan Africa with
an average case fatality rate of 15–20% (Reddy et al. 2010;
MacLennan and Steele 2019). Also, for these pathogens, the
effectiveness of antibiotic treatment is hampered by the diffi-
culty in making a precise diagnosis, the sudden and rapid onset
of the disease, and the growing levels of multidrug resistance.

Shigella is the second leading cause of diarrhoeal disease-
related mortality after rotavirus and a primary cause of mortality
in individuals older than 5 years old (Troeger et al. 2018). With
an annual burden of 165 million cases mostly in developing
countries, shigellosis accounted for 213,000 deaths in all age
groups worldwide, 30% of which were children < 5 years old
(Khalil et al. 2018; WHO 2018). Shigellosis often leads to com-
plications like dysentery that needs antibiotic treatment, which is
an emerging challenge due to its resistance. The current WHO
recommendations to treat shigellosis include fluoroquinolones as
a first line and β-lactams and cephalosporins as the second line
with almost no alternative medicines available (Williams and
Berkley 2016; Cohen and Muhsen 2019).

Since capsular polysaccharides and serotype-specific O-
polysaccharides are tightly linked with the virulence of enteric
pathogenic bacteria, global efforts are being taken to develop
vaccine candidates using these antigens to provide long-term
antibody-mediated protection from enteric diseases (Cohen
and Muhsen 2019). Low immunogenicity of many bacterial
glycans can be compensated via carrier protein conjugation
that helps to induce a T-cell-dependent response (Rappuoli
et al. 2018; Micoli et al. 2018a, b, c; MacCalman et al.
2019; Berti and Micoli 2020). Poor immunogenicity and het-
erogeneity of bacterial polysaccharides make glycoconjugate
vaccine development a challenging but important task, as

early successes show. Vaccines can become a rapid solution
for the control of enteric disease in both LMICs and high-
income countries. To reach the people in need, these vaccines
must be licensed in accordance with WHO recommendations,
national or regional pharmacopoeias and specific approvals
issued by the National Regulatory Authorities (NRAs).
From the early development stage, the identity, purity,
physico-chemistry, stability, composition, size, efficacy and
safety profiles of glycoconjugate vaccines must be analysed
and meet standards set by the NRA (Ravenscroft et al. 2015b).
The global prevalence of these enteric pathogens and the un-
met need for effective and accessible vaccines reflect the de-
mand for more rapid and precise characterisation methods that
would provide superior quality control in line with existing
regulations. This paper reviews current and emerging ap-
proaches to vaccine design and analytical methods aiding de-
velopment and quality control of glycoconjugate vaccines
based on Vi capsular polysaccharide of S. Typhi and lipopoly-
saccharide O-antigen (O-Ag) polysaccharide of Shigella spp.

Part I

S. Typhi and Shigella spp.: strain diversity and
pathogenesis

S. Typhi and S. Paratyphi and Shigella spp. are Gram-negative
bacteria, which are responsible for typhoid/paratyphoid fevers
and shigellosis, respectively (Riddle et al. 2018). At a relative-
ly low dosage, these pathogens also can cause asymptomatic
infections, with Salmonella being capable to infect starting at
about 105–108 organisms and Shigella spp. with a load of only
10 bacteria (Puzari et al. 2018; Liu et al. 2016). Salmonella
enterica serovars Typhi and Paratyphi A (rarely B or C) are
the main cause of disease. In contrast, shigellosis can be
caused by representatives of the Shigella family, which is
subdivided into four groups (Cohen et al. 2019). Within each
defined group, multiple serotypes exist (Table 1). Up to 90%
of the shigellosis cases are caused by the S. flexneri and
S. sonnei serotypes (Page et al. 2016; Kotloff et al. 2018).
S. flexneri is mostly endemic in LMICs, while S. sonnei tends
to be present in developed countries, where it overrides other
serotypes. The enhanced ability of S. sonnei to develop resis-
tance to broad-spectrum antimicrobials makes it an important
target pathogen, especially in developed countries, where it
has started to become more prevalent. This serotype can ac-
cept horizontally transferred DNA and maintain it with better
stability than S. flexneri, which results in a growing domi-
nance. DNA transfer results in O-antigen switching, and O-
antigens are the main immunogens in vaccines (Anderson
et al. 2016; Thompson et al. 2015; Das and Mandal 2019).

Complications of the infection include intestinal immuno-
suppression that may overpower the established immunity to
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Shigella giving rise to repeat infections (Brunner et al. 2019).
Diversity among pathogenic serotypes, high infectious capac-
ity, variations among clinically relevant strains especially
within the S. flexneri family, and disease seasonality and geo-
graphic distribution and prevalence complicate the develop-
ment of an effective vaccine (Muthuirulandi Sethuvel et al.
2016; Knirel et al. 2015; Barel and Mulard 2019; Das and
Mandal 2019).

Antibiotic resistance

Recent reports alert on rising extensive drug resistance (XDR)
in S. Typhi to common antimicrobial agents, such as co-
trimoxazole, ampicillin, chloramphenicol and trimethoprim-
sulfamethoxazole, fluoroquinolones and third-generation
cephalosporins (Klemm et al. 2018). In endemic populations
with high prevalence of XDR Salmonella, not many alterna-
tive treatments exist apart from azithromycin and carbapen-
ems (Klemm et al. 2018). But today, bacteria are still capable
of developing resistance to azithromycin when used as a
second-line agent (Ahsan and Rahman 2019). Emerging ad-
vantageous genetic mutations for pathogen survival and cip-
rofloxacin resistance (recommended as first-line treatment)
were recently reported by Pathogenwatch. With increasingly
limited treatment options for S. Typhi, control strategies like
vaccination and hygiene maintenance must be established
(Argimón et al. 2020).

In Shigella, multiple studies have found rising resistance to
ciprofloxacin, and quinolones, especially among isolates from
children (WHO 2005; Williams and Berkley 2018).
Moreover, in 2014, WHO published a detailed report on the
geographical burden of fluoroquinolone resistance among
Shigella isolates, which showed worrying rates especially
for the South-East Asia region which accounts as one of the
endemic regions for shigellosis (Table 2) (WHO 2014a). A
retrospective review showed that multidrug resistance among
Shigella isolates varies from 36–98% (Muthuirulandi
Sethuvel et al. 2016). Despite this, some of these antibiotics
remain in the official guidelines globally (Table 3). The
Infectious Diseases Society of America (IDSA) strongly rec-
ommended precise diagnostic tests and strict adherence to
public health policies when working with patients suffering
from enteric infections in high transmission risk areas and
advised cautious prescription of antimicrobial agents (Shane

et al. 2017). For example, the WHO recommendations for
treatment of dysentery had minimal alterations from 2005 to
2013 and feature ciprofloxacin as the first-line antibiotic and
pivmecillinam, ceftriaxone and azithromycin as second-line
options. Note that pivmecillinam has no paediatric formula-
tion and azithromycin is not recommended for paediatric treat-
ment, while ceftriaxone is recommended for injection in chil-
dren and not adults (WHO 2005).

Polysaccharides as target antigens

Salmonella Typhi capsule

Pathogenic bacteria often produce extracellular polysaccharide
capsules that serves as virulence factors in promoting attach-
ment and colonisation and in protecting the bacteria from
opsonisation, complement binding and opsonophagocytosis,
as well as providing hydration and transport functions. The Vi
capsular polysaccharide of S. Typhi is immunogenic and is
represented by non-stoichiometrically O-acetylated α-1,4-
linked N-acetylgalactosaminuronic acid residues and is crucial
for host infection, making it a major vaccine target (Liston et al.
2016). The effectiveness of Vi as an immunogen has been an
important research topic that led to a promising route to a safer
and more protective vaccine design (Robbins and Robbins
1984).

Variability of O-antigen targets in Vi-negative Salmonella
and Shigella

Not all enteric Salmonella contain a capsular polysaccharide,
leaving the bacterial cell surface-exposed O-Ag as a promis-
ing vaccine target. In common with other Gram-negative or-
ganisms, the cell envelope of Salmonella and Shigella con-
tains a lipopolysaccharide (LPS) complex. This consists of an
outer O-polysaccharide coat, a middle portion (the R core) and
an inner hydrophobic lipid A chain. The LPS moiety may
function as an endotoxin andO-polysaccharide repeating units
confer O-Ag specificity and virulence (Whitfield et al. 2020).
For example, rough serotypes of Salmonella and Shigella spp.
with incomplete or no surface O-polysaccharide are usually
avirulent or attenuated compared to the smooth serotypes
which have a complete O-Ag moiety. S. Typhi serovars are
positive for LPS O9 and O12 antigens and Vi capsular

Table 1 Currently known
serotypes of Shigella spp. Shigella species Known serotypes Newly identified serotypes

Shigella dysenteriae 1–15 -

Shigella flexneri 1a, 1b, 1d, 2a, 2b, 3a, 3b, 4a, 4av, 4b, 5a, 5b, 6, X, Y Xv, Yv,7a, 7b

Shigella boydii 1–19 -

Shigella sonnei 1 -

Adapted from Muthuirulandi Sethuvel et al. (2016)
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polysaccharide (Crump et al. 2015). But, S. Typhi may have a
Vi-negative serotype, so O-Ag protein conjugation ap-
proaches may need to be applied (Salman et al. 2017).

Non-typhoidal Salmonella are the representatives of
non-encapsulated enteric pathogens that contain LPS as
an outer membrane component. While lipid A is an exceed-
ingly conserved element among Gram-negative bacteria,
which is responsible for toxicity, the nature and structures
of the repeating glycans in the O-antigen chain are often
serotype specific and important for pathogenicity. The R
core has a proximal inner region composed of heptose res-
idues, where phosphate, phosphorylethanolamine or
pyrophosphorylethanolamine groups are often contained
as substitutions; the outer core is usually built of neutral
or amino hexoses (Whitfield et al. 2020). In glycoconjugate
vaccines against iNTS, the core and O-Ag portions of the
LPS are used to induce a protective response. Recently,
flagellin proteins native to iNTS serovars were tested in
the role of secondary antigens and shown to be a promising
approach for the development of a highly potent vaccine
(Baliban et al. 2018; Baliban et al. 2020).

Shigella spp. do not possess a capsular component but all
contain LPS anchored to the outer membrane via lipid A.
Antigenic O-polysaccharide chains attached at the distal end
of the LPS core define the serotype affiliation and strain-
dependent immune specificity of Shigella. The length and
structural availability of this O-Ag play a key role in patho-
genesis and host resistance (Lindberg et al. 1991; Caboni et al.
2015). The O-Ag is unique for each serotype, reflecting the
genetic diversity of Shigella spp. (Perepelov et al. 2012).

Part II

Vaccines on the market and in the pipeline

In the 1960s, the first live-attenuated S. Typhi vaccine was
created and gave up to 7 years of protection (Ashcroft et al.
1967). Nevertheless, systemic adverse events following the
use of such vaccines excluded them from modern treatment
approaches (Ashcroft et al. 1964). Today, efforts are taken in
the direction of native and synthetic polysaccharide formula-
tions, protein-conjugated antigens, combination vaccines and
alternative delivery systems like GMMA (generalised mod-
ules for membrane antigens) (Rossi et al. 2014). Four Vi con-
jugate vaccines have been licensed with one so far receiving
WHO prequalification. Vi-DT (diphtheria toxoid) and others
are in late-stage development or waiting for approval. There
are several Vi PS based and a number of bivalent conjugate
vaccines against Typhi and Paratyphi in development.
Examples can be seen in Table 4.

Salmonella Typhimurium and S. Enteritidis bivalent vac-
cine could represent a valuable public health intervention.
Two approaches, both O-Ag based, have been evaluated.
The first approach is based on glycoconjugation, where S.
Typhimurium and S. Enteritidis O-Ag are independently
linked to CRM197 or a homologous flagellin protein as car-
riers. The second approach is represented by the development
of a bivalent formulation of S. Typhimurium and S. Enteritidis
genetically modified outer membrane vesicles (OMV) termed
“GMMA” (Micoli et al. 2018a, b, c). Several glycoconjugates
are now in preclinical development for iNTS, and some em-
ploy flagellin from S. Enteritidis to function as both a carrier
protein for bacterial O-Ag and a secondary antigen in an at-
tempt to increase the efficacy. This preparation is scalable and
allows bivalent/multivalent formulations for different O-PS
antigens. This conjugation strategy may contribute to an en-
hanced immunogenicity and safety of this potential vaccine
candidate and is likely to come at a lower production cost,
which is important for implementation in LMICs
(MacLennan and Steele 2019; Baliban et al. 2020).

With over 50 serotypes of Shigella arising from O-Ag var-
iations, the development of an appropriate target for a vaccine
is challenging. Antigen variability complicates the protection

Table 2 Collated data on Salmonella and Shigella fluoroquinolones
resistance

Reporting region (data
based on > 30 tested isolates)

Range of resistant proportion in
isolates (%)

Nontyphoidal Salmonella Shigella

African region

- National data 0–35 0–3

- Publications 0–30 0–9

Region of Americas

- National data 0–96 0–8

- Publications 0 0–20

Eastern Mediterranean

Region

- National data 2–49 3–10

- Publications 0–46 0–41.3

European Region

- National data and reports to 2–3 0–47

FWD-Net

- Publications 13 0

South-East Asia Region

- National data 0.2–4

- Publications 1.4 0–82

Western Pacific Region

- National data 0–14 3–28

- Network/institution data 0–0.3 0

- Publications 2

Adapted from the World Health Organization Antimicrobial Resistance
Global Report on Surveillance (2014a). FWD-Net, Foodborne and
Waterborne Diseases and Zoonoses Network
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Table 4 Typhoid and paratyphoid vaccines landscape: licensed and in clinical trials

Disease Vaccine name/construct Manufacturer Status

Typhoid Typbar-TCV/glycoconjugate
Vi-TT

Bharat Biotech India Ltd, Hyderabad Licensed in India, Nepal, Nigeria
Licensed, and prequalified by WHO in Dec 2017

for UNICEF procurement (Jin et al. 2017)

Typhoid PedaTyph/glycoconjugate Vi-TT Bio-Med Pvt. Ltd, India Licensure in India (Syed et al. 2020)

Typhoid ZyVAC-TCV/glycoconjugate
Vi-TT

Cadila Healthcare Limited, India Licensed in India
Launched for Typhoid (in adult volunteers) in India

Adisinsight.springer.com 2020a, b)
WHO prequalification will be sought

Typhoid Glycoconjugate Vi-TT Walvax Licensed in India in 2020 (Steele et al. 2020)
Preclinical (Khan et al. 2017)

Typhoid TYPHIBEV/glycoconjugate
Vi-CRM197

Biological E Ltd, India/GVGH (GSK)
Technology Transfer Agreement
(TTA)

WHO prequalification obtained in Dec 2020

Typhoid Glycoconjugate Vi-DT SK Bioscience
The International Vaccine Institute (IVI

TTA)

Phase II completed, enrolling into phase III (Steele
et al. 2020)

PT Bio Farma (IVI TTA) Phase-III clinical trials in typhoid (in adolescents, in
children, in infants, prevention, in adults) in
Indonesia (IM)

ClinicalTrials.gov Identifier: NCT04051268

Incepta (IVI TTA) Preclinical (Adisinsight.springer.com 2020a, b)

Typhoid Glycoconjugate Vi-TT Eubiologics, Korea Phase 1 (Syed et al. 2020)

Typhoid Glycoconjugate Vi-DT DAVAC/Finlay Institute, Vietnam Preclinical (Syed et al. 2020)

Typhoid Glycoconjugate Vi-PspA IVI Preclinical (Kothari et al. 2014)

Typhoid Typhim Vi/Vi PS Sanofi Pasteur SA Prequalified by the WHO (WHO prequalified
vaccines list)

Typhoid Typherix/Vi PS GSK Discontinued due to better alternatives available and
manufacturing struggles in 2018 (GSK 2018)

Typhoid Ty21a (Vivotif)/live attenuated PaxVax Prequalified by the WHO (Sahastrabuddhe and
Saluja 2019)

Paratyphi A and
Typhoid

Glycoconjugate O:2,12-TT +
Vi-TT

NIH, Lanzhou Phase II (Martin et al. 2016)

Paratyphi A and
Typhoid

Glycoconjugate O:2,12-CRM197

+ Vi-CRM197

GVGH, Biological E Preclinical (Martin et al. 2016)

Paratyphi A Glycoconjugate CVD 1902 +
CVD 909/ mutations in guaBA
and clpX

University of Maryland Baltimore
(UMB), Bharat Biotech

Phase I (Martin et al. 2016)

Paratyphi A Glycoconjugate O:2,12-DT +
Vi-DT

IVI Preclinical (Martin et al. 2016)

iNTS Trivalent glucoconjugate
(S. typhimurium COPS:FliC+
TypbarTCV)

UMSOM-CVD, Bharat Biotech
(Hyderabad, India

Preclinical, planned to roll into phase 1/2 (Baliban
et al. 2020)

iNTS S. typhimurium LH1160 (ΔpurB
+ ΔphoP/Q) live-attenuated
vaccine

Massachusetts General Hospital, Boston Phase 1 (Angelakopoulos and Hohmann 2000). Not
followed up due to weak response

iNTS S. typhimurium WT05 (ΔaroC +
ΔssaV) live-attenuated vaccine

Microscience Phase 1 (Hindle et al. 2002)

iNTS GMMA (S. typhimurium and
S. enteritidis)

GSK Vaccines Institute for Global
Health S.r.l, Siena, Italy

Preclinical (Baliban et al. 2020)

iNTS S. enteritidis and S. typhimurium
COPS:FliC glycoconjugates

CVD at the University of Maryland
School of Medicine, Baltimore,
Maryland USA

Preclinical (Baliban et al. 2018)

iNTS GMMA GVGH Preclinical (Martin et al. 2016)
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of the population in non-endemic areas. Thus, a vaccine
should preferably be multivalent covering the most
pathogenic Shigella species such as S. flexneri 1b, 2a, 3a
and 6, and S. sonnei according to the WHO, and a recent
meta-study on antibiotic resistance (Mani et al. 2016; Das
and Mandal 2019; Micoli et al. 2018a, b, c; Raso et al.
2020; WHO 2018, 2020a). The global enteric multi-centre
study suggests that such a multivalent formulation would cov-
er 72% of Shigella strains protecting directly and cross-protect
for up to 89% of all strains (Livio et al. 2014). Shigella
dysenteriae type 1 used to be linked to rapid spread and high
mortality rates; however, no epidemic cases were reported in
the last 20 years and it is rarely included in serotype-specific
vaccines (Kotloff et al. 2018). Several vaccines have now
been developed with a few entering phase III clinical trials:
most candidates are based on S. flexneri 2a LPS conjugates
(Table 5). Although Shigella vaccines lack WHO guidelines
for vaccine development, a recent draft version suggests that
quality and safety must be monitored at least to the standard of
currently licensed glycoconjugate vaccines (WHO 2020a, b).
New standards for Shigella are also going to be established
soon to aid the development of a vaccine evaluation protocol
(NIBSC 2020).

Factors that play a role in immunogenicity for Vi and
Shigella O-Ag glycoconjugates

Antigen chemistry and O-acetyl content and modifications

The structural implications of glycan antigens to become an
efficient immunogen are still unclear. Apart from carbohy-
drate chain length, other important viability properties affect
the resultant antigen success: the stereochemistry of glycosid-
ic linkages, glycan position within a repeating unit, locations
of branching points and biochemical composition, which
complicate design and analysis. Size/span of the epitope, ter-
minal glycan residues, presence/absence of branching points,
substituent groups, such asO-acetyl, and number of repeating
units may be considered as key parameters to measure (Anish
et al. 2014; Berti et al. 2018). Table 6 lists the repeating unit
structures of S. Typhi capsular polysaccharide and the O-
antigens of vaccine-relevant Salmonella and Shigella species.

For Vi PS, O-acetylation is a major factor for immune
potency (Szu et al. 1991; Hitri et al. 2019). Vi PS is variably
O-acetylated at the carbon 3 of the repeating monosaccharide.
The O-acetyl groups are the most solvent exposed (Szu et al.
1991; Hitri et al. 2019) and the primary epitope exposed for
antibody binding since carboxyl and N-acetyl groups are bur-
ied within the PS helix, making them less available as anti-
body targets, which are only be exposed in de-O-acetylated Vi
(Hitri et al. 2019). Antibodies reacting with carboxyl and/or
N-acetyl groups in de-O-acetylated Vi have been reported, but

these groups are unlikely to be dominant in Vi vaccines,
which meet the recommended level of O-acetylation (Qadri
et al. 1990; Szu et al. 1991). The relatively high viscosity of Vi
makes it more challenging to characterise with physicochem-
ical methods like HPLC-SEC or matrix-based sample separa-
tion methods, for example ultrafiltration membranes or solid-
phase extraction cartridges in a free polysaccharide assay
(Hitri et al. 2019). Partially, O-acetylated PS may be structur-
ally beneficial in a formulation to give access to additional
epitope(s) (Hitri et al. 2019). Nevertheless, the key to an ef-
fective Vi vaccine is to ensure that theO-acetyl content will be
at least 52% or 2.0 mmol/g of PS as specified by WHO rec-
ommendations (Szu et al. 1991; Lemercinier et al. 2000;
WHO 2014b).

With iNTS and Shigella, the level and position of O-acety-
lation of the O-Ag and any chemical modifications of the LPS
in the infectious strains mediate the strength of the immune
response and are considered to be important variables for vac-
cine safety and efficacy (Kubler-Kielb et al. 2007; Giardina
et al. 2005). The O-polysaccharide portion of the LPS is the
most exposed and is extremely diverse in chain length, chain
distribution and composition, which all affect virulence (Carter
et al. 2007; Morona et al. 2003; West 2005). The O-Ag can be
composed of multiple repeating units (RUs), which contain two
to six monosaccharides per RU and are heterogeneously dis-
tributed on the LPS molecule. The chain numbers and lengths
are serotype dependent (Barel and Mulard 2019). Techniques
currently used for characterisation of LPS and O-Ag in vaccine
preparations are 1D and 2D NMR, GC, GC-MS and HPAEC-
PAD (Micoli et al. 2014; Gerke et al. 2015; De Benedetto et al.
2017a; Raso et al. 2020).

Carrier proteins and conjugation chemistry

To confer immunogenicity, the saccharide component is
chemically or biologically conjugated to a carrier protein.
Currently licensed carriers of Vi PS include tetanus toxoid
(TT), diphtheria toxoid (DT) and cross reacting material 197
(CRM197), while other glycoconjugates utilise Haemophilus
protein D and outer membrane protein complex from
serogroup B meningococcus and pneumococcal proteins.
The recombinant non-toxic form of Pseudomonas aeruginosa
exotoxin A (rEPA) has been evaluated as a carrier protein with
Shigella antigens and Vi PS (Cohen et al. 1997; Kubler-Kielb
et al. 2007; Thiem et al. 2011; Kämpf et al. 2015). Most
emerging protein carriers are recombinant, and alternatives
such as OMV, GMMA, inorganic nanoparticles and virus-
like particles are being investigated. The GMMA approach
may be promising for vaccine development in LMICs if it is
cheaper to produce and its efficacy meets accepted standards.
More methods like one-pot (single reaction mixture) and
chemo-enzymatic protocols, along with HPLC-based auto-
mated oligosaccharide construction methods and advances in
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the assembly of synthetic glycan and alternative nanocarriers
that are being developed will speed up vaccine development
(Safari et al. 2012; Micoli et al. 2018a, b, c; Wen et al. 2018).
Such new protocols will also require characterisation, consis-
tency of production and verification of their quality and safety
by currently recommended assays.

Glycoconjugate vaccines are produced by either chem-
ical, bioconjugation or GMMA approach, conferring var-
iations in conjugation chemistries that affect the ability to

properly define and standardise a molecule. For example,
chemical conjugation protocols expose or modify each
oligo- or poly-saccharide separately; a similar situation
is seen in “sun-type” bioconjugate vaccines with a single
point of conjugation. “Lattice-type” conjugates where car-
rier protein and O-antigens interlink several times may be
more challenging to analyse (Barel and Mulard 2019).
The integrity of protective saccharide epitopes should be
verified following modifications.

Table 5 Vaccines against Shigella spp.: current landscape

Disease Vaccine name/construct Developer Status

Shigella dysenteriae Bioconjugate vaccine Sd1-EPA (GVXN SD133) LimmaTech Biologics AG (Former
GlycoVaxyn AG) Schlieren,
Switzerland

Phase 1
ClinicalTrials.gov Identifier:

NCT01069471
S. flexneri 2a FLEXVAC/Tri-acylated lipid A with LPS derived from

“smooth” (Ac3-S-LPS) derived from S. flexneri 2a
(Lyodov and Aparin 2014)

Gritvac, Moscow, Russia Phase III ongoing
Clinical study no. 161

(Rosminzdrav 2020)
S. flexneri 2a Live-attenuated ΔguaBA + Δset , Δsen (CVD1208s)

(Toapanta et al. 2018)
CVD at the University of Maryland

School of Medicine, Baltimore,
Maryland USA, PATH

Phase 2
ClinicalTrials.gov Identifier:

NCT01531530
S. flexneri 2a Flexyn2a/recombinant O-PS glycoconjugate S. flexneri

2a-EPA bioconjugate vaccine
LimmaTech Biologics AG Schlieren,

Switzerland (Kämpf et al. 2015)
Phase 2b
ClinicalTrials.gov Identifier:

NCT02646371
S. flexneri 2a Artificially combined InvaplexAR/intranasal

macromolecular complex (LPS + IpaC + IpaD proteins)
PATH and WRAIR, Silver Spring,

Maryland
Phase 1/2b
ClinicalTrials.gov Identifier:

NCT02445963
Plans to collaborate with

Enesi Pharma to deliver
vaccine needle-free

S. flexneri 2a InvaplexDETOX IM (Detoxified LPS + IpaC + IpaD
proteins)

PATH, DFID and WRAIR, Silver
Spring, Maryland

Phase 1 completed
ClinicalTrials.gov Identifier:

NCT03869333
S. flexneri 2a S. flexneri 2a-TT15 synthetic O-PS based conjugate Institut Pasteur, Paris, France Phase 1

ClinicalTrials.gov Identifier:
NCT02797236

S. flexneri 2a DB fusion subunit candidate/Ipa proteins (IpaB and IpaD)
of Shigella (Martinez-Becerra et al. 2013)

PATH, Washington, DC Preclinical

S. flexneri 2a Trivalent killed whole-cell Shigella vaccine (Kaminski
et al. 2014)

WRAIR, PATH Preclinical

S. flexneri 2a OMV with heat-inactivated (HT-ΔtolR) mutation (Pastor
et al. 2018)

University of Navarra, Navarra, Spain Preclinical

S. flexneri 2a and S. sonnei Oral live F 2a-sonnei (FS) vaccine China Licensed (Wang 2003)
S. flexneri 2a+ S. sonnei O-PS-rEPA chemical conjugates (monovalent formulation

for each strain)
NICHHD (National Institute of Child

Health and Human Development),
USA

Phase 3
ClinicalTrials.gov Identifier:

NCT00368316
S. flexneri 2a and S. sonnei

(potential
cross-protection)

Killed whole-cell/O-antigen polymerase mutant, truncated
Shigella (Kim et al. 2018)

International Vaccine Institute, Seoul,
Korea and PATH

Preclinical. Plan to move into
Ph1/2b trials

S. flexneri 2a and 3a and
S. sonnei

CombiVax/live, genetically attenuated typhoid Ty21a
with biosynthetic Shigella sonnei O-Ag gene insertion
(Dharmasena et al. 2016)

Protein Potential LLC, Rockville,
Maryland USA

Preclinical

Four most epidem. relevant
strains
(cross-protection)/no
details

Tetravalent Shigella bioconjugate containing four different
O-Ag

LimmaTech Biologics AG Schlieren,
Switzerland/GSK Vaccines Institute
for Global Health

Phase 1/2
ClinicalTrials.gov Identifier:

NCT04056117

S. sonnei Live-attenuated vaccines: (WRSS1 (ΔvirG); (WRSs2
(ΔvirG + Δset, Δsen); WRSs3 (ΔvirG + Δset, Δsen,
ΔmsbB)

Walter Reed Army Institute of Research
(WRAIR), Silver Spring, Maryland

Phase 2b (WRSs2/NIAID)
ClinicalTrials.gov Identifier:

NCT04242264
S. sonnei 4-component GMMA-based 1790GAHB vaccine (Rossi

et al. 2014)
GSK Vaccines Institute for Global

Health S.r.l, Siena, Italy
Phase 2
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Immune responses to vaccines can also be affected by com-
plexity of assembly, linker structure and carrier attachment
site number or the structure, conformation and size distribu-
tion of the conjugates (Avci et al. 2019). In constructing Vi
conjugates, Arcuri et al. discovered that actual conjugation
chemistry in terms of linker number conjugated to the carrier
protein (in this case CRM197) did not impact vaccine immu-
nogenicity as well as did not inter-relate to linker length or the
saccharide loading on the carrier protein (2017). While the
highest IgG response post-primary dose was achieved with a
full-length Vi PS-conjugate versus fragmented, the require-
ments for an optimal boost varied. For a full-sized antigen,
the response was similar irrespective of protein conjugate, but
in formulation with fragmented Vi, after second immunisation
a booster response was only observed with TT but not with
CRM197 and DT that may be linked to the larger size of TT as
well as its T-cell epitopes (Arcuri et al. 2017; Wessels et al.
1998; Lockyer et al. 2020). With a CRM197 conjugate, Vi PS
of less than 50 kDa gave a booster dose, while full-length Vi
PS led to hypo-responsiveness (Micoli et al. 2020a, b).
Although Vi-CRM197 and Vi-rEPA behaved differently when
tested in infants, the source and size of Vi PS were different,
and these factors should also be considered (Thiem et al. 2011;
Bhutta et al. 2014; Micoli et al. 2020a, b). Another study has
also confirmed that immune response to Vi-DT in mice was
stronger with an increasing amount of cross-linking and the
subsequent size of the conjugate (An et al. 2011). Recently,

Sun et al. showed that while conjugation chemistry was not
critical for immune response activation, polysaccharide stabil-
ity and structure dictate the unique antigen presentation meth-
od to the T-helper cells, elucidating adaptive immune re-
sponse (Sun et al. 2018). Moreover, for Vi-CRM197, studies
in mice indicated that shorter polysaccharide have less risk of
inducing unfavourable T-independent immune response and
hypo-responsiveness compared to long-chain Vi conjugates.
Therefore, the elimination of T-independent responses eluci-
dated by potential glycan candidates may be the next impor-
tant control used for rational vaccine design and testing
(Micoli et al. 2020a, b). For Shigella, use of a succinylated
carrier protein was found to produce more immunogenic
glycoconjugates compared to the unaltered version so chem-
ical modifications of carrier proteins are also important to
consider and need to be analysed (Barel and Mulard 2019).
These findings highlight that in the development of novel Vi
PS vaccines, the PS chain length and the carrier protein of
candidate vaccines may need careful monitoring to determine
their optimal immunogenicity.

International guidelines of vaccine development and
control: overview

In 2014, WHO developed Guidelines for the evaluation and
lot release of typhoid glycoconjugate vaccines, and these were
replaced in 2020 by more comprehensive WHO

Table 6 Structures of the
repeating units of capsular
polysaccharide and serotype-
specific O-Antigens of
Salmonella serovars and Shigella
species

Polysaccharide

or O-Ag

Repeating unit

Salmonella serovars:

S. Typhi Vi →4) -α-D-GalNAcA(3OAc)-(1→

S. Paratyphi A [α-D-Par 1→3]→ 2)-α-D-Man (1→4)-α-L-Rha(2/3OAc)(1→3)-[α-D-
Glc(1→6)]-α-D-Gal)-(1→

S. Typhimurium (O:4,5) [α-D-Abe(2OAc) 1→3]→ 2)-α-D-Man(1→4)-α-L-Rha(2/3OAc)(1→3)-[α-D-
Glc1→4/6]-α-D-Gal-(1→

S. Enteriditis (O:9) [α-D-Tyv 1→3]→ 2)-β-D-Man-(1→4)-α-D-Rha-(1→3)-[α-D-Glc]n 1→4]-α-
D-Gal-(1→

Shigella species:

S. dysenteriae 1 → 3)-α-L-Rha-(1→3)-α-L-Rha-(1→2)-α-D-Gal-(1→3)-α-D-GlcNac-(1→

S. flexneri 1b → 2)-α-L-Rha(3/4OAc)-(1→2)-α-L-Rha-(1→3)-α-L-Rha(2OAc)-(1→3)-[α-D-
Glc→4]-β-D-GlcNac-(1→

S. flexneri 2a → 2) -α-L-Rha(3/4OAc)-(1→2)-α-L-Rha(1→3)-[α-D-Glc-→4]-α-L-Rha-
(1→3)-β-D-GlcNAc(6OAc)-(1→

S. flexneri 3a [α-D-Glc→3]→2-α-L-Rha-(1→2)-α-L-Rha-(1→3)-α-L-Rha(2OAc)-(1→3)-β-
D-GlcNAc(6OAc)-(1→

S. flexneri 6 →2)-α-L-Rha(3/4OAc)-(1→2)-α-L-Rha-(1→4)-β-D-GalA(1→3)β-D-GalNac-
(1→

S. sonnei → 4)-α-L-AltNAcA-(1→3)-β-FucNAc-4-N-(1→

Square brackets denote branched residues. Structures adapted fromHeyns and Kiessling (1967) (Vi); Ravenscroft
et al. (2015a) (Paratyphi); De Benedetto et al. (2017a) (non-typhoidal Salmonella); Liu et al. (2008); Perepelov et
al. (2012) (Shigella)
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recommendations (WHO 2014a, b, 2020b). Physicochemical
tests can ensure batch consistency of conjugate vaccines and
were exemplified by theWHO and Pharmacopoeia guidelines
based on predecessor conjugate and unconjugated polysac-
charide vaccines. Molecular size distribution, the saccharide
and protein quantity and their ratios must be considered when
determining the structure of the conjugate with appropriate
analytical methods. The key testing areas required for vaccine
quality control are described below, including the techniques
used to measure the relevant structures (Table 7).

Identity and compositional analysis of polysaccharide-based
vaccines

The identity of a glycoconjugate vaccine for enteric pathogens
can be defined in monosaccharide composition, O-acetyl
group quantitation and purity of the sample. 1H-nuclear mag-
netic resonance is validated as a sole routine release method
for PS identity and purity, which is recommended by the
United States Pharmacopeia (USP) and WHO for S. Typhi
Vi PS and is a superior technology to less precise colorimetric
techniques (although it cannot measure residual nucleic acid
or protein) (Lemercinier et al. 2000; WHO 2017b; United
States Pharmacopeial Convention 2018). NMR provides data
on the PS structure, stability and degradation pathways, and
can be used with a quantitative standard as a qNMRmethod to
get relative molecular mass and content (WHO 2017a). Uni-
dimensional and two-dimensional NMR spectroscopy can be
used for S. Typhi and Shigella O-Ag in either glycoconjugate
or GMMA preparations, and is a relatively rapid and
information-rich characterisation method (Berti and
Ravenscroft 2015; Raso et al. 2020). NMR spectroscopy has
also proven valuable for the detection, identification and
quantification of process impurities in the polysaccharides
(Xu et al. 2005; Beri et al. 2019). Nevertheless, spectra are
less resolved for the hydrophobic and rigid structure of tightly
packed substituents in the sugar ring of Vi due to the rapid
spin-spin relaxation rates, which is not ideal for differentially
O-acetylated serotypes (Lemercinier et al. 2000).

Other methods for Vi polysaccharide quantitation include
an acridine orange dye colorimetric method (Stone and Szu
1988), rate nephelometry and rocket immunoelectrophoresis
(WHO 2017b). High-performance anion-exchange
chromatography-pulsed amperometric detection (HPAEC-
PAD) is a common technique applied to quantitate Vi saccha-
ride content in drug substance and drug product using an al-
kaline hydrolysis method (Micoli et al. 2011). Measuring the
Vi content of conjugated or non-conjugated polysaccharide
vaccines by six laboratories with HPAEC-PAD resulted in
good inter-laboratory comparability and produced improved
results distribution of Vi content when the homologous Vi PS
standard was used to quantitate the Vi content in a vaccine
from the same source (Citrobacter freundii or S. Typhi). The

rocket immuno-electrophoresis was performed by four labo-
ratories but could have limitations when used for bulk conju-
gates, due to the standard-sample molecular mass disagree-
ment. It, however, gave good results for the PS alone (WHO
2017b; Gao et al. 2019).

LPS and glycan composition in Shigella can be determined
with the methods described above as well. The 1H diffusion-
ordered spectroscopy (DOSY) NMR coupled with HPLC-
SEC (size exclusion chromatography) with differential refrac-
tive index (dRI) can be used to detect LPS chain length, size
and structure variations in S. flexneriGMMAs. The number of
LPS core reducing end KDOs (2-keto-3-deoxy-octonate) is
isolated and quantified byHPLC-SEC aswell. The percentage
of O-Ag can be determined as the molar ratio of their KDO to
total KDO. O-Ag sugar content is also possible to quantify
using the Dische colorimetric method (methyl pentoses (6-
deoxyhexoses)) (Dische and Shettles 1948). Colorimetry is
less precise so physical or immuno-detection methods may
be prioritised. TotalO-acetyl content, as well asO-acetyl con-
tent variations, can be confirmed with 2D NMR (Raso et al.
2020). NMR and HPLC-SEC are often applied to check
glycoconjugate purity as well (Berti and Ravenscroft 2015;
Ravenscroft et al. 2015b). HPAEC-PAD run with appropriate
standard or standard mixtures can be applied for GMMA or
complex O-Ag saccharide chains to calculate the relative mo-
lar concentration of glucans (Gerke et al. 2015).

The number of polysaccharide chains bound to the carrier
protein can be deduced with limited information if chain
lengths are known; however, these methods do not give infor-
mation on their position. The conjugation positions can be
identified by mass spectrometry, but it is still a challenge to
map conjugation sites in populations of polydisperse mole-
cules. Some reports on capsular polysaccharides (CPS) show
that solid-state NMR spectroscopy is a working alternative to
determine PS/protein conjugation pattern and the degree of
conjugation; however, it has not yet been reported for
Salmonella Typhi, iNTS or Shigella conjugated vaccines
(Giuntini et al. 2017). To determine sugar:protein ratio, color-
imetric tests are still popular due to their low cost and relative
simplicity, for example anthrone and a colorimetric protein
concentration assay (Leyva et al. 2008; Ravenscroft et al.
2015b).

Standardised ELISA methods are available for immunoge-
nicity determination. Currently, two methods have been
accredited as repeatable and reliable for serological ELISAs
of serum responses against Vi-based conjugates from clinical
studies: commercial VaccZyme and in-house Vi-poly-L-lysine
(PLL)-based immunoassays, where Vi is pre-coated with PLL
to give superior results to native coating, as PS is negatively
charged allowing PLL to adhere and improve Vi interaction
with solid phase (Rijpkema et al. 2018; Rigsby et al. 2020).
The biotinylated Vi ELISA can be used for control compari-
son of potencies but not for the geometric mean potencies, or
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potency estimates, as it gives alternative reads to the
VaccZyme ELISA (Rijpkema et al. 2018). Following the re-
quest of the WHO Expert Committee on Biological
Standardization (ECBS), Vi-PLL ELISA has been finally
assessed in 2020 as a suitable substitute to the VaccZyme
ELISA, allowing to use this uniform non-commercial, and
thus more available, method to use at a lower cost. The Vi-
PLL procedure is publicly available and uses standard biolog-
ical agents, as opposed to VaccZyme (WHO 2018; Rigsby
et al. 2020). Key considerations for implementation and
smooth performance are the level of reagent standardisation
(reference standard), validity criteria (system and sample suit-
ability) and the inclusion of assay-specific run controls which
may be study samples representative of Vi PS vaccines
(Rigsby et al. 2020).

Determining O-acetyl content

The most basic, cheap and straightforward method for O-
acetyl content estimation is the colorimetric Hestrin assay
(Hestrin 1949) which is routinely used with purified
glycoconjugate vaccines or polysaccharide components
but gives less precise information (Gao et al. 2019).
Another potential approach to determine the degree of O-
acetylation could be an enzyme immunoassay using an O-
acetyl-specific monoclonal antibody. However, due to the
importance of the O-acetyl pattern for vaccine immunoge-
nicity, complementary methods to colorimetry and immu-
noassays were developed, enabling acetyl group detection,
content and positioning on the purified CPSs. These are
currently NMR, and HPAEC with conductivity detection
(HPAEC-CD), although this is not yet widely used
(Lemercinier et al. 2000; Kao and Tsai 2004; Hitri et al.
2019). NMR is considered to give more information on O-
acetyl position in general and has benefits over wet chem-
ical methods since it can be used for CPS fingerprinting
and gives a wider spectrum of information; however, it
becomes difficult to interpret when more complex cross-
linked conjugates are evaluated. Nevertheless, 1H and 13C
NMR coupled with mass spectrometry was applied suc-
cessfully to detect O- and N-linkages in Vi PS in a
GMMA construct (2020). HPAEC-CD is up to 20 times
more sensitive compared with the Hestrin test, requires a
smaller amount of material compared to NMR and is a
superior method to evaluate monosaccharide composition
(Mulard 2017).

While circular dichroism (CD) is commonly applied for
the characterisation of carrier protein integrity, effect of
conjugation and stability determination, a recent study
has shown its potential for monitoring O-acetylation
(Jones et al. 2020). A strong signal from the Vi, unusual
to polysaccharides, is observed in the far-UV from O-acet-
ylated and non-O-acetylated residues in the Vi. With a

larger amount of information generated by CD for Vi com-
pared to other conjugates, it may become a useful method
to monitor vaccine stability by analysing the degradation
or de-O-acetylation behaviour of the polysaccharide. This
method poses larger uncertainty when reading weak spec-
tra. To assess the suitability of CD for this application,
more detailed data comparisons from orthogonal methods
and corrections for specific saccharides are required (Jones
et al. 2020).

Detection of polysaccharide degradation or detachment
in vaccine products

Free, unconjugated PS content is the main indicator of
vaccine stability and inversely correlates with its potency,
or effective dose; a product with increased free saccharide
content could be less immunogenic, due to a lower amount
of conjugated saccharide, and the potential for unconjugat-
ed saccharide to neutralise pre-existing antibody. It can be
quantified successfully by only a limited number of
methods that allow reproducibility. This measurement is
reflecting the stability of the glycoconjugates. To deter-
mine free PS content, two steps are required: free PS sep-
aration and its quantification. The first step can routinely
be done by chromatography (size, ion-exchange, hydro-
phobic interaction), chemical precipitation with acid or de-
tergents, ammonium sulphate or ammonium adsorption,
capillary electrophoresis, gel filtration, centrifugal ultrafil-
tration, ultracentrifugation, solid-phase extraction or im-
munoprecipitation. The second step can be performed
using colorimetry or immunoblotting or by using physico-
chemical techniques (HPLC, HPAEC-PAD or gas chroma-
tography (GC) post-hydrolysis), which are more robust ap-
proaches (Ravenscroft et al. 2015b).

Giannelli et al. found that UV-coupled HPLC-SEC detec-
tion of free Vi PS proved to be problematic due to the variable
extinction coefficient of Vi that depends on O-acetyl content
and chemical modifications required for carrier attachment
(2017). An alternative free PS purification method was intro-
duced using the Capto Adhere resin separation that worked
irrespective of conjugated protein and delivered a more sensi-
tive and quantitative measurement for a range of Vi lengths. It
works by entrapment of intact conjugates and HPAEC-PAD
quantification of the Vi component recovered in the filtrate.
Capto Adhere resin separation coupled with HPAEC-PAD
achieved 75–120% recovery of free Vi PS. The absence of
conjugates in the buffer strip solutions was verified by a dot-
blot assay and HPLC-SEC chromatograms (Giannelli et al.
2017). Their most recent paper on Vi detection suggests an
optimised hydrolysis conditions for the HPAEC-PAD detec-
tion method to get more accurate data on the de-O- and de-N-
acetylated Vi PS monomer, discussed later in the review. A
deoxycholate (DOC) precipitation method (Lei et al. 2000), in
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which free saccharide is recovered in the supernatant of DOC-
precipitated protein samples, has also been shown to measure
reproducible % free saccharide levels (Fig. 1).

Another one-step immunoprecipitation method based on
anti-carrier protein antibody-coupled Sepharose beads was
developed at the Serum Institute of India. The method claims
to overcome HP-SEC limitations and can be applied for free
PS from multivalent polysaccharide-protein conjugate vac-
cine formulations, total PS content and percent adsorption of
polysaccharides (Serum Institute of India 2013).

Molecular size profiling and solution properties
of glycoconjugate vaccines

Glycoconjugates manufactured by conjugating PS to a carrier
protein will have increased mass, altered shape and possibly
changes in behaviour in solution compared to their individual
components. Flexible interactions in solution and inter-
molecular interactions can be influenced by the character of
the polysaccharide as well as the protein, and changes to pro-
tein sites required for antigen processing and T-cell epitope
accessibilities could be affected. The type of carrier protein
that is conjugated may influence the choice of analytical tech-
niques. While monovalent “sun type”, for example CRM197

conjugates may be more straightforward to characterise, TT-
based cross-conjugated glyco-vaccines (e.g. “lattice type”)
may be more challenging (Barel and Mulard 2019). Proven
methods to measure molecular size distribution, hydrodynam-
ic size, viscosity and solution behaviour (of the
glycoconjugate or the separate polysaccharides and/or carrier
proteins) include SEC-MALS/UV/RI/Viscosity, degree of po-
lymerisation (repeating unit analysis), analytical ultracentrifu-
gation and optical spectroscopy (MacCalman et al. 2019).

When determining molecular integrity of polysaccharides in
solution, challenges linked to the polydisperse nature of the
saccharides arise, in addition to their higher non-ideality
(through co-exclusion and polyelectrolyte effects) compared
to proteins. SEC-MALS is considered a useful technique with
minimal non-ideality effect due to the dilution from the col-
umns. However, it relies on interaction with a matrix, is depen-
dent on % recovery and sometimes ignores hydrodynamic
changes brought about by the PS moiety detachment or protein
unfolding which increases the apparent relative size, as if the
conjugate structures were intact (Ravenscroft et al. 2015b). In
addition, the separation columns have a size separation limit,
and the assumption must be made; there are no anomalous
interactions with the polymer matrix which makes up the sep-
aration columns. SEC-MALS/RI/viscosity of Vi polysaccha-
rides in different eluents demonstrated the need to consider
column choice and buffers salts to obtain representative recov-
eries and highlighted the differences that salt composition
makes to hydrodynamic size and viscosity (Hitri et al. 2019).
See also the following examples of other vaccine-relevant

oligo- and poly-saccharide components (Jumel et al. 2002;
Bardotti et al. 2008; Harding et al. 2012; Lockyer et al. 2015).

Analytical ultracentrifugation (AUC)—a matrix-free
method—has also been extensively applied for molecular dis-
tribution and molecular weight of polysaccharides (see, for
example Harding et al. 2010 and 2015 & references cited
therein). The two main types of AUC are sedimentation ve-
locity and sedimentation equilibrium. Sedimentation velocity
provides separation based on size and shape, and analysis,
normally from Rayleigh interference optical records.
Sedimentation coefficient distributions provide a measure of
heterogeneity, and if conformational information is known,
the distributions can be converted into molecular weight dis-
tributions using the “Extended Fujita”method. Sedimentation
equilibrium—at slower speeds than for sedimentation
velocity—gives optical records that are directly related to mo-
lecular weight. Some caution is necessary with regard to non-
ideality, either by working at low concentration to minimise
these effects (the lowest working concentrations are ~ 0.05
mg/mL for sedimentation velocity and ~ 0.4 mg/mL for sed-
imentation equilibrium) or by making measurements at differ-
ent concentrations and performing an appropriate extrapola-
tion to zero concentration where non-ideality effects vanish.
Conformation and flexibility can be estimated using power-
law coefficients (relation between sedimentation coefficient
and molecular weight) and the Wales-van Holde ratio (ratio
of the “non-ideality” concentration dependence sedimentation
coefficient parameter to the intrinsic viscosity) and using the
persistence length calculations based on “HYDFIT” combina-
tions of SEC-MALS, viscosity and AUC data (see
Abdelhameed et al. 2012, 2016a, b) for examples with Hib
and meningococcal-TT conjugates.

Optimal spectroscopic methods such as near-UV CD and
Trp fluorescence spectroscopy also can report on the mobility
and solvent accessibility of aromatic amino acid side chains.
The effects of conjugation on these groups, as well as the sec-
ondary structure and folding of a carrier protein, as determined
by far-UV CD, are important characterisation methods and will
remain important for the initial characterisation of novel recom-
binant carrier proteins. Carrier protein and conjugate molecule
characterisation and assessment of thermal stability have been
described for these carrier proteins: CRM197 (Crane and
Bolgiano 1997; Bolgiano et al. 2001; Ho et al. 2001; Bardotti
et al. 2008), TT (Ho et al. 2002; Lockyer et al. 2015), rEPA (Ho
et al. 2006), DT and protein D (Lockyer et al. 2015). Structural
effects on conjugated carrier proteins have been demonstrated
to correlate with reduction in the immune response against the
carrier (Beresford et al. 2017).

Novel Shigella vaccines: glycoconjugates and GMMA

Several vaccines in clinical trials are currently targeting the
most common serotypes of Shigella (Table 5); however, a
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more promising direction to take maybe towards
multiprotection formulations (WHO 2020a). The WHO sug-
gested existing recommendations for glycoconjugate vaccines
control to be followed in product guidance for Shigella vac-
cines (WHO 2020a). Since Shigella vaccines are based on the
O-polysaccharides anchored to the LPS, they are more chal-
lenging to produce and control. Conjugation chemistry of
multiple antigens is structurally complex, and LPS requires
laborious extraction and detoxification, which may affect mo-
lecular integrity. LPS and lipoproteins in GMMA act as
immunostimulatory components, which alter their
reactogenicity: the level of LPS acylation is important for
determining the potency and safety of vaccines (De
Benedetto et al. 2017a).

Alternatives to multistep chemical conjugation include
bioconjugation using transformed E. coli, GMMA vesicles
and synthetic conjugates (Kis et al. 2018). GMMA vaccines
are already manufactured in GMP-quality conditions against
S. sonnei, S. flexneri and nontyphoidal Salmonella strains
(Gerke et al. 2015). Novel GMMA formulations are usually
characterised by conventional analytical methods used for
other glycoconjugates, being verified for their use (Micoli
et al. 2020a, b; Raso et al. 2020). For GMMA, O-Ag core
sugar content can be quantified by HPAEC-PAD, after
performing acid hydrolysis directly on GMMA. After O-Ag
extraction, total sugar content can be done using a suitable
colorimetric method, or NMR, which also provides structural
information and assesses purity (Raso et al. 2020). The con-
centration of O-Ag can be determined with a combination of
NMR and HPAEC-PAD (Gerke et al. 2015). Protein and lipid
content will need to be determined to calculate LPS/protein
ratios.

The GMMA size distribution can be determined by dynam-
ic light scattering (DLS). Other methods described for
GMMA particle size include multiangle light scattering
(MALS) that can be coupled to the high-performance liquid
chromatography–size exclusion chromatography (HPLC–
SEC/MALS, which also helps to check sample purity) and
nanoparticle tracking analysis (NTA) (De Benedetto et al.
2017b).

Meloni et al. used hydrolysed GMMA (1% acetic acid v/v,
neutral ised with 28% NH4OH) from Salmonel la
Typhimurium SL1344 ΔtolR O-antigen (O-Ag) PS purified
by a tangential flow filtration method to separate and analyse
O-Ag, and it was revealed that such method strips off the low
molecular mass O-Ag completely in GMMA and wild-type
bacteria, shown by HPLC analysis of the batches (2015).
Saccharide content was then analysed by HPAEC-PAD,
confirming the differential monosaccharide ratios of low and
medium molecular mass antigens in GMMA and wild-type
bacteria. This O-Ag has more similarity to an LPS, which
may be relevant for Shigella GMMA characterisation. This
method highlights that O-Ag purification must be optimal to

fully characterise GMMA constituents; however, the ap-
proach may be useful to evaluate the proportion of larger
Mw components with HPAEC-PAD, and seems to work well
as a direct O-Ag separation method in enteric Salmonella
(Micoli et al. 2013).

Ravenscroft et al. described analytical techniques used to
prove the structural integrity of S. dysenteriae type 1-EPA
glycoconjugate produced by innovative biosynthetic
Escherichia coli glycosylation that are suitable for character-
isation of other Shigella serotypes and based on conventional
approaches like (RP/NP)HPLC-SEC/UV, immunoblot detec-
tion, 1D and 2D NMR and MALDI MS/MS post-
trifluoroacetic acid (TFA) hydrazinolysis (2016). The recov-
ery of the Rha repeating unit was low as the free 6-deoxy
hexose decomposed due to hydrolysis employed to release
GlcNAc, suggesting the importance of optimal hydrolysis
conditions. The S. dysenteriae type 1 O-PS structure was fully
characterised by 1D and 2D NMR spectroscopy with full in-
formation provided on the Gal, two Rha and GlcNacspin sys-
tems evaluated by the use of 1D TOCSY, 2D 1H–1H (COSY
and TOCSY) and 1H–13C (HSQC, HMBC and HSQC-
TOCSY) experiments (Ravenscroft et al. 2016).

Part III

Emerging techniques to aid glycoconjugate design

Structural vaccinology

Structurally complex polysaccharides conjugated to carrier
proteins may pose a risk of exerting immunodominance over
a less immunogenic but essential epitopes in a combination
vaccine, which is highly undesirable for immunisation.
Neoepitopes that form due to degradation or modification of
polysaccharides may adversely impact the immunogenicity of
native polysaccharides. Getting access to comprehensive
structural evaluation of the mechanisms of binding and epi-
tope characterisation tools may help to expand current under-
standing of how immunodominance is dictated in
glycoconjugates and even provide novel data allowing for
the enhancement of the antigen structure to achieve adequate
and balanced protection (Anish et al. 2014).

Computational methods to facilitate synthetic antigen design

Establishing and evaluating carbohydrate structure-function
relationships that affect immunogenicity are topics of high
interest. Glycan shape complexity, chain flexibility, dynamic
properties of pyranose rings and diversity of functional groups
make structural analysis a priority that would benefit from
multiple approaches. Where 3D physicochemical methods
are not informative enough, computational methods may
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supplement the characterisation of structural determinants of
affinity, specificity and antigenicity. In silico simulations
could allow for a study of conjugation and binding at an atom-
ic level when they cannot be experimentally deduced.
Computational methods allow for tracking molecular effects
on saccharide antigenicity (through enthalpy and entropy
changes), which is important for the selection of the right
candidate for synthesis. Moreover, currently used methods,
such as X-ray diffraction or NMR spectroscopy, may provide
biased results for large saccharides in more dilute solutions.
While NMR techniques are relevant for homogeneous saccha-
ride characterisation, implications linked to molecular mass
limit the scope of applications for large antibody-PS com-
plexes and often need coupling with in silico molecular dy-
namics (MD) simulations for structural definition (Anish et al.
2014). MD simulations of vaccine-relevant PS that consider
chain length and counterions in a hydrated environment have
identified potential epitopes and conformer distributions for
Vi PS and O-Ag (Hitri et al. 2019; Hlozek et al. 2020).

Characterisation and structural information for
glycoconjugates cannot be achieved by a single method; thus,
multiple biophysical techniques combined with computation-
al methods allow deduction of carbohydrate structure-function
analysis and antibody interaction (Anish et al. 2014).
Molecular modelling coupled with NMR spectra of the mo-
lecular structure has been implemented for more optimal de-
sign and immunogenicity of Shigella SD1 synthetic
glycoconjugates. It allowed identification of a preferred hair-
pin conformation of a synthetic O-Ag (the ABCD
tetrasaccharide) that was representing the native O-Ag more
closely. A hairpin conformation for ABCDA’ saccharide and
larger O-Ag parts in a helix conformation allowed partial ex-
posure of B and D monosaccharides, thereby inducing anti-
body recognition that could lead to an enhanced anti-O-Ag
antibody response, which is a key parameter for vaccine po-
tency and safety considerations (Barel and Mulard 2019).
These methods provide alternatives to the 3D structural anal-
ysis of polysaccharides by small-angle X-ray/neutron scatter-
ing, X-ray crystallography and NMR (Anish et al. 2014).

Current efforts for better polysaccharide
characterisation

Modified methodologies of HPAEC-PAD for more precise Vi
saccharide quantitation

HPAEC-PAD is currently the most robust and detailed quanti-
fication technique used for PS compositional analysis of bacte-
rial vaccines (Rohrer 2020). However, due to the low suscepti-
bility of Vi and other uronic acids to PS depolymerisation, this
method is constantly being optimised for more accurate and
precise readings. While strong alkaline-based depolymerisation
is efficient for Vi in monovalent formulations, combinations

with S. sonnei O-antigen, where co-elution with Vi may occur,
are likely coming from the degradation of the alturonic acid
(Gerke et al. 2015; Giannelli et al. 2020). Giannelli et al. further
improved the hydrolysis step for HPAEC-PAD by suggesting
acid hydrolysis with simultaneous use of trifluoroacetic and
hydrochloric acid (TFA:HCl in a 2:13 v/v ratio), to prevent such
co-elution and verified product formation using 1H NMR, 13C
NMR, COSY and HSQC (Giannelli et al. 2020). The presence
of 2-amino-galacturonic acid monosaccharide in equilibrium
between α and β conformations was also observed for Vi.
Recovery of 101% was reported of reduced (de-O- and de-N
acetylated) monosaccharides with increased sensitivity due to
the high yield of hydrolysis product(s) compared to the
depolymerisation method. This procedure could facilitate the
development of standards in enteric vaccines containing both
Vi PS and O-Antigens that also contain amino uronic acids
(Giannelli et al. 2020).

We have compared the novel HCl:TFA hydrolysis method
for Vi PS quantitation of a typhoid conjugate vaccine contain-
ing S. Typhi Vi PS, with the standard NaOH hydrolysis con-
ditions (Gao et al. 2019) using WHO International Standards
for the polysaccharides (Fig. 1).

The content of Vi saccharide in a typhoid conjugate vac-
cine was quantified usingWHO International Standards for Vi
PS (Gao et al. 2019). Standards and vaccine samples were
base depolymerized with 2 M sodium hydroxide for 4 h at
110 °C (panels a to c) or acid-hydrolysed with 10% TFA-8 M
HCl for 4.5 h at 80 °C (panel d), following the recovery of
unconjugated PS in the supernatant of a vaccine sample pre-
cipitated by sodium deoxycholate (1% w/v) pH 8.0 and HCl
(0.04 M) (Lei et al. 2000). The separation was performed on a
CarboPac PA-1 column (2 mm) at 25 °C with an Amino Trap
as a guard column. Base-treated samples were eluted at a flow
rate of 0.25 mL/min for 30 min, and with elution conditions of
0–2 min, 100 mM NaOH, 40 mM NaNO3; 2–22, 100 mM
NaOH, 40–150 mM NaNO3 (Gao et al. 2019); acid-
hydrolysedVi was run at 0.375mL/min using isocratic elution
with 400 mM NaOH for 15 min. N-Acetyl glucosamine-6-
phosphate (10 μg/mL) (peak 1) was injected in samples and
standards to normalise the Vi signal in base-treated samples.
Standard curves were constructed using 27, 9, 3, 1 and 0.5 μg/
mL Vi PS shown in panels a and b as alternating solid and
dotted lines (peak 2) from C. freundii (panel a) or S. Typhi
(panel b) polysaccharide samples. The vaccine sample (panel
c) injected was 10 μg/mL Vi PS to quantify free, unconjugat-
ed (dotted line) or total Vi PS (solid line). Panel D of acid-
hydrolysed standards and sample shows from top to bottom,
27 (μg/mL) C. freundiiVi, 27 S. Typhi Vi, 9 C. freundii Vi, 9
S. Typhi Vi and total saccharide vaccine sample. Samples
were injected in duplicate. For base-treated samples, Vi eluted
within the expected time interval, at about 14.3 min, and both
standards yielded R2 > 0.98. For acid-hydrolysed samples, Vi
eluted at about 5.4 min and the signal was 6 times higher.
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Both the Vi PS concentration (μg per dose) and % free Vi
PS were lower using the C. freundii sample by 7.7% and
4.3%, respectively, compared to native Vi PS standard under
base treatment. This suggested that C. freundii is an imperfect
alternative to the native Vi that could underestimate Vi content
in the sample. Homologous source Vi PS should be used for
quantitation (Gao et al. 2019). Linear standard curves were
obtained (up to 10 ug/ml Vi) with the acid hydrolysis method,
which has the potential to separate amino-uronic acids and O-
LPS with higher sensitivity. The establishment of an acid-
stable internal standard for quantitation is required.

Methods for robust characterisation of multivalent
combinations and Shigella antigens

Shigella LPS and O-Ag analysis may be a laborious task due
to a vast diversity of antigens in different serotypes.
Currently, primary testing to identify the O-Ag usually
limited to techniques using specific identifiers for the se-
rotype detection, such as membrane insertion and ELISAs
(Stromberg et al. 2017). The lack of sensitive and selective
antigen ligands suitable for every serogroup remains a

major problem. Ravenscroft et al. also applied capillary
gel electrophoresis for Shigella dysenteriae 1-EPA biocon-
jugates mentioned above to get better resolution of individ-
ual repeating units, as well as to monitor their integrity
(Ravenscroft et al. 2016).

Combination methods suggested for future analysis
and vaccine design

Coupling high-resolution mass spectrometry and 1H NMR
techniques was tested with Neisseria meningitidis serogroup
B, enabling simultaneous analysis of conjugation reaction
course and final products (Yu et al. 2018). However, the
utilisation of mass spectrometry with polydisperse macromol-
ecules (10–100 kDa), like S. Typhi O-PS, provides less infor-
mation as in the case of glycoconjugates derived from syn-
thetic antigens or less complex glycans (Méndez et al. 2018).

The NEWCARBOVAX project was launched in 2017,
which showcases an effective vaccine design platform that
has been tested with CPSs from S. Typhi, Hib and type Ib
group B Streptococcus, that successfully induced T helper
cells (T carbs) successfully (CORDIS | European

Fig. 1 HPAEC-PAD chromatograms obtained from NaOH-depolymerized (a–c) and TFA-HCl-hydrolysed (d) C. freundii Vi polysaccharide (a), S.
Typhi Vi (b) polysaccharide and a typhoid conjugate vaccine (c) The individual traces are described in the text
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Commission 2020). This platform is going to be a helpful
approach if coupled with research into novel conjugation
chemistry approaches in this field.

Any of the new and existing conjugates under development
may benefit from the application of Quality by Design princi-
ples in the development and testing of vaccines and interme-
diates. Current technologies discussed in this review are fo-
cused on more common glycoconjugate formulations.
Nanoparticle-based vaccines, protein capsular matrix vaccines
and liposomal encapsulation of polysaccharides are becoming
a new trend in vaccine design and will require new validated
methods of quality control.

Lastly, classical approaches to evaluating thermal
unfolding and stability for lipid-based vaccines destined for
hot climates may need to be reconsidered to account for their
membrane dynamics. The lipid composition of the mem-
branes may affect membrane phase transitions at relatively
lower temperatures than expected for the polysaccharides
and some protein domains, and the impact of such dynamics
on immunogenicity, safety and protection will need to be con-
sidered as shown for Salmonella and Shigella GMMAs using
differential scanning calorimetry in combination with mono-
clonal antibody binding and immunogenicity (Palmieri et al.
2021).

Summary

Limited antibiotic treatment options against the emerging bur-
den of typhoid fever and shigellosis infections and the con-
tinuing need for cleaner water, hygiene and sanitation empha-
sise the urgent need for effective preventions against commu-
nicable enteric diseases. Glycoconjugate vaccines could be-
come a promising solution targeting the most infectious
strains of these bacteria. With the updated WHO recommen-
dations on the quality, safety and efficacy of typhoid conju-
gate vaccines adopted by the ECBS in 2020 and SAGE rec-
ommendations for typhoid conjugate vaccines to be used as
preventive measures in endemic countries or where there is a
high burden of antimicrobial resistance (WHO 2017a), ana-
lytical methods for evaluating typhoid conjugate vaccines are
becoming established. The efforts to produce protocols for
Shigella and non-typhoidal Salmonella vaccine development
will be supported by academia, institutions, public health bod-
ies and funding organisations over the next few years (NIBSC
2020). These are major steps towards faster commercialisation
of glycoconjugates and more complex vaccines to address an
emerging global need for enteric disease prevention.

This review highlights applications of conventional
methods of glycoconjugate and more complex vaccine struc-
tures. Alterations to experimental conditions are constantly
made and protocols are being modified together with refer-
ence standards to serve the demand for higher accuracy for

glycoconjugates that are less susceptible for hydrolysis or be-
have differently in solution. Together with modern computa-
tional approaches, a more precise design of glycoconjugates is
possible, which allowing better predictions on vaccine behav-
iour, structural changes in solution and immunogenicity,
which can be applied to a broad spectrum of vaccines. More
validation is required to establish the most effective and suit-
able methods for glycoconjugate and more complex vaccine
analysis to bring uniformity to existing protocols, aiding fu-
ture achievements in this area of research.
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