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A B S T R A C T   

Non-stationary Extreme Value Analysis (NEVA) allows to determine the probability of exceedance of extreme sea 
states taking into account trends in the time series of data at hand. In this work, we analyse the reliability of 
NEVA of significant wave height (Hs) and peak period (Tp) under the assumption of linear trend for time series of 
annual maxima (AM) Hs in the Mediterranean Sea. A methodology to assess the significance of the results of the 
non-stationary model employed is proposed. Both the univariate long-term extreme value distribution of Hs and 
the bivariate distribution of Hs and Tp are considered. For the former, a non-stationary Generalized Extreme 
Value (GEV) probability is used, and a methodology to compute the parameters of the distribution based on the 
use of a penalty function is explored. Then, non-stationary GEV is taken as a reference to compute the Envi
ronmental Countours of Hs and Tp, assuming a conditional model for the latter parameter. Several methods to 
compute linear trends are analysed and cross-validated on the series of AM Hs at more than 20,000 hindcast 
nodes. Results show that the non-stationary analysis provides advantages over the stationary analysis only when 
all the considered metrics are consistent in indicating the presence of a trend. Moreover, both the univariate 
return levels of Hs and bivariate return levels of Hs and Tp show a marked dependence to the time window 
considered in the GEV distribution formulation. Therefore, when applying NEVA for coastal and marine appli
cations, the hypothesis of linear trend and the length of the reference data used for the non-stationary distri
bution should be carefully considered.   

1. Introduction 

Non-Stationary Extreme Value Analysis (NEVA) has reached promi
nence in water engineering due to the importance of including climatic 
trends in traditional Extreme Value Analysis (EVA). Coastal engineering 
makes no exception in the relevance of this topic (Corbella and Stretch, 
2012; Lucio et al., 2020). Design parameters, such as the design signif
icant wave height with a prescribed return period, are directly influ
enced by the existence of trends. In fact, the time-dependency of the 
statistical distribution of a certain environmental stochastic process 
determines the time-dependency of the parameters of the associated 
extreme value distribution (Renard et al., 2013). For example, the shape, 
scale and location parameters in the Generalized Extreme Value (GEV) 

probability distribution, can be considered varying in time due to an 
underlying trend (Coles et al., 2001). 

However, the condition of time-dependency of all three parameters 
is often simplified, and the location parameter only is modelled as a 
linear function of time, while the scale and the shape parameters are 
kept constant. This is motivated by the need of having very long time 
series to reliably modelling the time variation of the latter two param
eters. This assumption was used in a number of applications (Barbero 
et al., 2017; Cheng and AghaKouchak, 2014; Luke et al., 2017; Menta
schi et al., 2016; Vanem, 2015); all of the cited works used the model: 

μ= μ0 + μtt, (1)  
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where μ is the location parameter of non-stationary GEV (hereinafter N- 
GEV) probability distribution, μ0 the stationary part, μ1 the time-varying 
one and t is the reference time used to estimate μ. This model assumes 
that the centre of the distribution at hand is, on average, shifted by a 
fixed ratio over time. Implicitly, it assumes that the trend of the popu
lation of the extremes is linear (Coles et al., 2001). Notwithstanding the 
popularity of this model, there is no analysis on the correlation between 
μt and the magnitude of the trend to determine whether the two are 
consistent regardless of the significance of the trend. 

The magnitude and significance of linear trends was investigated for 
the annual maxima (AM) of significant wave height (Hs) in the Medi
terranean Sea (MS) by De Leo et al. (2020), who assessed the use of a 
linear slope modified according to the model of Sen (1968) and Theil 
(1992) (referred to as b) to compute the magnitude of trends. To this 
end, De Leo et al. (2020) evaluated b against the Mann-Kendall test 
(Mann, 1945; Kendall, 1955) and the Innovative Trend Analysis (Şen, 
2011, 2013), neither bound by the assumption of a linear trend, and 
showed that the outcomes of all the trend metrics are remarkably 
related. This finding is not obvious: indeed, while the use of b allows to 
compute the magnitude of a linear trend, the Mann-Kendall test, and in 
particular its pvalue (henceforth referred to as pMK), only allows to assess 
the significance of a monotonic trend. That is, if pMK attains close-to-0 
values, then the null hypothesis that an either positive or negative 
monotonic trend characterises the data at hand cannot be rejected; on 
the contrary, close to 1 values indicate that the null hypothesis should be 
rejected. In case of the time series of AM Hs in the MS, the vast majority 
of relevant (negligible) trends in terms of b also resulted to be significant 
(not significant) according to pMK. Therefore, b may be used to get a first 
insight into the magnitude of a long-term trend, and to validate the 
hypothesis that the parameters of the selected extreme value distribu
tion are linearly varying in time. Based on these grounds, the results of 
De Leo et al. (2020) were here employed to assess the reliability of the 
estimates of μt computed on the same AM Hs series using the Maximum 
Likelihood Method (MLM). The Mann-Kendall pMK and the slopes of 
Theil-Sen (Sen, 1968; Theil, 1992), referred to as bAM, were considered 
to evaluate the consistency among the different methods at more than 
22,000 hindcast locations. As a second step, the return levels of Hs were 
computed at specific sites according to both EVA and NEVA, and results 
were compared. 

For the determination of the N-GEV distribution parameters it was 
taken into account that the MLM could fail to provide reliable Maximum 
Likelihood Estimators (MLE) parameters, especially when the shape 
parameter (ξ) attains values lower than − 1 (Smith, 1985). In such a case, 
alternative methods for the computation of the parameters should be 
employed; for instance the method of L-moments (Hosking and Wallis, 
2005) is a suitable alternative for stationary EVA. However, in case of 
N-GEV distribution, no explicit expressions for the computation of the 
parameters have been derived yet, thus the use of L-moments is not 
straightforward. As a possible alternative, a penalized version of the 
MLM, referred as PMLM, can be used. This method takes advantage of a 
penalty function (Pf ) to constrain the likelihood to a subset of possible 
values of ξ (Coles and Dixon, 1999). In the framework of met-ocean 
parameters, Mackay et al. (2011) considered a penalty function to 
derive return levels of significant wave heights, using the estimators 
proposed by Coles and Dixon (1999). In the present work, we present an 
alternative formulation for Pf , which allows to avoid spurious estimates 
of ξ, while it does not affect the N-GEV parameters in case that the MLM 
can be reliably applied. 

EVA in coastal engineering is further complicated by the fact that in 
understanding extreme sea state conditions the knowledge of Hs is not 
sufficient and information on a spectral period (e.g. the peak period Tp) 
is also needed. A possible way of characterizing joint extremes of Hs and 
Tp is by way of bivariate quantile curves corresponding to OR and AND 
exceedances, respectively, as outlined in e.g. Vanem (2020). Among the 
other methodologies to take into account both parameters in extreme 

value analysis, the Environmental Countour Method, first proposed by 
Haver (1985) and Haver (1987) and subsequently followed and 
extended in many works such as Haver and Winterstein (2009); Hasel
steiner et al. (2017), defines extreme conditions depending on Hs and Tp 

by computing contour lines. These lines represent the Environmental 
Contours (ECs) of a given exceedance probability, which essentially 
indicate the probability of exceeding a hyperplane (or a tangent line in 
2-dimensional cases). Different contour methods differently defines 
these hyperplanes, for instance in the variables space (Huseby et al., 
2013, 2015), or in a transformed standard normal space (Haver and 
Winterstein, 2009); the differences between these approaches are dis
cussed in Vanem and Bitner-Gregersen (2015) and Vanem (2017). In 
general, the Environmental Contour Method requires a joint extreme 
value probability for the two parameters, which can be obtained, for 
example, starting from a GEV distribution for Hs and assuming a con
ditional probability distribution for Tp. Starting from this distribution, 
one of the methods available to compute the ECs is the Inverse First 
Order Reliability method or "IFORM" (Haver and Winterstein, 2009; 
Leira, 2008). 

While the cited literature analyses traditional EVA, the analysis of 
the ECs with NEVA is still very limited. Examples of bivariate analysis of 
Hs and Tp can be found in Vanem (2015), who took advantage of the 
theory of copulas; and Huseby et al. (2013), who computed ECs based on 
a Monte Carlo approach and modelling the effect of a long-term trend in 
Hs by modifying the parameters of a 3-parametric Weibull distribution. 
The present work seeks to provide a novel, efficient and straightforward 
method to compute ECs for bivariate analysis of Hs and Tp in the 
framework of NEVA. For this reason, ECs were computed instead 
assuming a distribution of Tp conditioned to the N-GEV model applied to 
the series of AM Hs. As in case of the univariate analysis, the return levels 
following both the EVA and NEVA approaches were computed and 
compared. 

In summary, there are still several open questions on the optimal use 
of NEVA for engineering purposes, above all in the assessment of 
extreme sea state in a basin such as the MS in which the level of sig
nificance of the trends found varies greatly (De Leo et al., 2020). 

In this respect, this work aims to trace a work-flow for a solid 
exploratory data analysis, that can be used for engineering practice and 
that helps to prevent the misuse of non-stationary models (Serinaldi and 
Kilsby, 2015). 

The article is organised as follows. After this Introduction, Section 2 
introduces the data employed in this study, along with the methodology 
used to compare the stationary and non-stationary analysis. Results are 
presented and discussed in Section 3, followed by Section 4, which 
provides conclusions of this research. 

2. Data and methods 

This work used the wave hindcast data provided by the Department 
of Civil, Chemical and Environmental Engineering of the University of 
Genoa (Mentaschi et al., 2013, 2015), already validated and used in 
several works on the MS (Besio et al., 2017; Ferrari et al., 2020 among 
others) The hindcast is developed over the whole MS (see Figs. 3–5) at a 
resolution of about 10 km both in longitude and latitude, resulting in 22, 
373 nodes. At each node, the time series of Hs and Tp over the period 
1979–2018 were retained, and the AM Hs were selected for the analysis 
in the paper. First, EVA and NEVA were performed on the selected AM 
Hs series, using both a three parameters GEV distribution and a 
non-stationary four parameters N-GEV distribution. In particular, the 
N-GEV distribution depends on the location parameters μ0 and μt, that 
are related to the parameter μ by Eq. (1), and scale and shape parameters 
that are considered constant in time. The stationary GEV distribution is 
recovered when μt = 0. 

Subsequently, the results of De Leo et al. (2020) for bAM were 
correlated to the estimates of μt computed on the same AM Hs series. pMK 
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was used to verify the consistency between the two different parameters. 
Seven locations among the computational nodes were examined and 
different cases showing bAM and μt either in agreement or not were 
analysed in depth. The significance of trends identified by bAM and μt for 
these locations was assessed by looking at the 95% confidence interval 
(CI) of the two parameters. For bAM CI was computed with the model of 
Hollander et al. (2013); for μt CI was computed using the maximum 

likelihood estimation of the N-GEV distribution parameters. 
The Aikake Information Criteria (AIC, Akaike, 1998) was employed 

to compare the GEV and the N-GEV distributions, to select the best 
performing distribution among them. The AIC allows to select the best 
performing extreme value distribution when the parameters are esti
mated via the MLM. In particular, for a jth (j = 1, 2, ..) distribution, the 
AICj statistic is computed as: 

AICj = − 2lj + 2kj, (2)  

lj being the maximum of the log-likelihood function and kj the number of 
parameters of the jth distribution; for instance, k = 3 and k = 4 for the 
GEV and N-GEV distribution respectively. The distribution with the 
lowest value of AIC is the one to be preferred (Sartini et al., 2015). 

Subsequently, in order to evaluate the possible implications of ac
counting for intra-period trends in the determination of design Hs, return 
values Hs resulting from both the EVA (using the GEV distribution) and 
the NEVA (using the N-GEV distribution) approaches were computed. 
Return values are defined as the values that a variable, in this case Hs, 
attains in relation of the so called return period (Tr), i.e. the level that is 
expected to be exceeded on average once in Tr years (Coles et al., 2001). 
For the N-GEV distribution, the following equations for the computation 
of the return levels of a variable z generally apply: 
{

z = μ −
σ
ξ
{1 − [ − log(1 − P)]− ξ

} for ξ ∕= 0

z = μ − σlog[ − log(1 − P)] for ξ = 0
(3)  

in this case, z refers to Hs, σ and ξ are the scale and shape parameters, 
respectively. P is the cumulative probability, associated to the return 
period considered. μ is defined by Eq. (1) and, since when μt = 0 the 
stationary GEV distribution is recovered, Eq. (3) can be used also for the 
EVA. 

As mentioned in Section 1, at the hindcast nodes where MLM could 
not provide sound estimates for the N-GEV parameters it was introduced 

Fig. 1. Pf profile for different pairs of α and λ. Highlighted in blue is the curve 
for α and λ both equal to 1. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Correlation between the series of bAM and μt  

Fig. 3. Spatial distribution of pMK over the Mediterranean Sea. The black circle 
delimits the hindcast locations showing diverging trend metrics (same in Figs. 4 
and 5). 

Fig. 4. Spatial distribution of bAM over the Mediterranean Sea.  

Fig. 5. Spatial distribution of μt over the Mediterranean Sea.  
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the use of a penalty function. The method to compute the Penalized 
Maximum Likelihood Estimators (PMLE) uses a penalty function (Pf ) as 
follows (Coles and Dixon, 1999): 

Lpen(μ, σ, ξ)= L(μ, σ, ξ) × Pf (4)  

where L is the common likelihood function and Lpen is the corresponding 
penalized version. The chosen Pf in this work reads: 

Pf (ξ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ξ ≤ − 1

exp
[

− λ
(

1
1 + ξ

− 1
)α]

, if − 1 < ξ < 0

1, if ξ ≥ 0

(5)  

where α and λ are coefficient that allow to tune the shape of Pf . 
Therefore, the use of Pf (ξ) allows restrictions on the ξ values. In the 
original formulation by Coles and Dixon (1999), the range on ξ was 
defined in order to obtain values of ξ strictly lower than 1, consistent 
with the hypothesis used to derive analytical expressions for the GEV 
distribution weighted moments (Hosking and Wallis, 2005). In this 
work, Pf (ξ) was applied instead within the [-1,0] range, to avoid 
spurious estimates of the N-GEV distribution parameters owing to MLE 
of ξ lower than − 1. Fig. 1 depicts the profiles of Pf used in this research 
according to different choices for α and λ. 

Finally, this analysis was extended to the bivariate distributions of Hs 
and Tp and the ECs for the Hs-Tp pairs were computed. 

According to the IFORM (Haver and Winterstein, 2009; Leira, 2008), 
a conditional log-normal distribution for Tp was considered, whose re
turn levels are defined as: 
⎧
⎪⎪⎨

⎪⎪⎩

Tp = exp
[
μTp|Hs

+
(
P∗ × σTp|Hs

)]

μTp|Hs
= a1 + a2Ha3

s

σTp|Hs
= b1 + b2exp(b3Hs)

(6)  

μTp|Hs 
and σTp|Hs 

indicate the mean and standard deviation of Tp with 

respect to Hs, respectively, while P∗ is the cumulative probability in a 
transformed standard normal space, which has to be transposed in the 
real Hs-Tp space (details can be found in Vanem, 2016, 2018). ai and bi 

have to be estimated from the whole time series of Hs and Tp: first, the 
support of Hs needs to be divided in subsets of given width, for which 
expected value and standard deviation of the corresponding Tp are 
computed, and subsequently used to fit the curves of Eq. (6). In this 
study, bins of 0.5 m were selected according to the suggestion of Vanem 
(2016). The ECs computed according to this method correspond to the 
probabilities of exceeding hyperplanes in a transformed standard 
normal space. 

3. Results & discussion 

3.1. AM trends in the Mediterranean Sea 

The correlation between bAM and μt for the AM series of Hs is shown 
in Fig. 2, where the color of each marker is scaled according to the pMK of 
the respective series. 

Both bAM and μt allow to estimate a linear trend in the data; however, 
while the latter corresponds to the expected value (i.e. average) of a 
trend, the former corresponds to the median trend, and it is therefore 
less sensitive to possible outliers in the data. Despite the differences 
characterizing the two metrics investigated, for the analysed AM Hs 
series they result to be highly correlated, as shown in Fig. 2. Indeed, it is 
noticed how the Spearman’s correlation coefficient ρ = 0.82, indicating 
a high correlation between the two metrics, i.e. low (high) values of bAM 
are most likely to occur when low (high) values of μt are observed. 
Although the cloud is well aligned with the first/third quadrant bisector, 
a slight bias is recognisable, for which μt tends to be higher than bAM of 

about 0.1 mm/years. In general the signs of bAM and μt agree for higher 
values of the two parameters, while for low trends, showing values of 
pMK close to one, signs are often opposite, i.e. the points are in the second 
or fourth quadrants. There are also locations characterized by consistent 
trend signs for both statistics, but with significant variation in magni
tude. However, also this condition generally occurs when pMK attain 
values close to one, indicating that the hypothesis of underlying trends 
should be rejected. Finally, there are a few locations whose AM Hs series 
show remarkable negative trends in terms of μt , although they are not 
characterized by equally relevant trends according to pMK and bAM. 

The aforementioned correlation can be also appreciated by looking 
at the spatial distribution of pMK, bAM and μt in the MS, as shown in 
Figs. 3–5, respectively. By comparing the maps, it is noticed that bAM and 
μt are similarly distributed over the basin, consistently with the corre
lation shown in Fig. 2. Also, the nodes showing close to zero trends are 
mainly located in transition areas between positive and negative trends 
and they are the nodes with values of pMK close to one. The southmost 
portion of the central Mediterranean basin shows the lowest trend values 
and the highest pMK values. Interestingly, the nodes where significantly 
diverging trend metrics are all found lie in a well limited area, bordered 
with the black circle in the figures. 

3.2. Analysis on the trends significance 

Based on the results illustrated in Section 3.1, seven hindcast points 
were chosen for an in-depth analysis. The points are marked in Fig. 6, 
along with their identifying codes. For the sake of clarity, the points are 
labeled with numbers from 1 to 7, and the respective grid nodes loca
tions can be found in Fig. 7. In the following the node identification 
numbers will be used. 

The locations are representative of the variety of results for bAM and 
μt. In particular, the results for Point_005284 (1) and Point_010830 (2) 
show evidence of consistently positive and negative trends according to 
the metrics examined, respectively. Point_007803 (6) and Point_009108 
(4) show consistent trends signs, but significantly different intensity; the 
same consideration applies for Point_015293 (7) and Point_009107 (5), 
but in these cases bAM and μt also indicate opposite trends. Finally, 
Point_015123 (3) is taken into account as it belongs to the few locations 
significantly departing from the main cloud in Fig. 2. Note that while 
Point 5 and Point 4 are both geographically close and similar in trend 
metrics, on the other hand Point 3 and Point 7 are geographically close 
but with μt being significantly different. The trend metrics correspond
ing to the selected locations are summarized in Table 1. In the table the 

Fig. 6. Hindcast locations retained for the comparison between EVA and 
NEVA approaches. 
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subscript 2.5% and 97.5% indicate the 95% CI for the parameter used. 
From the analysis of CI and pMK, Point 2 is the only location where 

pMK attains a value significantly close to zero and no changes of sign 
occur between the 2.5% and the 97.5% levels of μt and bAM, indicating a 
robust consensus on the presence of a trend. On the contrary, in case of 
Point 1, CI limits of μt and bAM are of opposite sign, although this point 
shows values of the two parameters among the highest encountered in 
the whole MS for upward trends, albeit with pMK > 0.05. No significant 
trends with respect to μt are found also for Point 7 and Point 5; and for 
Point 6, and Point 4, though according to pMK strong evidence of trend 
exist. In these two cases, an alternative trend model rather than Eq. (1) 
could be considered. Finally, as for Point 3, bAM and pMK suggest that no 
trend exists, whilst for μt it was not possible to compute reliably the CI. 
As a matter of fact, for this location MLM fails to estimate the N-GEV 
distribution parameters, owing to an estimate of ξ lower than − 1. This 

Fig. 7. The Mediterranean Sea with the locations of the grid points used for the 
detailed analysis. Points 009180 (4) and 009107 (5) are placed together as they 
lie next to each other. 

Table 1 
Trend metrics for the hindcast locations considered; b∗AM and μ∗

t are expressed in [m/years].  

Point μ2.5%
t  μt  μ97.5%

t  b2.5%
AM  bAM  b97.5%

AM  pMK  

1 − 0.0090 0.0200 0.0490 − 0.0070 0.0200 0.0450 0.1210 
2 − 0.0560 − 0.0340 − 0.0120 − 0.0620 − 0.0340 − 0.0050 0.0290 
3 - − 0.0720 - − 0.0460 − 0.0140 0.0130 0.3890 
4 − 0.0090 0.0010 0.0100 0 0.0220 0.0540 0.0460 
5 − 0.0140 − 0.0020 0.0100 − 0.0020 0.0220 0.0520 0.1160 
6 − 0.0210 − 0.0030 0.0150 − 0.0540 − 0.0230 0.0020 0.0750 
7 − 0.0310 0.0010 0.0330 − 0.0420 − 0.0160 0.0160 0.2940  

Fig. 8. Negative log-likelihood function with respect to μt for the investigated locations. The optimal estimates of μt are highlighted through a red star. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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can be appreciated by looking at the log-likelihood functions for μt at the 
investigated locations in Fig. 8. Shown in the panels are the curves of the 
negative log-likelihood for varying μt and values of the other parameters 
fixed to the respective maximum likelihood estimates. 

It is shown that the estimates lie close to the maxima for all the lo
cations but Point 3, where no local maximum can be found. The bottom 
panels of Fig. 8 show the likelihood functions also for two other loca
tions showing trend outcomes similar to those of Point 3 and located as 
well within the black circle in Figs. 3–5. Also in these cases, no local 
maxima could be found in the likelihood functions, thus the PMLM was 
used, and results are presented further on Section 3.5. 

3.3. Goodness of fit of the GEV and N-GEV distributions 

When the MLM succeeded in computing the N-GEV distribution pa
rameters, the AIC was used as Goodness-Of-Fit (GOF) test to compare 
GEV (k = 3) and N-GEV (k = 4) distributions results. Results are re
ported in Table 2. 

The AIC statistic reveals that the N-GEV distribution performs better 
only in case of Point 2, i.e. where all the metrics employed agree on the 
significance of the trend. For all the other locations, the corresponding 
series would be better modelled by a GEV distribution according to the 
GOF test, as AIC attains lower value compared to the N-GEV distribu
tion. However, in case of Point 1, the values of AIC related to the 
different models are very similar. At this location, also the CI of μt and 
bAM are characterized by different orders of magnitude, with 2.5% and 
97.5% levels indicating opposite trends in the orders of mm/year and 
cm/year, respectively (see Table 1). This indicates a milder variation in 
the CI with respect to all the locations but Point 2, and it is consistent 
with the outcomes of the AIC test. Even though a non-stationary analysis 
would be completely justified only in case of Point 2, for the sake of 
comparison the return levels of Hs following the EVA and NEVA ap
proaches were computed also for Point 1. The AM Hs series at the two 
locations are shown in the Supplement (Fig. S1). 

3.4. Return levels of Hs with EVA and NEVA approaches 

The return levels of Hs were computed by Eq. (3), and the results 
presented in Fig. 9 refer to a reference time t = 40 years (see Eq. (1)); 
here the CI were computed using the Delta method (Coles et al., 2001). 
The colors of the curves and the shaded areas follow the palette used in 
Figs. 4–5 to indicate positive and negative trends (red and blue, 
respectively). 

In case of Point 1, the CI of the EVA approach is narrower than the CI 
of the NEVA one, although the lower bounds of the two approaches 
practically overlap. Moreover, the return levels of Hs following the N- 
GEV distribution lie within the CI computed according to the stationary 
analysis, except for Tr lower than ∼ 4 years. This indicates that the EVA 
and NEVA approaches do not lead to significantly different results. On 
the other hand, in case of Point 2 the return levels obtained with the 
NEVA approach are remarkably lower than the corresponding stationary 
results: the estimated trends are outside the CI of the alternative model 
(i.e. the GEV distribution return levels curve is outside the N-GEV dis
tribution CI and vice versa). This applies regardless of the Tr taken into 

account, and it indicates that the different approaches yield significantly 
different results. 

Besides, the analysis of the return levels of Hs at Point 1 shows that 
including a trend in the extreme value analysis of a time series may lead 
to unexpected results. In particular, the differences in the shape pa
rameters between the GEV and the N-GEV distributions imply the 
intersection of EVA and NEVA curves for Tr of about 300 years, meaning 
that the non-stationary analysis leads to smaller, i.e. less conservative, 
Hs, notwithstanding the underlying upward trend. 

However, it needs to be pointed out that the intersection between 
EVA and NEVA curves at Point 1 is shifted to higher values of Tr if the 
reference time t in Eq. (1) is increased. This can be appreciated by 
looking at Fig. 10, which shows the return levels of Hs for Tr equal to 100 
years, and reference time t varying between 0 and 100 years. 

Here, it is evident how, in case of a positive trend (Point 1), Hs with 
Tr = 100 years resulting from NEVA is higher than the EVA predicted 
value for t = around 33 years. On the other hand, when negative μt is 
considered (Point 2), EVA and NEVA results intersect at t lower than 10 
years, owing to the higher magnitude of the trend. These results need 
further clarification. To adopt a model like that of Eq. (1), implies the 
assumption that μt is able to summarize the trend over the entire period 
in which the variable at hand is defined. In other words, once Tr is fixed, 
the corresponding Hs varies depending on the year of the computation. 
For example, for the hindcast data in this work, trends were computed 
over the 1979–2018 period. Therefore, t = 40 years indicates that the 
trend is referred exactly to the last year of the series, while lower values 
of t indicate that the computation of the return levels is carried out 
before 2018. On the contrary, to raise the value of t beyond 40 years 
implies to assume that the same trend will also characterize the future 

Table 2 
AIC statistics for the hindcast locations considered.   

GEV N-GEV 

Point neg. log-lik AIC neg. log-lik AIC 

1 55.32 116.64 54.36 116.72 
2 57.23 120.46 54.46 116.92 
4 47.17 100.33 47.16 102.31 
5 51.05 108.11 51.01 110.01 
6 46.81 99.63 58.64 125.29 
7 57.30 120.61 57.30 122.60  

Fig. 9. Return levels of Hs according to EVA and NEVA approaches and 
reference time t equals to 40 years. Top panel: Point 1; bottom panel: Point 2. 
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extremes with respect to the last year of the hindcast data at the time of 
the analysis, i.e 2018. However, such hypothesis cannot be taken as 
granted. In principle, one should be careful with extrapolating estimated 
trends beyond the period of available data. Even if a significant trend is 
detected in the historical data, there is no reason to believe that this 
trend will continue into the future, and such extrapolation would be 
associated with large uncertainties. Hence, a more appropriate way of 
predicting future wave climate could be to make regression on some 
carefully selected covariates, for which there exist reliable future pro
jections. For example, sea level pressure projections were used to esti
mate future wave climate in Wang et al. (2004) and Wang and Swail 
(2006), and regression on levels of atmospheric CO2 were used in Vanem 
et al. (2014). Another alternative is to utilize physical wave models 
forced by output from global and regional climate models in order to 
predict future wave climate, as illustrated in Aarnes et al. (2017) and De 
Leo et al. (2021). Nevertheless, it might still be tempting to extend 
historical trends to illustrate the possible effect this could have on the 
future wave climate, acknowledging the large uncertainties this in
volves. In case of Point 2, a trend ≈ -0.03 m/years cannot be expected to 
indefinitely affect the data, as this would eventually result in negative 
values of AM Hs, which obviously would not have any physical meaning. 
Analogously, at Point 1 a monotone upward trend would eventually lead 
to unreliably high extreme waves. Based on these grounds, the trends 
computed at Point 1 and Point 2 were compared to the trends computed 
on the AM Hs series projected in the 2006–2100 period at the same 

locations (De Leo et al., 2021). At Point 2, bAM was found to be equal to 
− 2 mm/years, with pMK ≈ 0.06. These metrics indicate a future down
ward trend which is consistent to the trend computed on the 1979–2018 
a.m. Hs, although the latter is one order of magnitude higher (i.e. more 
negative). At Point 1, the trend of the projected AM Hs was also found to 
be negative, thus not being consistent with the trend computed from the 
historical data. However, these trends are not significant on either case, 
according to the confidence intervals of bAM; this can be appreciated in 
Fig. S2 in the Supplement, where the location with significant trends on 
both the historical series and the future projections are highlighted, and 
further confirm how at this location the outcomes of the non-stationary 
analysis must be carefully assessed. 

3.5. Analysis of the use of the PMLM 

For the locations where the N-GEV distribution parameters could not 
be computed via the MLM, i.e. the locations highlighted with black 
circle in Figs. 3–5, the PMLE described with Eq. (4) and Eq. (5) was 
employed. In this case, α and λ were set both equal to 1, but other 
possible values for these parameters could be investigated, and the best 
setting for Pf should be evaluated on a case by case basis. Yet, this choice 
allowed to compute estimates of μ0, μt , σ, and ξ capable to fit the N-GEV 
distribution to the series of AM Hs where the MLE failed, as shown by the 
empirical frequency distributions in Fig. 11 (gray bins). For these 
particular locations, the pdf curves resulting from the MLE of the N-GEV 
distribution parameters (i.e. the yellow curves in the panels) show a 
strict upper limit that has no physical meaning. This is due to spurious 
estimates of ξ being lower than − 1 according to the MLE, and is partially 
overcome through the use of the penalty function. Indeed, as shown by 
the panels of Fig. 11, the pdf’s resulting from the use of Pf (ξ) (high
lighted with the green color) are not bounded by an upper limit, and 
better fit the frequency bins of the observed data. 

In addition, the use of a PMLE yields less negative values of μt . This is 
in turn reflected in trends that are not significant in the vast majority of 
the locations under investigation, with the CI of μt showing a change of 
sign between the upper and lower bounds, as shown in Fig. 12. These 
results are more in line with the estimates of pMK and bAM than the trends 
related to the MLE for the same locations. On the contrary, the estimates 
of the N-GEV distribution parameters at Point 1 and Point 2 are not 
significantly affected by the use of Pf (ξ), as shown in Table 3. 

3.6. Environmental contours for the joint Hs - Tp probability 

Finally, the ECs for Point 1 and Point 2 are presented in Fig. 13, for 
Tr = 100 years and reference times equal to 1, 40, and 100 years. Also in 
case of the bivariate analysis, it can be noticed how the contribution of 
the non-stationary term increases according to the reference time t, i.e. 
the ECs at Point 1 (positive trend) are shifted to high values of Hs and Tp 

for increasing t. Conversely, in case of negative trends (Point 2), the ECs 
tend to lower Hs-Tp pairs for increasing values of t. This further illus
trates how NEVA strongly depends on t. Results also show that for the 
bivariate analysis, the shift between the EVA and the NEVA in ECs is far 
more relevant for Point 2 than for Point 1, i.e. where the underlying 
trend is higher and significant. However, in the latter point NEVA still 
selects a more severe set of conditions, although depending on t this 
might not have engineering relevance. 

The analysis of the ECs leaves room for further considerations. First, 
it must be mentioned that a bivariate extreme sample is not always 
unambiguously defined. When the block maxima approach is employed, 
one choice is to consider one of the variables as the primary variable as 
done in this research, but other choices could be made (e.g. component- 
wise maxima, samples that maximizes some function of the two vari
ables, etc.). Second, when a conditional model is employed, it is 
reasonable to assume the non-stationarity only in the marginal of the 
lead variable. However, to assume a conditioned distribution of Tp with 

Fig. 10. Return levels of Hs for Tr = 100 years at varying reference time t. The 
green dotted lines refer to t equal to 40 years (i.e. the reference time used to 
compute the return levels of Hs in Fig. 9); the gray dashed lines indicate the 
values of t at which the EVA and the NEVA curves intersect. Top panel: Point 1; 
bottom panel: Point 2. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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respect to the non-stationary distribution for Hs, implies to assume that 
their variations in time are consistent. In fact, these parameters are not 
perfectly correlated, although in case of extreme events they are closely 
tied. Therefore, such hypothesis should be checked thoroughly to avoid 

Fig. 11. Pdfs of the GEV (black curves) distribution with the N-GEV distributions resulting from MLE (yellow curves) and PMLE (green curves) for the cluster of 
points around Point 3 diverging from the main cloud in Fig. 2. Empirical frequencies of AM Hs are shown with the gray bins. t is equal to 40 years. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Comparison of μt resulting from MLM and PMLM in the framework of 
NEVA. CI of the μt estimates are highlighted with the dashed lines. 

Table 3 
Estimates of the N-GEV distribution parameters using the MLM and the PMLM 
for Point 1 and Point 2.    

MLE PMLE 

Point 1 μ0  4.39 4.41 
μt  0.02 0.02 
σ 0.93 0.92 
ξ − 0.25 − 0.23 

Point 2 μ0  6.70 6.67 
μt  − 0.03 − 0.03 
σ 1.02 1.00 
ξ − 0.40 − 0.38  
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that expected variation in the wave parameters were erroneously taken 
into account. In case of the two points here analysed, the trend analysis 
of the maxima Tp concurrent to the respective AM Hs reveal similar 
pattern between the series. That is, a fully consistent trend can be 
pointed out only in case of Point 2, as shown by the results summarized 
in Fig. S3 and Tab. S1 in the Supplement. On the contrary, if the AM Tp 

series were independently selected, no significant trend could be high
lighted at neither locations. 

Finally, it must be recalled that the ECs shown in Fig. 13 provide the 
exceedance probabilities for the selected subsamples, i.e. the AM. If the 
initial datasets were selected using the peak over threshold or the total 
distribution approaches instead of the AM method, this would possibly 
result in a different shape of the ECs related to the low values of the Hs-Tp 
pairs. In other words, the same values of Hs and Tp may be related to 
different joint probabilities depending on the initial selection of the 
extreme subsample, as shown by Vanem (2019). Therefore, care should 
be taken in reading the ECs and selecting the sampling method more 
suitable for the engineering application at hand. 

4. Conclusions and final remarks 

In this paper the use of the Non-stationary Extreme Value Analysis 
(NEVA) was analysed with the aim of developing of a methodology to 
establish when NEVA is to be preferred to traditional Extreme Value 
Analysis (EVA) for engineering applications. The Mediterranean Sea 

(MS) is ideal for such an investigation because of the very variable level 
of significance of the slope of the linear trends of Annual Maxima (AM) 
of the significant wave heigh (Hs) over the basins. The analysis of the 
correlation among the slope of the linear trend (bAM), the time-varying 
part of the location parameter (μt) of the Non-stationary Generalized 
Extreme Value (N-GEV) probability distribution, and the p-value of the 
Mann-Kendall test (pMK) allowed to conclude that only when μt and bAM 
indicate a consistent trend above the confidence intervals (CI), the 
performance of NEVA is superior to that of EVA. This is quantified by the 
Aikake Information Criteria (AIC), which is higher for the N-GEV dis
tribution only when the consistency of the three parameters occurs. In 
the MS, this occurs in computational nodes such as Point 2, which show 
significant negative trends, and is consistent with the projections of 
future wave climate and trends expected in the basin (De Leo et al., 
2021). 

In conclusion, it is suggested to first compute both bAM and μt and 
check that both have consistent sign within the respective CI; when this 
occurs together with low values of pMK, NEVA might be preferred to 
traditional EVA. The paper has also shown that N-GEV distribution pa
rameters can be obtained using the Penalized Maximum Likelihood 
Method (PMLM) that provides Penalized Maximum Likelihood Estima
tors (PMLE) when the Maximum Likelihood Method (MLM) fails to 
compute the required parameters. On the other hand, the use of PMLM 
in the form here proposed does not affect the computation of the N-GEV 
parameters when the MLM is successful. This result indicates that PLME 
may be used as a general method for this type of applications, however 
the generality of this conclusion needs to be further verified. 

The computation of the return levels of Hs is central to marine and 
coastal engineering practice. This work showed that return levels ob
tained with NEVA are particularly sensitive to the reference time t used 
in the N-GEV distribution (see Eq. (1)), this was further shown by 
drawing the Environmental Contours (ECs) to describe the return levels 
of pairs Hs and peak period (Tp). As expected, the difference in return 
level increases with t in the univariate N-GEV distribution, while the 
effect of t is more complex when ECs are used. Results show very well 
that the inclusion of the more extreme combinations of Hs and Tp within 
the chosen EC is deeply influenced by the choice of t. The sensitivity of 
NEVA to t prompts the need of carefully considering two factors when 
applying NEVA in coastal and marine applications. The first is the 
duration of the time series used to infer the trend, the second is the 
validity of the assumption of linear trend for the whole duration of the 
time series available, above all for multi-decadal time series of met- 
ocean variables that are nowadays available. 
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