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Abstract 
Cerebral ischemic stroke is a leading cause of death and disability, but 
current pharmacological therapies are limited in their utility and 
effectiveness. In vitro and in vivo models of ischemic stroke have been 
developed which allow us to further elucidate the pathophysiological 
mechanisms of injury and investigate potential drug targets. In vitro 
models permit mechanistic investigation of the biochemical and 
molecular mechanisms of injury but are reductionist and do not mimic 
the complexity of clinical stroke. In vivo models of ischemic stroke 
directly replicate the reduction in blood flow and the resulting impact 
on nervous tissue. The most frequently used in vivo model of ischemic 
stroke is the intraluminal suture middle cerebral artery occlusion 
(iMCAO) model, which has been fundamental in revealing various 
aspects of stroke pathology. However, the iMCAO model produces 
lesion volumes with large standard deviations even though rigid 
surgical and data collection protocols are followed. There is a need to 
refine the MCAO model to reduce variability in the standard outcome 
measure of lesion volume. The typical approach to produce vessel 
occlusion is to induce an obstruction at the origin of the middle 
cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). 
However, in rodents the CoW is anatomically highly variable which 
could account for variations in lesion volume. Thus, we developed a 
refined approach whereby reliance on the CoW for reperfusion was 
removed. This approach improved reperfusion to the ischemic 
hemisphere, reduced variability in lesion volume by 30%, and reduced 
group sizes required to determine an effective treatment response by 
almost 40%. This refinement involves a methodological adaptation of 
the original surgical approach which we have shared with the 
scientific community via publication of a visualised methods article 
and providing hands-on training to other experimental stroke 
researchers.
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Ischemic stroke disease
In the UK alone, over 100,000 strokes occur annually and approximately 1.2 million stroke survivors live with the
consequences of a stroke.1 Despite innovations in stroke research, treatment and rehabilitation, stroke remains the fourth
leading cause of death within the UK.1 Stroke is one of the commonest causes of complex disabilities in the UK,2 with
two thirds of patients leaving hospital with a post-stroke disability, costing the UK society an estimated £26 billion each
year.3 A person who suffers a stroke is highly likely to be affected by a variety of debilitating outcomes, including
physical (swallowing, pain and sensory changes) and communication difficulties (speech, reading, writing and ability
to understand) along with tiredness and fatigue, impacting on the quality of an individual's daily life.4 A considerable
proportion, ~85%, of strokes that occur are ischemic in nature5 occurring when a cerebral vessel becomes blocked,
preventing vital blood flow to the supply area of that vessel, ultimately leading to cellular damage and death.

The only current pharmacological treatment available with proven efficacy for ischemic stroke is thrombolysis treatment
with recombinant tissue plasminogen activator (rtPA). However, a low number of patients qualify for rtPA treatment,
due to strict eligibility criteria, combined with a narrow therapeutic time window of 4.5 hours results in only ~15% of
patients receiving intra-venous rtPA treatment, a low acceptance value further exacerbated by a recanalization success
rate of <50%.6,7 In addition to pharmacological treatment, mechanical clot removal via endovascular thrombectomy is
increasingly used clinically for the treatment of large vessel occlusions, particularly with patients who respond poorly to
rtPA treatment.6,8 This technique involves the removal of the clot blockage from directly within the affected vessel,
allowing immediate reversal of the clot's impact on blood flow. The prompt restoration of vital blood flow to the ischemic
area is the primary clinical goal, with the potential to salvage vital tissue and cellular function, thus reducing the spread of
increasing ischemic damage.9 This prompt recanalisation of blocked vessels is positively correlated with improved
survival rates and improved recovery for ischemic stroke patients.10

To allow for the development of useful clinical therapeutics for stroke treatment, the pathophysiology andmechanisms of
disease/recovery need to be elucidated. For this to lead to constructive outcomes it is essential to utilise a combined
approach of in vitro and in vivo models. Preclinical ischemic stroke models closely mimic the mechanisms of injury
and subsequent recovery allowing investigation of potential clinically viable treatments. Although over 1,026 potential
neuroprotective therapeutics have been tested preclinically,11 breakthroughs have not passed beyond clinical trial
often due to detrimental side effects, with current effective treatments concentrating on the chemical or physical
unblocking of the occluded vessel. This lack of translation to the clinic of neuroprotective strategies continues, requiring
us to re-examine the preclinical models used in research. Revisiting these models, to refine and evolve them to be more
clinically representative and consistent between laboratories, aims to improve the robustness of preclinical studies and the
reproducibility of data obtained.

Preclinical models of ischemic stroke
In vitro and ex vivo models of ischemic stroke
Due to the complex nature of ischemic stroke, it is not possible to successfully model using a single in vitro or ex vivo
system. However, use of these bench-side systems allows the investigation of biochemical and molecular mechanisms
involved during stroke-like ischemic conditions and to examine the resultant cellular damage. These systems can be
utilised to determine pathways and cellular triggers involved in both necrotic and apoptotic cell death,12 alongside the
isolated investigation of cellular cascades that occur as a result of excitotoxicity.13Methods to induce stroke-like ischemic
conditions in vitro may include chemical or enzymatic block of cellular metabolism. Metabolic inhibition is induced
through application of chemicals such as 2-deoxyglucose, antimycin or sodium azide,14-16 which act to interact with the
electron transport chain mimicking the energy depletion that occurs during cerebral stroke. Alternatively, a chemical-
based model can use NMDA or glutamate receptor agonists to induce excitotoxic conditions via imitating the significant
extracellular increase in glutamate that occurs during ischemia.17,18 Chemical or enzymatic bench-side models allow
high-throughput testing, with ease of application and rapid responses, the method also allows isolated analysis of specific
aspects of themolecular pathways involved.However, both approaches are reductionist in that they only attempt tomimic
one aspect of the pathophysiological cascade and don't replicate the more complex interplay of mechanisms. A further
disadvantage to the use of chemicals or enzymes to model ischemia is that these compounds may be difficult to wash out
and therefore can disrupt the return to pre-insult conditions. The return to pre-insult conditions in vitro is undertaken
to mimic the return of nutrients seen in vivo due to the return of blood flow to an area affected by stroke, known as
reperfusion.

The most frequently used in vitromethod to induce stroke-like ischemic conditions, is to remove all the available oxygen
and glucose supply to the cells, known as oxygen-glucose deprivation (OGD). This is most often achieved by perfusing
glucose-free media with a nitrogen/carbon dioxide mixture to displace oxygen, with subsequent experiments taking
place inside a hypoxia chamber. Reperfusion conditions can be imitated through the reintroduction of glucose alongside
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a return to atmospheric oxygen. Induction of OGD leads to neuronal depolarisation within 10 minutes of onset,19

with astrocytes showing immediate progressive depolarisation over the first 30 minutes of OGD.20 OGD with
reperfusion shows continued neuronal degradation over several hours following a return to 'normal' culture conditions,
which combined with large extracellular glutamate increases21 are both consistent with in vivo observations.22

Experiments undertaken in hypoxic-only conditions are less representative of ischemic stroke but may better represent
cerebral hypoxia conditions such as carbon monoxide poisoning.23,24 Currently, many in vitro ischemia models mimic
global ischemia as they induce an insult to the overall brain slice or culture preparation and therefore do not mimic the
clinical situation of a focal insult. Recently, Richard et al. have demonstrated the development of focal OGD in ex vivo
cortical brain slices using targeted OGD media stream perfusion, perfusing the tissue surrounding the target area with
artificial cerebrospinal fluid (aCSF) solution. They reported rapid neuronal depolarisation within the core OGD targeted
area with slower progressive depolarisation in the surrounding aCSF perfused area, such as is seen in the penumbra.25

The refinement of an ex vivo slice model of stroke to better represent the clinical presentation of cerebral ischemic
events, may allow preclinical bench side investigations to occur in a more representative model.

To gain better relevance from bench side in vitro/ex vivo stroke models, the physiological micro-environment of the cells
is critically important to gaining a true understanding of disease process and outcomes. The influence of oxygen, nutrients
(including glucose), cell to cell contact and shear forces all need to be considered. With reference to the use of OGD as a
key bench side ischemia-inducing model, oxygen levels should be considered when designing and interpreting data from
these experiments. Physiological arterial blood oxygen concentrations differ significantly from external atmospheric
levels. Maintenance at physiologically relevant oxygen levels has been shown to increase survival, cell proliferation and
dopaminergic neuron differentiation in culture.26 Whereas, high oxygen levels affect not only basal functioning but also
response to challenge, potentially providing resistance to stroke related oxidative stressors.27 In addition to high oxygen
levels used within in vitro culture systems, glucose is also poorly matched to physiological concentrations. Cell culture
glucose concentrations are often up to 8x higher than those reported within the brain.12,28,29 Glucose is used in culture
maintenance at concentrations proposed to be present within the brain during severe hyperglycaemia and shown to affect
neuronal viability.28 A rethink of the use of long-standing outdated culture media maintenance andmethods is required to
improve physiological relevance.

One step towards improving physiological relevance of in vitro stroke models is the introduction and use of co-culture
models which are based on multiple cell types, typically placed in repeated monolayers, allowing substrates and
signalling molecules to pass between several cell types. This approach is common for modelling the blood brain barrier
and has improved our understanding of neurovascular changes that occur during ischemia. Developments in 3D cell
culture have the potential to improve the physiological relevance of bench side ischemia models even further. Cells
cultured in 3D, on either scaffolds or a scaffold-free system, show natural cell shapes, prevalent cell to cell junctions, well
differentiated cell types and a greater response to mechanical stimuli, overall improving physiological relevance
compared to 2D culture models.12,30 Cells show lower mortality rates, resistance to nutrient deprivation and drug insults,
this is alongside the presence of a gradient based availability of culture media nutrients more like that of a physiological
state. Popularity and interest in the use of 3D cultures for in vitromodelling is increasing and they offer an additional way
to investigate potential neuroprotective treatments prior to the need for in vivo approaches, reducing ethical impact. In
addition to the use of bench side models of multiple cell types to increase physiological relevance, the use of microfluidic
devices is also being explored to improve the relevance and applicability of bench side disease models, often termed
organ-on-a-chip models.31 Microfluidic devices, since the advent of lithography in 2001,32 use a micro-engineered
culture platform that can be utilised to mimic blood flow in health and disease models, alongside allowing the isolated
investigation of upstream and downstream signalling within and between cells, due to microchannels that allow axonal
growth along them. Since the early 2000s there have been multiple developments in the field of biomicrofluidics to try to
overcome some of the limiting factors of this type of cell culture, as this is still constrained to the typical 2D rigid culture
techniques discussed earlier. Improvements towards a brain-on-a-chip model are still required, but the use of micro-
fluidics devices for axon-specific responses, cell-cell interaction and high-throughput screening are of great interest to
the preclinical stroke research community, and with advancements in the field may prove to be another key step in the
drug translation process that will help improve the positive potential of tested neuroprotective therapeutics within the
clinic. Although in vitro research provides a platform to determine and understand cell-specific responses to stroke-like
conditions the complexities of clinical stroke often require these methods to be combined with in vivo approaches.

In vivo models of ischemic stroke
The significant lack of neuroprotective therapeutics in the clinic has led to extensive work aimed at improving the
reproducibility of preclinical stroke models and to ensure they reflect as closely as possible the clinical disease.33-36 To
date, multiple preclinical stroke models have been developed to reproduce both global and focal ischemic stroke.
Whereas global ischemia models more closely mimics the situation of cardiac arrest, focal ischemia models represent the
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typical clinical presentation of ischemic stroke. Various models are available for use in a variety of animal species,
however the use of rodents, specifically rats and mice, is the most common. This is likely to be due to low acquisition and
husbandry costs associated with these species, combined with simple effective monitoring methods and ease of tissue
processing.24 To try and address the gap in clinical translation for stroke treatments the Stroke Therapy Academic
Industry Roundtable (STAIR) published a number of recommendations including the need for potential therapeutics to be
assessed across a number of species, initially rodents followed by studies using gyrencephalic species.33,37 The use of
higher-order species is necessary to overcome the evolutionary differences between rodents and primates such as the
corticospinal tract descending from the motor cortex.38 Larger species may also be suitable for investigations utilising
endovascular techniques, such as clot retrieval and stenting, techniques used more frequently in the clinic. However, due
to cost, availability and ethical considerations with larger higher-order species, rodents still play a key role in research to
ensure experimental power in addition to testing the safety and efficacy of potential neuroprotective treatments.

The most frequently used in vivo model of focal ischemia is intraluminal suture middle cerebral artery occlusion
(iMCAO),39 which has enhanced our knowledge of the pathophysiology of cerebral ischemia including penumbra
development and functioning, blood brain barrier injury, cell death pathways and inflammatory processes related to
cerebral ischemia. Developed initially for use in the rat,40 in which infarction success rates are 88-100%,41 the method
was later modified by Longa et al.42 and subsequently adapted for use in mice43 where the model is increasingly being
used particularly due to the availability of transgenic mouse strains. Induction of iMCAO is achieved by the insertion of a
flexible monofilament into either the common carotid artery (CCA)40 or external carotid artery (ECA).42 Access into the
CCA requires the vessel to be ligated for incision.40 Similarly, for filament access, the ECA is typically transected in the
modified iMCAOmethod.42 Once in the vessel lumen, the filament is advanced into the internal carotid artery (ICA) and
to the bifurcation of the middle cerebral artery (MCA). Once in situ, at the origin of the MCA, the filament head impedes
blood flow into the MCA territory and is left in situ for the duration of ischemia. The utility of this model allows for
accurate control of occlusion duration, allowing for either permanent ischemia where the filament remains in place, or
transient ischemia where the filament is removed to allow reperfusion of blood flow to the MCA territory. Utilising the
iMCAOmodel, post-stroke effects can be examinedmonths following the initial insult. Vessel access is obtained without
craniectomy and therefore avoids cranial damage associated with craniectomy which could impact on intracranial
pressure changes and post-stroke outcomes such as reduced lesion volume.44,45 Use of iMCAO results in large infarct
volumes encompassing both the striatum and cortex,46,47 however, longer durations of iMCAO can lead to hypothalamic
damage which occurs rarely in humans and can lead to hyperthermic responses in rats and poor temperature control in
mice.48,49 Following iMCAO, rodents can experience a range of side-effects that negatively impact the welfare of
animals, including but not limited to, significant weight loss, abnormal or reducedmotility, difficulty eating/drinking and
mortality. These outcomes can be moderated through enhanced pre and post-surgery care; detailed recommendations to
support this have been highlighted by the IMPROVE guidelines.50

The filament selection for use within iMCAO also plays a key role within the model, as unsuitable filament selection can
lead to inadequate occlusion and filament-induced secondary subarachnoid haemorrhage due to arterial rupture.51 This
has led to an increase in the use of standardised silicone-coated filaments to attempt to improve reproducibility and the use
of laser doppler flowmetry to confirm correct filament placement and monitor occlusion duration.52 Although the
iMCAOmodel is not appropriate to study the effect of thrombolysis treatment in conjunction with tested therapies it does
recapitulate occlusion of the MCA in the clinic, which is the most common location of thromboembolic stroke in
humans.53 However, placement of the intraluminal filament into the origin of the MCA is an all or nothing approach,
which does not reflect the clinic where human stroke is frequently not caused by a complete occlusion, additionally the
model does not replicate the event of partial spontaneous reperfusion that can occur in patients within 48 hours of stroke
onset.54,55 Furthermore, the model does not profile the slow clot disruption that occurs following rtPA administration,
instead showing surge reperfusion upon filament removal.56 More recently however, the model has become increasingly
relevant due to the advent of interventional mechanical thrombectomy in the clinic. In 2015, five randomised controlled
clinical trials reported beneficial effects of endovascular intervention therapy in treating patients with large vessel
occlusions, with or without rtPA treatment.57 This beneficial effect was correlated with the abrupt recanalisation of the
vessel and rapid reperfusion of the ischemic zone, corresponding to the mechanisms of the iMCAO model. The positive
outcome of endovascular thrombectomy, as reported in the clinical trials, suggests this mechanical treatment will become
the primary therapy for large vessel occlusion in the clinic;56 renewing relevance of the established iMCAO model as a
model of endovascular thrombectomy.

In addition to iMCAO, focal ischemia can also be induced in vivo by direct occlusion of the vessel of interest, using a
cranial window to either clamp, ligate or cauterise the vessel in situ. The most used cranial entry focal ischemia method
was developed in 1981 by Tamura et al., using distal MCA occlusion, similar to the occlusion location obtained using
iMCAO, inducing combined cortical and striatal lesions.58 Like the iMCAO method, craniotomy models can be used to
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induce either permanent or transient focal ischemia - although relying heavily on the experimenter's ability to reduce
potential localised cerebral damage for both scenarios. Similarly, the return to perfusion following transient ischemia
using this method results in a sudden prompt mechanical perfusion, again unlike the presentation of reperfusion in the
clinic. Furthermore, access to the vessel of interest through the skull has been shown to induce cortical spreading
depressions and inflammatory responses.59

Additional stroke models are available that utilise specialised mechanisms to induce ischemia, typically in rodents,
including thromboembolic, endothelin-induced and photochemical models. Embolic models can be broadly categorised
into thromboembolic and non-clot embolic models; the former utilising the induction of localised clots or the insertion of
spontaneous/thrombin-induced clots and the latter utilising non-clot methods such as micro/macrospheres to occlude
vessels.52,60,61 Since most human strokes are caused by thromboembolism, thromboembolic stroke models may more
closely represent the clinical disease pathology. However, there is a lack of a single standardized embolic stroke model
leading to multiple occlusion induction methods, a further method that has shown increasing use is the localised injection
of thrombin directly into a craniotomy exposed MCA bifurcation.62 A significant advantage of this thromboembolic
technique is the opportunity to test thrombolysis treatments alone or in combination with neuroprotective agents.63,64

Additionally, the use of rtPA to lyse the clot in thromboembolic models results in a reperfusion profile that is closer to
the reperfusion profiles of rtPA treated patients, contrasting the sharp reperfusion profile following filament removal
using iMCAO, increasing the relevance of clot emboli models.56,65 However, infarct location and volume can be highly
variable using thromboembolic stroke models along with low seven-day survival rates,66 which impacts the reproduc-
ibility of thromboembolic stroke models and their utility for longitudinal studies. In addition to the difficulties
experienced in controlling lesion location, the duration of the ischemic insult is difficult to control in these models with
some animals showing spontaneous recanalisation,62,67,68 a further disadvantage to the model is the potential for
spontaneous clot formation following embolism disruption.69 The severity of this preclinical stroke model also has a
high mortality rate of >30%, typically within the first 24 hours preventing longitudinal study.50,70 Non-clot embolic
methods can include the injection of silicone or collagen into the ICA of rodents71,72 or, for example, the injection of
micro/macrospheres resulting inmicroembolisations causingmultifocal and heterogenous lesions.73,74 Administration of
micro/microspheres results in an immediate reduction in cerebral blood flow (CBF) that becomes progressively stronger
over the first 3-12 hours following sphere injection, this in turn leads to a slow infarct development, suggesting a longer
therapeutic time window than other stroke models for instance iMCAO.74

Endothelin models of ischemia employ the peptide Endothelin-1, a long-lasting potent vasoconstrictor, to induce vessel
occlusions.75,76 The peptide is typically applied using stereotaxic injection methods77,78 or craniotomy79,80 applied
directly onto an exposed cerebral vessel causing a constriction of the vessel reducing CBF to the vessel territory for up to
22 hours post-injection81 followed by gradual reperfusion. The severity and duration of an insult can be adjusted
according to the concentration of the peptide at application. The sustained reduction in CBF and subsequent gradual
reperfusion profile, alongside gradual lesion development resembles the evolution of clinical stroke. The topical
application method of the peptide is a source of variability in this model, due to the difficulty in ensuring consistent
diffusion. To reduce this variability intracortical injection of the peptide to sensorimotor areas has been developed.82,83

With this injection based method, care must be taken to avoid the compound entering the ventricles to avoid significant
negative welfare outcomes such as barrel rolling or seizures.69 Another targeted approach ofMCA occlusion induction is
the photothrombotic stroke model, which induces localised permanent infarcts of the cortex by introducing a photosen-
sitive dye (e.g. Rose Bengal) into the cardiovascular system and illuminating this through the skull using a specific
wavelength of light. Targeting small vessels, this illumination activates the photosensitive dye resulting in endothelial
damage due to oxygen species formation, causing platelet activation and aggregation.84,85 These together result in the
formation of an occlusion and consequently rapid ischemia to the vessel territory, leading to the development of cortical
lesion.86 This method produces reproducible and localised cortical lesions, withminimal variation in lesion volume,86 the
small cortical lesions and low mortality associated with the model lend well to longitudinal study however, a lack of
penumbral tissue within the lesion reduces the translational impact of the model, as the penumbra is the target tissue of
interest for neuroprotective strategies. Photothrombotic induction requires the use of light sources, these can act as a heat
source. The illumination can have a heating effect on the skull and subsequently the brain, therefore it is important that
care over temperature must be taken and where possible cold light sources used, with exposure and distance from the
skull/brain considered.50,82 Furthermore, due to the systemic nature of the dye themodel is unsuitable for preclinical drug
studies.

Refining the in vivo model of iMCAO
The lack of lab to clinic translation of neuroprotective therapies is an ongoing issue and understanding the reasons for this
is key to improving the future clinical potential of preclinical stroke research. Many in the field have deliberated the
difference in outcomes between preclinical data and the clinical trial outcomes of the many tested neuroprotective
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agents.35,87-90 Reasons conferred for the disparity include; variations in treatment implementation timepoints, queries
about dose effectiveness between species, outcomemeasure disparities between preclinical (typically lesion volume) and
clinical (mainly death rate and disability) also, whether in vivo models effectively model drug efficacy.89,90 Moreover,
systematic meta-analyses suggest the introduction of bias into data as a result of poor study design and subsequent study
implementation.90-92 With sources of bias coming from both internal (e.g. selection or, performance or attrition bias,
small sample sizes and low overall power) and external (e.g. publication bias and the use of exclusion criteria such as
co-morbidities, age and sex) factors, acting to weaken the strength of studies.

The most commonly used in vivo model of ischemic stroke, iMCAO, has been shown to produce lesion volumes with
large standard deviations even though rigid surgical and data collection protocols are followed,88,93,94 with 40% standard
deviation accepted as reproducible infarct outcomes.95 The iMCAO model relies heavily on collateral flow through the
Circle of Willis (CoW), a network of vessels connecting vertebral and carotid circulation, particularly at reperfusion due
to ipsilateral CCA ligation. Reliance on the CoWmay afford some of the variability in lesion volume reported following
iMCAO, due to anatomical variations in its structure, particularly within C57BL/6 (B6) mice commonly used in
preclinical stroke studies. CoW variation has been shown to occur in B6 mice, with 90% showing one or both posterior
communicating arteries (PcomA) missing.47 Kitagawa et al., reported that the patency of the PcomA is a significant
determinant of ischemic damage area following iMCAO.96 Furthermore, additional models of cerebral ischemia such as
the bilateral common carotid artery occlusion model also report variations attributed to PcomA patencies, in both lesion
volume andCBF during ischemic events, when compared acrossmouse strains.97-99Variation in experimental design and
husbandry techniques may also impact the potential translational ability of iMCAO studies. Recommendations provided
by the IMPROVEguidelines50 on experimental design, husbandry, enrichment, analgesia and post-operative caremay go
some way to improving standardisation and welfare across iMCAO studies, reducing variability not only within but
between studies. This may contribute towards improving the reproducibility of preclinical stroke research, allowing the
focus to be on the experimental question and assessing this across research groups with a collaborative approach to
research. The IMPROVE guidelines also stress the need for comprehensive reporting of confounding factors in published
research, to allow correct interpretation of presented data, improving the reliability and adding value to the information
provided, not only improving welfare but also consistency across the stroke research field.

We have previously reported an alternative surgical approach to iMCAO that improves reperfusion to the ischemic
hemisphere, reduces lesion volume variability and subsequently reduces group sizes estimated, using power calculation,
to determine an effective treatment response in terms of lesion volume.100,101 Typically, in iMCAO, entry to the
cerebrovascular system is obtained via an incision into the CCA or transection of the ECA. However ECA transection,
in rats, has been shown to induce ischemic lesions within the muscles controlling mastication and swallowing,102

resulting in changes to drinking behaviour andweight-loss post-MCAO.103 Preclinical strokemodels, including iMCAO,
that utilise ECA transection do so to minimise interruption to circulatory flow, in an attempt to maintain anatomic
integrity to improve post-stroke reperfusion.104 We reported that avoidance of ECA ligation, alongside the introduction
of analgesia, appeared to reduce weight loss, without impacting lesion volume when using the modified iMCAO
method.101 Although limitations in experimental design did not allow the elucidation of the direct effects of analgesia
versus ECA ligation avoidance, systematic administration of an analgesia regime across all experimental groups
prevented this becoming a confounding variable. Analgesia use should be utilised in preclinical stroke research as a
means of good practice, particularly as many preclinical stroke models involve surgical interventions, with the type of
analgesia carefully selected in relation to any potential interference with a study's scientific outputs. The IMPROVE
guidelines provide a comprehensive discussion on the use of analgesics within preclinical stroke research, providing
recommendations to promote analgesia use within the field.50

The alternative iMCAO method we established improves mouse well-being and removes reliance on the CoW for
collateral flow during reperfusion, importantly reducing lesion volume variability.100,101,105 As lesion volume is often the
primary outcome measure for neuroprotective in vivo stroke research, large variations within this data can result in low
statistical power if sample sizes are not accordingly adjusted to account for this variability.93 Typically, preclinical stroke
studies have low statistical power, a statement supported recently by a meta-analysis revealing that on average, studies
show 59%power to detect a 30% inter-group difference.93 The low power of experimental stroke studies, in simple terms,
could be improved by increasing group sizes, however, this is contrary to the research community's drive to implement
the 3Rs principles, where it is important to ensure studies are correctly powered.106,107 The need to use appropriate animal
numbers in experimental research, in line with ethical requirements and the 3Rs principles is leading researchers to
re-address the models used and experimental designs undertaken, in addition to the need to overcome the translation
roadblock in neuroprotective stroke research. The iMCAO model refinement is one step within the preclinical stroke
community towards reducing animal numbers. This is due to reduced variability in outcome data, improving statistical
power, and leading to reduced animal numbers required per experimental group to determine treatment effect. We
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demonstrated that undergoing CCA repair following iMCAO increased perfusion to the ipsilateral hemisphere compared
to a typical CCA ligation iMCAOmethod100 and that use of the CCA repair model could require group sizes 39% smaller
than with use of the traditional CCA ligation technique, to attain 80% power with a significance level of 0.05 and an
anticipated 30%difference in lesion volume between groups.101 For a typical year, in this instance 2019, a Pubmed search
using the search term '((MICE) OR (mouse)) and (MCAO))' determined there were 210 original research articles
reporting data from mice undergoing iMCAO. Based on data we reported previously,101 a group size of 58 animals per
group (control and experimental condition) per article can be assumed - this group size would result in 24,360 animals per
year, but of course that does not include excluded animals alongside those animal experiments that were either not
included in published studies or were never completed and analysed for publication. A 39% reduction in group size, as
reported following use of the CCA repair iMCAO method,101 would reduce the number of animals required across all
those studies published in 2019 by 9500.

Scientific applications of refinements
The iMCAO CCA repair method we have highlighted here could have impact on other vascular surgical models within
the preclinical stroke research field and potentially beyond. For example, embolic stroke models that deposit a clot
into the cerebral vascular system via a carotid artery could be adapted to incorporate the demonstrated CCA repair
method. Particularly, by accessing the vessel lumen through the CCA rather than the ECA, alongside the vessel sealing
aspect of the refinement allowing bilateral CCA perfusion to the affected ischemic area. The refined iMCAOmodel using
the CCA repair technique may also be of use in additional in vivo research applications, for instance therapeutic drug
delivery in experimental models or intra-arterial delivery (IA) of stem cells. Currently there have been over 50 IA cell
delivery studies within the stroke field108 with potential IA applications in other research fields. Argibay et al. 2017,
reported that maintaining flow through the CCA resulted in uniform cerebral cell distribution following IA cell delivery,
with engraftment of labelled mesenchymal stem cells (MSC) visualised using T2-weighted magnetic resonance
imaging.109 The group utilised Longa's42 transient iMCAO method in rats, with both filament insertion and MSC
injection via a transected ECA, with the CCA temporarily tied for the duration of iMCAO.109 CCA repair, reported
previously to be successful in rats,110,111 alongside our recent method development in mice,101,105 would negate the
requirement to transect the ECA, therefore, removing the negative welfare outcomes reported following ECA transec-
tion.102,103,110 Although many IA stem cell delivery experimental models utilise rats, there are examples of these studies
conducted in mice. Ge et al. 2014, utilised transgenic mice expressing green fluorescent protein to assess the impact of
MSC size on neuronal health in naive animals undergoing IA MSC infusion, during which multiple arteries were
transected and coagulated to enable catheter placement.112 The delicate nature and small size ofmouse arteries, compared
to the typically more robust nature of rat arteries, increases the difficulty and applicability of IA procedures, potentially
discouraging the development of improved methods utilising mice, even though the use of mice over rats opens-up the
possibility of transgenic line use, and the targeted downstream investigations the use of transgenic animals allows. Use of
the CCA repair technique provides an attractive solution to the problem of vessel sealing following arterial incision in
mice, removing reliance on the CoW for collateral flow across the brain. Studies using IA delivery of MSC alongside
stroke induction, typically induce iMCAO via the Longa et al.42 method of ECA transection for filament introduction.
This is due to the need to maintain CCA flow for microneedle injection of cells, as evidence suggests the injection of
MSCs into a no flow vessel results in micro stroke lesions due to the preserved flow within the injection vessel. It is
therefore possible that the repair technique could have an impact in this field, allowing the induction of stroke conditions
but allowing CCA perfusion post iMCAO induction to allow IAmicroneedle injection. For catheter-based IAmodels, the
sealing of the CCA vessel rather than the ligation of this vessel may be able to be undertaken with adaption of the CCA
repair technique.

Dissemination and uptake of the refined in vivo model of iMCAO
Our overall aim in producing a refined model of iMCAO was to achieve 3Rs impact within the field of experimental
stroke. The importance of this work is in demonstrating that reduced variability in animal stroke studies has the potential
to increase animal wellbeing, reduce the number of animals used and potentially increase the efficacy of animal studies in
detecting treatment effects. Within a scientific field, results are typically disseminated through scientific publications and
anymethodological adaptations, if successful, tend to be taken up relatively slowly by the community. Researchers prefer
to use 'established techniques' and are resistant to changing methods they have successfully applied for many years.
However, there is a real commitment within the stroke community to improve the reliability and reproducibility of animal
stroke models so that they may better inform the design and outcomes of clinical trials, evidenced by recent steering
papers such as the IMPROVEguidelines.113We have engaged proactivelywith the stroke community to deliver hands-on
training to numerous labs in the UK, Germany and USA involving over 20 researchers. To extend the reach into the
community we published a visualised method of our refined approach105 which has been viewed over 8000 times since
publication in early 2019 and over 2000 times in the last six months. Subsequent work published by ourselves and others
brings attention to this refined approach and we continue to offer it as our standard training model to incoming members
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of our group and in other research groups who contact us for training advice.50We feel that by engaging with some of the
key preclinical stroke labs worldwide we will speed up the adoption of this refined technique.

Conclusion
To further understanding of stroke pathophysiology and to develop novel clinical therapeutics experimental models of
ischemic stroke are beneficial. Such models, based on both in vitro and in vivo approaches, have greatly enhanced our
understanding of stroke physiology and pathology. However, there is still a lack of successful clinical therapies being
translated from preclinical benchwork to clinical use. As various types of in vitro and in vivomodels have been developed
selection of the most appropriate model to test the therapeutic is key. However, it is also necessary to constantly strive to
improve the validity of the models being used in terms of their relevance to the clinical situation and to improve animal
wellbeing. Here, we focus on the middle cerebral artery occlusion model which is the most commonly used in vivo stroke
model. The refined surgical approach described here reduces the variability, in lesion volume, associated with this model
and improves the welfare of experimental animals.

Data availability
No data are associated with this article.
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