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One of the many fundamental contributions that Rabi Bhattacharya, to-
gether with his co-authors, has made is the development of a general nonpara-
metric theory of statistical inference on manifolds, in particular related to both
intrinsic and extrinsic Fréchet means of probability distributions thereon (cf.
[3], [4] and [5]). With the increasing importance of statistical analysis for non-
Euclidean data in many applications, there is much scope for further advances
related to this particular broad area of research. In the following, we concentrate
on two particular important themes in data analysis on manifolds: nonparamet-
ric bootstrap methods and nonparametric curve fitting.

1 Bootstrap methods

A major application of the central limit results in [4] and [5] for intrinsic and
extrinsic means on general manifolds is to statistical inference, e.g. the con-
struction of confidence regions and multi-sample tests via bootstrap methods.

The bootstrap, see [8], provides a way of estimating, on the basis of an
observed sample, the sampling distribution of a statistic T (S;F ), where S =
{X1, . . . , Xn} is an independent random sample from a probability distribution
F . Here we will assume that F is a distribution on a Riemannian manifold

M and that the target for inference is a population location parameter µ =
µ(F ) ∈ M. Let F̂ denote the empirical distribution function (EDF) based on
the sample S; so for A ⊂ M,

F̂ (A) = n−1
n
∑

i=1

δXi
(A),

where δXi
(A) = 1 if Xi ∈ A and zero otherwise. Let S∗ = {X∗

1 , . . . , X
∗
n}

denote a sample of size n drawn randomly with replacement from the original
sample S, with corresponding EDF F̂ ∗. Then Efron’s bootstrap principle is
that the distribution of µ̂ = µ(F̂ ) based on an i.i.d. sample {X1, . . . , Xn} from
F is approximately the same as the distribution of µ̂∗ = µ(F̂ ∗) based on an
i.i.d. sample {X∗

1 , . . . , X
∗
n} from F̂ . The usefulness of this result is that the

distribution of µ̂∗ can be approximated with arbitrary accuracy by simulation
and hence used as a basis for inference about µ.

Two very basic but commonly arising inference problems concerning µ are as
follows: (i) given a sample S = {X1, . . . , Xn}, construct a confidence region for
µ ∈ M; and (ii) given k ≥ 2 independent samples S1, . . . , Sk, test the hypothesis
that µ1 = · · · = µk, where µi = µ(Fi) and Fi is the population distribution from
which the sample Si = {Xi,1, . . . , Xi,ni

} is drawn.
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There are many possible ways to construct bootstrap procedures to address
(i) and (ii), but doing so using pivotal statistics has well-known advantages;
see, for example, [10] and [12]. A pivotal statistic is one whose asymptotic
distribution does not depend on unknown parameters. Pivotal statistics for
bootstrapping in the setting where µ is an extrinsic mean and M is the unit
sphere were devised in [10], and the approach was generalised in [4] and [5] to
general M.

Consider the following strategy for constructing a pivotal statistic for an
extrinsic mean. Suppose that {X1, . . . , Xn} is an i.i.d. sample from a subset
of a finite-dimensional linear space, represented as Rq or Cq, in which M is
embedded. Assume that a location parameter of interest can be written as

µ = φ(Ξ) where Ξ = E[X1],

where φ(Ξ) is a smooth map with codomain of dimension t, say. Typically,
extrinsic means can be written in this form.

Suppose that the sample mean Ξ̂ = n−1
n
∑

i=1

Xi satisfies a central limit theo-

rem, so that as n → ∞,

n1/2(Ξ̂− Ξ) → Nq(0, V )

in distribution. Since φ(·) is smooth, then, by the delta method,

n1/2{φ(Ξ̂)− φ(Ξ)} ≈ L(Ξ̂− Ξ),

where L is a matrix of derivatives, and

n1/2{φ(Ξ̂)− φ(Ξ)} → Nt(0, LV L⊤)

in distribution. Then, provided LV L⊤ has full rank,

n{φ(Ξ̂)− φ(Ξ)}⊤(LV L⊤)−1{φ(Ξ̂)− φ(Ξ)}

converges in distribution to χ2
t when Ξ = E[X1]. In practice it is convenient

to replace LV L⊤ with its asymptotically equivalent sample analogue L̂V̂ L̂⊤,
leading to the pivotal statistic

T (µ) = n{φ(Ξ̂)− µ}⊤(L̂V̂ L̂⊤)−1{φ(Ξ̂)− µ}. (1)

A bootstrap version of this statistic is

T ∗(µ) = n{φ(Ξ̂∗)− µ}⊤(L̂∗V̂ ∗L̂∗⊤)−1{φ(Ξ̂∗)− µ}, (2)

which can be used to contruct bootstrap algorithms to address problems (i) and
(ii) as follows.

Algorithm 1: Bootstrap confidence region for µ ∈ M.

Step 1. Starting with the original sample S = {X1, . . . , Xn}, calculate µ̂ =
µ(F̂ ).

Step 2. Generate B bootstrap resamples S∗
1 , . . . , S

∗
B randomly with replace-

ment from the original sample S. For b = 1, . . . , B, calculate cb = T ∗
b (µ̂), the
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value of the bootstrap version of the pivotal statistic based on resample S∗
b

evaluated at µ̂.

Step 3. Order the c-values to obtain c(1) ≤ . . . ≤ c(B).

Step 4. Return the approximate 100(1− α)% confidence region

{µ ∈ M : T (µ) ≤ c([B(1−α)]+1)},

where T (µ) is the pivotal statistic based on the original sample S.

Algorithm 2: Bootstrap test for equality of means µ1 = · · · = µk.

Step 1. Given samples S1, . . . , Sk, calculate the quantities needed to evaluate
the pivotal statistics T1(µ), . . . , Tk(µ).

Step 2. Find µ̂pooled to minimise
k
∑

j=1

Tj(µ) over µ, and write

τ̂ =

k
∑

j=1

Tj(µ̂pooled).

Step 3. Set up the bootstrap null hypothesis HBoot by adjusting the empirical
distribution functions F̂1, . . . , F̂k to F̂ adj

1 , . . . , F̂ adj
k , in such a way that

µ(F̂ adj
1 ) = · · · = µ(F̂ adj

k ) = µ̂pooled.

One can adjust the F̂j either by transforming the samples in some way, or by
resampling with non-uniform resampling probabilities, or maybe a combination
of the two.

Step 4. Generate B independent resamples under the bootstrap null hypothesis
HBoot to obtain resamples {S∗

11, . . . , S
∗
k1}, . . . , {S

∗
1B, . . . , S

∗
kB}. For b = 1, . . . , B,

perform Step 2 to obtain µ̂pooled,b, and calculate

τ∗1 =

k
∑

j=1

T ∗
j1(µ̂

∗
pooled,1), . . . , τ

∗
B =

k
∑

j=1

T ∗
jB(µ̂

∗
pooled,B),

where T ∗
jb is the pivotal statistic based on S∗

1b, . . . , S
∗
kb.

Step 5. Calculate the bootstrap p-value

1

B
#{b : τ̂ > τ̂b}.

Types of manifold-valued data for which bootstrap algorithms of this kind
have been developed include directions and axes and 2D and 3D shape (cf. [1],
[2], [10], [23] and [24]). In 2D shape analysis, for example, preshapes (con-
figurations of landmarks with location and scale information removed) can be
written as complex unit vectors Z1, . . . , Zn. Taking Xi = ZiZ

∗
i , where

∗ denotes
conjugate transpose, further removes rotation information, then the space of all
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possible Xi can be identified with 2D similarity shape space (cf. [5]). The popu-
lation and sample extrinsic mean shapes are the unit eigenvectors corresponding
to the largest eigenvalues of Ξ = E(X1) and Ξ̂ = n−1

∑

Xi, respectively. Defin-
ing φ(Ξ̂) as the maximum eigenvalue of Ξ̂ leads to straightforward calculations
for L̂ and V̂ in (1) (cf. [2]). In 3D shape analysis with p landmarks, preshapes
can be written as 3-by-(p− 1) matrices, Zi, satisfying trace(Z⊤

i Zi) = 1. Taking

Xi = Z⊤
i Zi removes rotation (as well as reflection) information. A map φ(Ξ̂)

defined to project Ξ̂ onto the space of positive-definite matrices of rank ≤ 3 can
be interpreted as an extrinsic mean reflection shape (cf. [7]). Calculations for
L̂ and V̂ are lengthier but tractable. An important issue, however, is that the
limiting χ2 distribution of (1) has 3p − 7 degrees of freedom, and unless sam-
ple sizes are very large then L̂∗V̂ ∗L̂∗⊤ can be singular or ill-conditioned under
bootstrap resampling. This leads to poor coverage accuracy even with reason-
ably large sample sizes. Using regularised test statistics, such as (1) and (2)
with adjustments made to the smaller eigenvalues of LV L⊤, appears necessary,
and numerical evidence suggests such an approach is very effective (cf. [23] and
[24]).

In summary, the pivotal statistic for Algorithms 1 and 2 requires: a central
limit theorem for the extrinsic mean (as provided by [5] in a general manifold
setting), and a smooth map φ(·) that defines a meaningful location parameter,
for which the calculations of L and V are tractable. If any ingredient is missing,
one may still develop bootstrap approaches which are nonpivotal; see examples
for analysis of projective shape in [21], and planar curves in [9].

A broadly applicable nonpivotal bootstrap approach addressing problem (i)
above is the following, in which d is a metric on M.

Algorithm 3: Nonpivotal bootstrap confidence region for µ ∈ M

Step 1: Starting with the original sample S = {X1, . . . , Xn}, calculate µ̂ =
µ(F̂ ).

Step 2: Generate B independent resamples

S∗
1 = {X∗

11, . . . , X
∗
1n}, . . . , S

∗
B = {X∗

B1, . . . , X
∗
Bn},

sampled randomly with replacement from the original sample S, and calculate
µ̂∗
b = µ(F̂ ∗

b ), where F̂b is the empirical distribution function based on resample
S∗
b .

Step 3: order the values d(µ̂, µ̂∗
1), . . . , d(µ̂, µ̂

∗
B) to obtain c(1) ≤ c(2) ≤ · · · ≤

c(B).

Step 4: return the (approximate) 100(1− α)% confidence region

Rα = {µ ∈ M : d(µ, µ̂) ≤ c([B(1−α)]+1)},

where [.] denotes integer part.

It remains an open question how best to develop effective bootstrap algo-
rithms on more general spaces, such as stratified manifolds and, more generally,
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various types of metric space of potential interest in applications. For the exam-
ple of “open books” (disjoint copies of half-spaces glued along their boundary
hyperplanes), the central limit theorem has a limit distribution which is a mix-
ture of components (cf. [16]), which is a non-standard setting from a bootstrap
perspective.

2 Curve fitting

Other classical statistical methodology, such as the widely-used method of prin-
cipal component analysis, can be adapted and developed to analyse the vari-
ability of manifold-valued data further. The most straightforward way to apply
principal component analysis to manifold-valued data is to perform the stan-
dard principal component analysis on the tangent space at the Fréchet mean of
the data, i.e. obtain the eigendecomposition of the sample covariance of tangent
coordinates, with eigenvectors giving the principal components ordered by the
corresponding eigenvalues. In other words, the data are first transferred, using
the inverse exponential map or other similar maps, to the tangent space at their
Fréchet mean, and then principal component analysis is applied to the trans-
ferred data to find the lower dimensional subspace in that tangent space that
maximizes the variance of the projection of the transferred data. This method,
combined with generalised Procrustean analysis, is widely used in statistical
shape analysis (cf. [6]). If the first principal component obtained in this way
has a sufficiently high eigenvalue, a unit vector in the resulting 1-dimensional
sub-tangent space determines a geodesic which often gives a good approximation
to indicate the variability of the data.

This idea of using geodesics to model the variability of the data can be
refined by replacing the use of the tangent space by working directly on the
manifold, leading to the concept of principal geodesic component analysis, as
introduced in [14]. Applications of principal geodesic component analysis so
defined to Kendall’s shape spaces can be found in [13] & [15], and to medially-
defined anatomical shapes can be found in [11]. For a set of data {X1, . . . , Xn}
in a given Riemannian manifold M with induced metric d, the first principal
geodesic γ0 to this set of data is defined to be

γ0 = argmin
γ∈G(M)

n
∑

i=1

d(Xi, γ)
2,

where G(M) denotes the set of all possible maximal geodesics in M and the
distance between a given point and a geodesic is defined as the minimum of the
distances between that given point and points on the geodesic. To find such
an optimal γ0, we note that, up to re-parametrization and translation along its
curve, any geodesic γ can be expressed, using the exponential map, in terms of
a point x on γ and a unit tangent vector v at x as γ(t) = expx(tv). Then, the
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above minimization problem can be expressed in a more tractable way as

min
x∈M,v∈Tx(M),‖v‖=1

n
∑

i=1

d(Xi, γ)
2

= min
x∈M,v∈Tx(M),‖v‖=1

n
∑

i=1

min
ti∈R

d(expx(tiv), Xi)
2

= min
x∈M,v∈Tx(M),‖v‖=1,ti∈R

n
∑

i=1

d(expx(tiv), Xi)
2.

This will allow us to use iterative computer algorithms to approximate the
first principal geodesic. However, on account of the ambiguity in the choice of
reference point x, mentioned above, the solution to such a minimization problem
is no longer unique.

We can also consider searching for an optimal curve among other prescribed
sets of curves to capture the main features of the data, for example the use of the
set of small circles for data lying on a sphere. The method of principal nested
spheres (PNS), proposed in [17], introduces a general framework for a novel non-
geodesic decomposition of variability of data lying on high-dimensional spheres.
Instead of searching for an optimal small circle directly, it decomposes a high-
dimensional sphere into a sequence of sub-manifolds with decreasing intrinsic
dimensions, which can be interpreted as an analogue of principal component
analysis. The procedure for finding the PNS involves iterative reduction of the
data dimension. To describe it more explicitly, we assume that {X1, . . . , Xn}
is a sample in the unit m-sphere Sm, where m > 1. Then the best fitting sub-
sphere for this set of data is defined as the sub-sphere of dimension m − 1 in
Sm minimizing, among all possible such sub-spheres, the sum of the squares of
the distances of the data points to it. Since any sub-sphere Am−1 of dimension
m− 1 can be characterized by an r ∈ (0, π/2] and a direction x ∈ Sm as

Am−1(x, r) = {x′ ∈ Sm | d(x, x′) = r},

where d denotes the intrinsic distance on Sm, the problem of finding the best
fitting sub-sphere becomes searching for (x̂, r̂) which solves

argmin
x∈Sm,r∈(0,π/2]

n
∑

i=1

(d(Xi, x) − r)2.

Then, each step of the iterative procedure for fitting principal nested spheres
repeats this, after rescaling to standardize the radius of the spheres, for the
(orthogonally) projected data onto the best fitting sub-sphere obtained in the
previous step. If r̂ = π/2, then the best fitting sub-sphere is a great sub-sphere,
so that this method generalises the method of finding principal geodesics, similar
to those from previous approaches to manifold principal component analysis.

The procedure for implementing PNS makes it clear that the method can
also be used for dimension reduction of spherical data. Moreover, although the
PNS method is primarily proposed for data lying on spheres as suggested by its
name, the idea could possibly be generalised to fit more general manifold-valued
data using principal nested sub-manifolds defined by a sequence of constraints.

6



For example, [17] did include principal nested 2D shape spaces, which is a simple
generalisation. This would expand the range of techniques for the analysis of
variability of such data. Nevertheless, this would require the understanding of
the geometry of the underlying manifold. One of the challenging issues here is
the careful choice of the class of sub-manifolds so that it is possible to implement
the method and the interpretation is meaningful.

The methods mentioned above all use some form of orthogonal projection
from the observed data to an estimated curve. However, this is not always
adequate for the interpolation of time-indexed observed data on manifolds, so
that it is necessary to adapt other classical techniques, such as generalising
Euclidean cubic spline fitting. Recall first that, for a given data set {X1, . . . , Xn}
in R

m, where Xj is observed at time tj ∈ T , j = 0, . . . , n, the cubic spline in
R

m fitted to this dataset with smoothing parameter λ is the function f(·, λ) :
T → R

m that minimizes

n
∑

i=0

‖f(tj, λ)−Xj‖
2 + λ

∫

T

‖f ′′(t, λ)‖2dt, (3)

among all C2-functions, where T is a time interval containing all the time points.
One way to generalise the Euclidean cubic spline to manifolds is to use paral-

lel transport to transfer data to tangent spaces, preserving the inter-relationships
among the data as much as possible, and then to use the known procedure in
Euclidean space to find the cubic spline for the transported data. More precisely,
for a given dataset S = {X1, · · · , Xn} in a manifold M, where Xj is observed
at time tj , and smoothing parameter λ, the M-valued smoothing spline fitted
to S with parameter λ is defined to be the C2-function

γ(·, λ) : [t0, tn] → M

such that its unrolling γ† onto the tangent space of M at γ(t0, λ) is the cu-
bic smoothing spline fitted to the data S† obtained by unwrapping S at times
tj , with respect to γ, into the tangent space of M at γ(t0, λ). For a more
formal definition, see [18]. The terms unrolling and unwrapping are both intu-
itive descriptions of moving the curve and general points on the manifold using
the concept of parallel transport. The M-valued smoothing spline defined in
this way is, except at the data times, the solution to the 4th order differential
equation

∇4f = 0,

where ∇ denotes the covariant derivative (cf. [18]). For a given data set, the
search for the M-valued smoothing spline involves a straightforward iterative al-
gorithm: given an estimate γ(i) at the ith stage, fit a Euclidean smoothing spline
(γ(i+1))† with parameter λ, in the tangent space at γ(i)(t0), to the unwrapped
data S† with respect to γ(i); and then wrap (γ(i+1))† at the corresponding times
back onto the manifold with respect to γ(i) to define γ(i+1). This method was in-
troduced in [18] for solving a non-parametric smoothing problem on the sphere.
Subsequent developments have included applications to regression problems and
extensions to more complicated manifolds(cf. [19] and [20]). However, for the
construction of M-valued splines of this type to be feasible, it is crucial to have
knowledge of parallel transport in the manifold M.
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A more direct generalisation of the Euclidean spline to manifold-valued data
{X1, . . . , Xn} in M, where Xi is observed at time ti, is to find the solution to
the analogue for manifolds of the minimization problem (3), i.e. to find the
solution to the problem of minimizing

E(γ) =
n
∑

i=0

d(γ(tj , λ), Xj)
2 + λ

∫

T

∥

∥

∥

∥

∇2γ(t, λ)

dt2

∥

∥

∥

∥

2

dt

within an certain set of C2-curves on M. Then, the minimizing function is
four-times differentiable and satisfies the differential equation

∇4f + ‖∇f‖2∇2f − 〈∇2f,∇f〉∇f = 0,

except at the data times. Clearly, this differential equation is heavily entangled
with the geometry of the manifold, and so to find the minimizing curve requires
full knowledge of that geometry. Rather than directly solving such a, usually
complicated, differential equation, it is possible to search for the minimizer using
the steepest-descent direction iteratively (cf. [25]): at each step γ is replaced
by γτ , where

γτ (t) = expγ(t)(−τ grad(E(γ))(t))

and τ is a pre-determined positive constant. To be able successfully to imple-
ment this procedure, the crucial feature is the use of the second order Palais
metric defined by

〈〈v, w〉〉γ = 〈v(0), w(0)〉γ(0) +

〈

∇v

dt
(0),

∇w

dt
(0)

〉

γ(0)

+

∫ T

0

〈

∇2v

dt2
,
∇2w

dt2

〉

γ(t)

dt,

for any tangent vector fields v and w along γ. With this metric, the gradient
of E has a relatively simple closed expression in terms of the curvature tensor,
together with the parallel transport. Compared with the previous method, this
requires more detailed knowledge of the geometry of manifolds. However, it
has proved possible to carry it out (cf. [26]). In general, the model choice
appropriate to the problem needs to take into account the balance between the
need to respect to geometry of the manifold in order to preserve the inter-relation
among the data and the requirement to know that geometry in detail.

If the data points are not indexed in some natural order, it is also possible
to fit a curve to capture patterns of non-local variation by using the differential
equations, as implied by the method of principal flows in [22]. The idea behind
the method is that, at each point on the curve, the derivative of the fitted curve is
the first principal component generated by a local tangent principal component,
so that the curve always follows the direction of maximal variability. For a given
set of data {X1, . . . , Xn} in M, the method relies on the introduction of the
localised version of the tangent covariance matrix which is a tensor on a suitably
restricted open set of M defined by

Σλ(x) =
1

n
∑

i=1

κλ(Xi, x)

n
∑

i=1

{

exp−1
x (Xi)⊗ exp−1

x (Xi)
}

κλ(Xi, x).
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The positive constant λ is used to control the size of the neighbourhood and
κλ(Xi, x) = K(λ−1d(Xi, x)) for a smooth non-increasing univariate kernel K
on [0,∞). Then, the local tangent principal component is the vector field W (x)
defined to be the first principal unit eigenvector of Σλ(x). Assuming that Σλ is
defined and has distinct first and second eigenvalues on an open set containing
the Fréchet mean x̂ of the data set, then the principal flow is the curve γ that
solves

γ̇(t) = W (γ(t)), γ(0) = x̂.

The principal flow γ can be extended in both directions at x̂ by choosing the
opposite sign for W (x̂): otherwise the sign of W is determined by requiring γ̇
to be smooth. Note that W (x) so defined is always tangent to the manifold and
so the solution γ lies in M. The rigidity or flexibility of the principal flows can
be controlled by varying λ.

Over the last decade there have been many models proposed for curve fitting
techniques on manifolds: the preceding selection is by no means complete. On
the other hand, although some statistical analysis, such as inference, has been
carried out for the estimated curves (cf. [19]), their asymptotic properties have
so far been relatively less explored. Whereas similar behaviour to their Eu-
clidean counterparts is expected, the extent of the role played by the geometry
of the underlying manifolds and its effect on that behaviour is certainly unclear.
Methodology based on extensions of the work of Rabi Bhattacharya, e.g. the
bootstrap in [4] and [5], is one plausible avenue to explore.
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