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1 Introduction

What is the obstacle that generally hinders computations in Quantum Field Theory (QFT),
when we can readily perform the corresponding computations in Quantum Mechanics
(QM)? The short answer is the infinite number of degrees of freedom in QFT. To see
how the degrees of freedom may be enumerated, we can look at the functional Schrödinger
equation for the real, interacting Klein-Gordon field φ. This takes the form

i~
∂

∂t
〈φ, t|in〉 =

∫
ddx

[
−~2

2
δ2

δφ2(t,x) + 1
2 (∇φ(t,x))2 + V (φ(t,x))

]
〈φ, t|in〉 , (1.1)

where V is the potential and 〈φ, t|in〉 is the field-configuration representation of the wave-
functional with initial state |in〉. Each 〈φ, t|in〉 corresponds to a cross-section of φ line
bundle, and the total number of cross-sections would amount to N (Nx)d

φ , if we discretized
both the x and φ spaces. Notice the appearance of the number of spatial dimensions
d in the exponent, which indicates an exponential growth in the number of degrees of
freedom with Nx. The special case, of course, is d = 0, which is, in fact, QM. Furthermore,
the evaluation of the functional derivative, δ2/δφ2(t,x), makes use of the neighbouring
states/cross-sections. Thus, to solve the functional Schrödinger equation, we should keep
the values for all of them, and the exponential growth in the number of degrees of freedom
renders the approach insoluble on a normal computer.

While, in quantum theory, all states are equal, some states are more equal than others.
If we do the statistics correctly, we do not really need to include all states in order to get
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an accurate enough result. This is the idea behind the stochastic method. The question is:
what determines whether one state is more important than another, or, in other words, from
which Probability Distribution Function (PDF) should we sample these states? The answer
is well known in QFT and it can be extracted from a path-integral approach to the problem.

Recall that, to calculate the expectation value 〈Ô(t)〉 of some operator Ô(t), we com-
pute 〈Ô〉 = Tr

[
ρ̂(t0)Ô(t)

]
/Tr

[
ρ̂(t0)

]
, where we assume the density operator ρ̂ is known at

the time t0. The partition function Tr [ρ̂(t0)] is the integral of the PDF. For an analogy, con-
sider the normalization

∫
dx e−x2 , arising when calculating 〈x2〉 =

∫
dx e−x2

x2/
∫

dx e−x2

for the Gaussian PDF e−x
2 . In the expression for 〈Ô(t)〉, the initial density operator

ρ̂(t0) and the operator Ô(t) are evaluated at different times. Therefore, to construct a
path-integral representation of this expectation value, we should connect these operators
together by constructing a closed-time path integral, according to the Schwinger-Keldysh
prescription [1, 2]. More specifically, we can write the expectation value as

〈Ô(t)〉 =
∫
Dφ〈φ+

0 ; t0|ρ̂(t0)|φ−0 ; t0〉e
i
~

∫
C dt′ LO(t)∫

Dφ〈φ+
0 ; t0|ρ̂(t0)|φ−0 ; t0〉e

i
~

∫
C dt′ L

, (1.2)

where Dφ ≡ Dφ+Dφ− is the functional integration measure, L is the Lagrangian and
O(t) is the field-configuration representation of the operator. The C on the time integrals
indicates the closed-time contour: a contour with a time-ordered “+” branch, starting from
t0 and ending at some time tm > t > t0, and an anti-time-ordered “−” branch running
backwards from tm to t0. The superscripts “+” and “−” on the initial field configuration φ0,
identify whether its time argument lies on the + or − branch of the closed-time contour C.

Following the Schwinger-Keldysh approach, the expression (1.2) can be obtained di-
rectly by using the time-evolution operator Û(t1, t2) = T exp

[
− i

~
∫ t2
t1

dt′ Ĥ(t′)
]
, where Ĥ

is the Hamiltonian operator and T is the time-ordering operator,1 or by inserting complete
sets of eigenstates of the Heisenberg-picture field operators. We note that the choice of
the end time of the contour tm is arbitrary, so long as tm > t. Alternatively, one can
arrive at the same expression from the functional Schrödinger equation (1.1) by recalling
that its solution can be written as a convolution of the path integral with the initial wave-
functional, i.e., Ψ(φm; tm) =

∫ φm Dφ eiS/~Ψ(φ0; t0), with the expectation value computed
as 〈Ô(t)〉 =

∫
DφΨ∗(φ−t ; t)O(t)Ψ(φ+

t ; t).
With this path integral in mind, our plan to compute expectation values by picking a

sample of important states is analogous to doing an integral using generated samples, such
as one might do in a Monte-Carlo approach. However, by rephrasing QFT in the language
of statistics, we are not led to any direct solution. In fact, we face a more challenging
question than is found in standard statistics: how to deal with the fact that the PDF is
complex-valued.

The non-negativity of the PDF in standard statistical analysis has a number of crucial
effects. On one hand, non-negativity is an important condition to guarantee a well-behaved
Markov chain, thereby allowing a Monte Carlo computation. On the other hand, there are

1In the absence of external sources, the Hamiltonian operator is time-independent in the Heisenberg
picture. Here, we have allowed for explicit time-dependence, e.g., through the parameters of the theory.
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some key properties that are implied by non-negativity. One of them relates to the Bell
inequalities [3]. For instance, from the viewpoint of statistics, there can be no violation of
the inequality

− 3 ≤ 〈AB〉+ 〈BD〉 − 〈AD〉 ≤ 1 , (1.3)

if the observables A, B and D, of value ±1, are drawn from some real-valued, non-negative
distribution function. One can prove this by generating samples according to such a dis-
tribution. Since any single realisation will satisfy the inequality, so will the average, given
that 〈AB〉 = ∑N

i=1AiBi/N and Ai, Bi and Di are restricted to be ±1. However, a complex
PDF can lead to violations of such inequalities.

Complex PDFs call for complex analysis. Consider, e.g., the complex Gaussian integral∫
dx eix2 . With the complex PDF eix

2 , we cannot ascertain which states are more probable
than others, unlike with the normal distribution e−x2 . Nevertheless, we know that we can
perform the integral by deforming the contour of integration into the complex plane by
Cauchy’s theorem. By choosing a better contour, we can then make sense of the statistics.
In this simple case, we find a normal distribution if we rotate the integration contour by
π/4 in the complex x plane, so that ix2 → −x2. Under the same principle, the Lefschetz
thimble approach provides a powerful tool for QFT, whereby we complexify all real-valued
fields [23] and are furnished with a prescription for finding a suitable integration contour.
The application of the Lefschetz thimble approach to real-time path integrals has recently
attracted significant attention [25, 26, 28, 29, 31–33, 36].

A popular approximation used in the evaluation of the real-time path integral is the
Classical-Statistical (CS) approximation. There, the quantum evolution is replaced by the
classical evolution of an ensemble of initial conditions, drawn from a non-negative PDF.
The interpretation in the context of the Lefschetz thimble Monte-Carlo is that we keep
only the critical points of the action and allow only for non-negative Wigner functions.

This is quantitatively a good approximation in the limit where field occupation num-
bers are large. Its validity may be further expressed in terms of discarding diagrams in a
perturbative expansion (at high temperature [9]), in terms of the “statistical” propagator
being much larger than the “spectral” propagator (in direct comparison with quantum
evolution based on truncations of the 2PI effective action [12, 15–18]) or in terms of the
state being “squeezed” (e.g., in cosmological perturbations during inflation [6]).

The prescription is as follows: when field modes acquire large occupation numbers,
one may evolve them using classical equations of motion, and compute observables as in
classical field theory. When the fields interact, all modes are coupled, but the dynamics
is still expected to be dominated by the ones with high occupancy. In a few specific
cases, one may opt to seed the evolution with an initial state resembling the quantum
zero-point fluctuations (the “half” [10, 13, 14], and for a critical analysis, see refs. [37,
38]). This assumes that the evolution is linear (non-interacting) until the phenomenon
under consideration (e.g., resonance, instability or inflation) amplifies these seeds into large
occupation numbers, � 1. The “half” can of course not lead to truly quantum phenomena
and is, from the point of view of the classical evolution, simply a curious non-thermal initial
condition. Even so, it can give rise to spurious effects, since it has divergent energy in the
UV (see, for instance, ref. [15]).
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In the case of a free theory, the CS approximation is, in some sense, exact. In spite
of this, the aim of this article is to describe where and why the CS approximation is
nevertheless incapable of describing the violation of Bell-type inequalities, both spatial
Bell inequalities and temporal Leggett-Garg inequalities, even for a free theory.

The remainder of this article is organised as follows. In section 2, we provide a brief
introduction to the CS approximation within the context of the Lefschetz thimble approach.
In sections 3 and 4, we focus on the temporal Leggett-Garg inequalities and the spatial Bell
inequalities, respectively. Our conclusions are presented in section 5. Some useful results
are collected in the appendices.

2 Classical-Statistical approximation and Lefschetz thimbles

To compute the expectation value appearing in eq. (1.2), it proves convenient to introduce
the following field variables:2

φcl ≡ 1
2
(
φ+ + φ−

)
, φq ≡ φ+ − φ− . (2.1)

In terms of these variables, the closed-time path integral involves the exponent

i

~

∫
C

dt L = i

~

∫
∂C

ddx
[
−φq

0φ̇
cl
0

]
− I , (2.2)

with the bulk term

I = i

~

∫
dd+1x

[
φq
(
φ̈cl −∇2φcl + V (1)

)
+

+∞∑
n=1

(φq)2n+1

22n(2n+ 1)!V
(2n+1)

]
, (2.3)

where V (k) ≡ dkV (φ)/dφk|φ→φcl . The partition function can then be arranged in the form

Z =
∫
Dφcl

0 Dπcl
0 W

(
φcl

0 , π
cl
0 ; t0

) ∫
D′φqD′φcl e−I , (2.4)

where
W
(
φcl

0 , π
cl
0 ; t0

)
≡
∫
Dφq

0

〈
φcl

0 + φq
0

2
∣∣∣ρ̂(t0)

∣∣∣φcl
0 −

φq
0

2
〉
e−

i
~

∫
ddx φq

0π
cl
0 , (2.5)

is the initial Wigner function, in which the boundary term from eq. (2.2) has fulfilled the
role of the kernel in a Weyl transform of the initial density operator. Notice that we have
relabelled πcl

0 ≡ φ̇cl
0 to make contact with the Hamiltonian form of the path integral (see

ref. [34]). The prime on the integration measure indicates that the fields on the initial
temporal boundary, such as φ0(x) and π0(x), have been excluded.

Due to the Hermiticity of the density operator, i.e., ρ̂† = ρ̂, the initial Wigner function
must be real-valued. In comparison, the bulk term e−I is purely a phase term. Notice in
addition that, to make the bulk path integral well-defined, the existence of φ̈cl requires two
temporal boundary conditions, which are provided here by the Wigner function through

2We adopt the coefficients used in refs. [7, 9] but the notation used in ref. [21]. For clarity, we suppress
the spacetime index for the fields, except in the places where the specific spacetime sites are required.

– 4 –



J
H
E
P
0
3
(
2
0
2
1
)
0
7
7

φcl
0 and φ̇cl

0 . This structure also has an impact on the critical point and related Lefschetz
thimble as follows.

We first notice the critical point3 of I satisfies

φq = 0 and − φ̈cl + ∇2φcl − V (1) = 0 , (2.6)

with the initial values of φcl and φ̇cl determined by the initial Wigner function
W (φcl

0 , π
cl
0 ; t0). That is, the critical point corresponds to a φcl that follows the classical

trajectory with initial data specified by W (φcl
0 , π

cl
0 ; t0), and, as an initial value problem,

there exists one and only one solution. This is the virtue of the two-step evaluation of the
path integral. Namely, if we separate the path integral into the initial Wigner function
W (φcl

0 , π
cl
0 ; t0) and the dynamical part e−I , there will exist one and only one Lefschetz

thimble for each initialization generated by the Wigner function. By Lefschetz thimble, we
mean the manifold generated by the gradient flow originating from the critical point [23],
and therefore the number of thimbles equals the number of critical points. For more on
the two-step evaluation, we refer the reader to refs. [31, 32].

The dynamical part I consists of odd terms in φq. If there are only linear terms in φq,
we can integrate φq out to obtain functional delta functions in φcl. Conversely, for nonlin-
ear potentials that will yield odd terms in φq of higher powers, imposing the same delta
functions corresponds to the approximation of dropping these higher terms from eq. (2.3).
This is known as the Classical-Statistical (CS) approximation [8, 9, 11, 20, 24]. Note that
this approximation maintains the non-linearity in φcl. In corollary, no such approximation
is needed if there are only quadratic terms in the Lagrangian, and the CS approximation
is then, in some sense, exact. The situation remains, however, non-trivial when the
parameters vary in space and time. For instance, certain quantum effects in the early
Universe can be well approximated via quadratic terms on the time varying background,
and the ensemble average of classical evolutions will provide an honest description.

After integrating out φq, the CS approximation leads to

Z =
∫
Dφcl

0 π
cl
0 D′φcl W

(
φcl

0 , π
cl
0 ; t0

)
δ
(
− φ̈cl +∇2φcl − V (1)

)
, (2.7)

where the delta function is understood in the functional sense. We see that the CS approx-
imation to the partition function makes use of the critical points only, i.e., the classical
trajectories, with their initialization distributed according to the initial Wigner function.
Notice that the whole distribution function above is non-negative if the Wigner function
is non-negative.

In comparison to the original expression (2.4), we may regard the φq as hidden vari-
ables, only this time, the PDF is complex. However, this analogy is not quite complete, as
we may also wish to measure φq-dependent operators. We want to stress that the complex
PDF is a necessary condition for the violation of Bell inequalities, since if the distribution
function is non-negative, one can always do the sampling and the generated samples cannot
violate Bell inequalities. Now, with eq. (2.7), we might speculate that there should not

3The critical point is actually a spacetime field configuration. We refer the reader to refs. [31, 32] for
the concrete derivation of the saddle point. The subtlety lies at the turning point.
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exist any violation of Bell inequalities in the free theory when a non-negative PDF about
φcl can be drawn. As we will see, this is not the case.

3 (Temporal) Leggett-Garg inequalities

With regard the CS approximation, it will turn out that the temporal Bell-type inequalities
due to Leggett and Garg [4] are of a richer structure, and we therefore choose to treat these
before the more familiar spatial Bell inequalities.

The Leggett-Garg inequalities deal with measurements at different times. For the
measurement operator, we choose Q̂ = sign(φ̂), which is a proper dynamical operator that
maps the continuous variable φ into a dichotomous one [19, 30], taking values ±1.

It is useful to consider which correlators the experiment can measure and which two-
point correlation functions they correspond to in the theory. In an experiment, we prepare
an ensemble of sets, consistent with the same initial state |ψ〉. For each set, a measurement
Q1 ≡ 〈Q̂1〉 = r is read out at t1 and another measurement Q2 ≡ 〈Q̂2〉 = s is read out at a
later time t2, with r, s = ±. The joint probability P (r, s) can then be calculated [22], e.g., as

P (+,+) = N(+,+)∑
r,s=±N(r, s) , (3.1)

where N(r, s) is the number of sets of Q1 = r and Q2 = s. Accordingly, the correlator is
defined as

C ≡
∑
r,s=±

rsP (r, s) . (3.2)

For dichotomous variables, the correlator can further be related to the quantum two-point
correlation function [22]. To see this, recall that we have two probabilities for the two
measurements:

P (r) = |〈r; t1|ψ〉|2 and P (s|r) = |〈s; t2|r; t1〉|2 , (3.3)

which correspond to the probability of finding r at t1, given the initial state |ψ〉, and
the probability of finding s at t2, given the state |r; t1〉, i.e., the state into which the first
measurement collapses the system. The joint probability of finding r at t1 and s at t2 is
then simply the product

P (r, s) = |〈s; t2|r; t1〉|2|〈r; t1|ψ〉|2 = 〈ψ|r; t1〉〈r; t1|s; t2〉〈s; t2|r; t1〉〈r; t1|ψ〉 . (3.4)

A dichotomous operator admits the following properties

Q̂ =
∑
s=±1

s|s〉〈s|, 1 + sQ̂

2 = |s〉〈s| , (3.5)

and we can therefore write

P (r, s) = 〈ψ|1 + rQ̂1
2

1 + sQ̂2
2

1 + rQ̂1
2 |ψ〉

= 1
8〈ψ|

(
2 + 2rQ̂1 + sQ̂2 + rs{Q̂1, Q̂2}+ sQ̂1Q̂2Q̂1

)
|ψ〉 . (3.6)
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It is then straightforward to obtain the following equalities:∑
r,s=±1

P (r, s) = 1 , (3.7a)

∑
r,s=±1

rP (r, s) = 〈ψ|Q̂1|ψ〉 , (3.7b)

∑
r,s=±1

sP (r, s) = 1
2〈ψ|Q̂2 + Q̂1Q̂2Q̂1|ψ〉 , (3.7c)

∑
r,s=±1

rsP (r, s) = 1
2〈ψ|{Q̂1, Q̂2}|ψ〉 . (3.7d)

The last of these [eq. (3.7d)] in particular means that the correlator measured in the
experiment via eq. (3.2) is really the quantum two-point correlation function involving the
anticommutator of the measurement operators. Interestingly, the above four equations
indicate that the measurement procedure allows us to find 〈ψ|Q̂1|ψ〉 and 〈ψ|{Q̂1, Q̂2}|ψ〉,
but not 〈ψ|Q̂2|ψ〉. As we shall see, this is not the case in the CS approximation, where we
are able to find 〈ψ|Q̂1|ψ〉 and 〈ψ|Q̂2|ψ〉, but not 〈ψ|{Q̂1, Q̂2}|ψ〉.

3.1 Violation of the Leggett-Garg inequalities

Since, in the case of the Leggett-Garg inequalities, the measurements are performed at the
same spatial site, we can simplify the analysis significantly and consider the question in
d = 0 spatial dimensions, i.e., in QM.

As a concrete example, we focus on the quantum harmonic oscillator, subject to the
Schrödinger equation

i~
∂

∂t
Ψ(φ; t) =

[
−~2

2
∂2

∂φ2 + ω2

2 φ2
]

Ψ(φ; t) . (3.8)

We assume a Guassian initial state, displaced from the minimum of the potential well by
an amount ∆, i.e.,

Ψ(φ; t = 0) =
(
ω

~π

)1/4
e−

ω
2~ (φ−∆)2

. (3.9)

This leads to a positive Wigner function of the initial density matrix (with the explicit
form shown in eq. (3.27)). The full expression for the time-dependent wavefunction can be
written in terms of the Feynman kernel

K(φ,t;φ′, t′) = 〈φ,t|φ′, t′〉 (3.10)

=
{
ω csc[ω(t− t′)]

2πi~

}1/2
exp

(
iω

~

{
φ2 +φ′2

2 cot[ω(t− t′)]−φφ′ csc[ω(t− t′)]
})

,

as
Ψ(φ; t) =

∫
dφ0 K(φ, t;φ0, 0)Ψ(φ0; 0) , (3.11)

yielding

Ψ(φ, t) =
(
ω

~π

)1/4
exp

{
− ω

2~ [φ−∆ cos(ωt)]2 − iωt

2 −
iω∆
2~ sin(ωt) [2φ−∆ cos(ωt)]

}
.

(3.12)
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By inspection, we see that this corresponds to a Gaussian probability distribution, whose
central peak oscillates about the origin with frequency ω and amplitude ∆. In fact, it is a
coherent state of the form [5]

Ψα(φ, t) =
(
ω

~π

)1/4
exp

− ω

2~

φ−
√

2~
ω

Reα(t)

2

+ i

√
2ω
~
φ Imα(t) + iθ(t)

 , (3.13)

with

α(t) =

√
ω∆2

2~ e−iωt and θ(t) = −ωt2 + 1
2 |α(0)|2 sin(2ωt− π) . (3.14)

We know the one-point function of the coherent state will oscillate between ∆ and −∆,
and this provides a perfect scenario for Leggett-Garg’s proposal [27].

With this in place, we can calculate the two-point function directly via

1
2〈{Q̂1, Q̂2}〉 = 1

2

[∫
dφ1 dφ2 Ψ†(φ2, t2)Q(φ2)K(φ2, t2;φ1, t1)Q(φ1)Ψ(φ1, t1)

]
+ c.c. ,

(3.15)
where Q(φ) ≡ sign(φ). This integral can be computed numerically, and we present some
additional details of its structure in appendix A.

As an example, we can take ω = 1, ~ = 1 and ∆ = 2, performing measurements at
times t1 = 2.0, t2 = 14.0 and t3 = 19.6. This yields

C12 = 0.0407298 , C23 = 0.379699 and C13 = −0.680874 , (3.16)

and we find that the Leggett-Garg inequality is violated; namely,

C12 + C23 − C13 = 1.1013 > 1 , (3.17)

cf. eq. (1.3).

3.2 A conundrum

As we argued earlier, the CS approximation cannot violate Bell inequalities, due to the
non-negative PDF. We also saw that the CS approximation is actually an exact description
of the free theory, for which we have just found a violation of Bell inequalities. So why do
we get this apparently contradictory conclusion for the Bell inequalities?

To answer this question, it is useful to check the definition of the QFT two-point
function in the φcl-φq basis; given t2 > t1,

CQFT(t2,x2; t1,x1) = 1
2
〈
{sign(φ̂(t2,x2)), sign(φ̂(t1,x1))}

〉
=
∫
Dφ We−I 1

2

[
sign(φ+

2 )sign(φ+
1 ) + sign(φ−1 )sign(φ−2 )

]
∫
Dφ We−I

(3.18a)

=
∫
Dφ We−I 1

2 sign(φcl
2 )
[
sign(φ+

1 ) + sign(φ−1 )
]

∫
Dφ We−I

, (3.18b)
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t0 t1 t2 tm

+

−
for Tr[ρ̂0Q̂2Q̂1]

t0 t1 t2 tm

+

−
for Tr[ρ̂0Q̂1Q̂2]

Figure 1. A plot showing the placement of operators on the closed-time contour for the terms
needed in the anticommutator, with t2 > t1 and tm being the latest time on the contour.

where we have introduced the shorthand notation φi ≡ φ(ti,xi). We recall that Dφ ≡
Dφ+Dφ−. The appearances of φ± in eq. (3.18a) can be understood by looking at figure 1.
Specifically, if we want to compute the correlator 〈Q̂2Q̂1〉 = Tr

[
ρ̂(t0)Q̂2Q̂1

]
/Tr

[
ρ̂(t0)

]
, we

construct the path integral by inserting complete sets of states from t0 to t1, then from t1
to t2 and finally from t2 back to t0, which is just the path given in the upper plot of figure 1.
The operator at the larger time may appear on either branch of the contour without affect-
ing the result. In fact, we can contract the path so that it ends at the larger time, i.e., t2, and
then use the results of refs. [31, 32] to set φq(t2, x) = 0, yielding the final line of eq. (3.18b).

Instead, the CS approximation can only compute (if we restore both the φ+ and φ−
integrals),

CCS(t2,x2; t1,x1) =
∫
Dφ We−I sign(φcl

2 )sign(φcl
1 )∫

Dφ We−I
. (3.19)

We can already conclude that CQFT and CCS do not calculate the same thing, and that
the temporal Bell inequalities rely upon more than just φcl.

For the free scalar field, we can proceed further, by integrating out φq. This can be
achieved by first discretising the path integral, as we describe in detail in appendix B. We
then find

CQFT(t2,x2; t1,x1) =

∫
Dφcl

0 Dπcl
0 dπcl

1 W sign( ˜̃φcl
2 ) 1

π

sin
(

ddx
2φ̃cl

1
~ (πcl

1 −π̃
cl
1 )
)

πcl
1 −π̃

cl
1∫

Dφcl
0 Dπcl

0 W
, (3.20)

in its discrete form, with the tilded and double-tilded variables defined below. The direct
appearance of the infinitesimal ddx reflects the difference between the functional derivative
δφ/δπ and the normal derivative ∂φ/∂π. The final result, however, will not involve the
infinitesimal [see eq. (3.25) below].
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The variable φ̃cl(t,x) denotes the field as evolved from the initial data φ̃cl(t0,x) =
φcl

0 (x) and ˙̃φcl(t0,x) = πcl
0 (x) via the classical equation of motion, which may be represented

using the retarded Green function GR as

φ̃cl(t,x) =
∫

ddx0

[
GR(t,x; t0,x0)πcl

0 (x0)− ∂GR(t,x; t0,x0)
∂t0

φcl
0 (x0)

]
. (3.21)

The associated momentum field is defined as

π̃cl(t,x) ≡ lim
dt→0

φ̃cl(t+ dt,x)− φ̃cl(t,x)
dt . (3.22)

There are two more fields involved in the expression: the integration variable

πcl(t1,x1) ≡ lim
dt→0

φcl(t1 + dt,x1)− φ̃cl(t1,x1)
dt (3.23)

(or πcl
1 for the shorthand notation) is the momentum field at time t1 and position x1, and

the field ˜̃φcl
2 depends on πcl

1 via

˜̃φcl
2 =

∫
ddx1

[
GR(t2,x2; t1,x1)π̃cl

1 −
∂GR(t2,x2; t1,x1)

∂t1
φ̃cl

1

]
+ ddxGR(t2,x2; t1,x1)

[
πcl

1 − π̃cl
1

]
= φ̃cl

2 + ddx GR(t2,x2; t1,x1)
[
πcl

1 − π̃cl
1

]
. (3.24)

That is, ˜̃φcl
2 is almost a classical solution, except with the momentum coming from time

t1 and position x1, which is determined by the integration variable πcl
1 . Eventually, the

integration over πcl
1 leads to

CQFT =

∫
Dφcl

0 Dπcl
0 W 2

π Si
(

2φ̃cl
2 φ̃

cl
1

~|GR(t2,x2;t1,x1)|

)
∫
Dφcl

0 Dπcl
0 W

, (3.25)

where Si(w) ≡
∫ w

0 du sin(u)/u is the sine integral function, and we have made use of the
identity

∫+∞
−∞ du sign(a+ bu) sin(cu)/u = 2

∫ a/|b|
0 du sin(cu)/u. For comparison, the CS ap-

proximation leads to

CCS =
∫
Dφcl

0 Dπcl
0 W sign(φ̃cl

2 )sign(φ̃cl
1 )∫

Dφcl
0 Dπcl

0 W
. (3.26)

Returning to our QM example, the retarded Green’s function, for t2 > t1, and the
normalized Wigner function are given respectively by

GR(t2; t1) = sin [ω(t2 − t1)]
ω

and W
(
φcl

0 , π
cl
0 ; t0

)
= 1
π~

exp
[
−ω
~
(
φcl

0 −∆
)2 − (πcl

0 )2

~ω

]
.

(3.27)
The two-point function (3.25) is then

CQFT = 2
~π2

∫
dφcl

0 dπcl
0 exp

[
−ω
~
(
φcl

0 −∆
)2 − (πcl

0 )2

~ω

]

× Si

2ω
[
φcl

0 cos(ωt1) + πcl
0

sin(ωt1)
ω

] [
φcl

0 cos(ωt2) + πcl
0

sin(ωt2)
ω

]
~| sin[ω(t2 − t1)]|

 . (3.28)
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Less obvious is that this expression yields the same result as that given by eq. (3.15), which
one can evaluate numerically.

Notice that we could obtain the correct violation of the Bell inequality from a CS
calculation if we were to use the Si function and retarded Green’s function as in eq. (3.25),
instead of the product of sign functions that the CS approximation naively leads to. This
prescription, however, only applies to the free theory, and there is no obvious way to
determine what replacement should be used for general interactions.

4 (Spatial) Bell inequalities

An interesting observation is that the Si function appearing in eq. (3.25) admits the fol-
lowing limit:

lim
|GR|→0

2
π

Si
(

2φ̃cl
2 φ̃

cl
1

~|GR(t2,x2; t1,x1)|

)
= sign(φ̃cl

2 )sign(φ̃cl
1 ) . (4.1)

Since the retarded propagator GR(t2,x2; t1,x1) is causal, it vanishes when the separation
of two points is spacelike, i.e., (t2 − t1)2 < |x2 − x1|2, which means that, for the free
theory, CQFT and CCS give the same result in the case of spatial Bell inequalities. On
the other hand, when the Wigner function is non-negative, the two-point functions in the
form of eq. (3.26) can never violate Bell inequalities. Thus, there can be no violation of
Bell inequalities among spacelike correlation functions in free scalar field QFT, unless some
entanglement exists in the initialization.

Beyond the free theory, we point out that it is a general property of QFT that φq

does not appear explicitly in the calculation of the spatial Bell inequalities. In fact, the
following equations are valid in general in QFT:

CQFT(t2,x2; t1,x1)
∣∣
spacelike = 1

2
〈
{sign(φ̂2), sign(φ̂1)}

〉
=
∫
Dφ We−I 1

2

[
sign(φ+

2 )sign(φ+
1 ) + sign(φ−1 )sign(φ−2 )

]
∫
Dφ We−I

=
∫
Dφ We−I sign(φcl

2 )sign(φcl
1 )∫

Dφ We−I
, (4.2)

with the reason discussed in appendix B. In comparison, the CS approximation computes

CCS(t2,x2; t1,x1) =
∫
Dφ We−I

′ sign(φcl
2 )sign(φcl

1 )∫
Dφ We−I′

, (4.3)

where I ′ denotes the I with the higher-order terms in φq discarded. In what follows, we
will refer to those higher-order terms in φq as “quantum vertices”, a name that can reflect
their roles in Feynman diagrams [9, 24, 31]. Since the CS approximation with eq. (4.3)
cannot violate any Bell-like inequalities, while the full quantum theory with eq. (4.2) can,
and given that the only difference between the two concerns the quantum vertices, we
might speculate that these quantum vertices must have something to do with the origin
of quantum entanglement. (Here, we equate quantum entanglement with the violation of
Bell inequalities.) This seems to be the case with the following arguments.
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We first notice that there exists a loophole in the above reasoning, which is related to
the initialization. When quantum entanglement appears in the initial state, the Wigner
function will be negative-valued in some field region. The negative distribution will make
the standard sampling method difficult, if not impossible, to generate initializations for the
CS approximation. That being said, if there exists some sophisticated re-sampling method
for doing the initialization, the CS approximation will escape the constraint of not violating
Bell inequalities.

On the other hand, the entanglement that already exists in the initialization does
not help us to understand the origin of quantum entanglement. For this purpose, the
best scenario is where the system starts from a non-negative Wigner function, and gains
some violation of spatial Bell inequalities during the evolution. Consider, for instance,
the decay of a spinless particle into two photons. In this case, as we argued above, the
CS, as an approximation, cannot capture such quantum entanglement. We can therefore
conclude that it is those higher order φq-terms in the action—the quantum vertices— that
make quantum entanglement possible, and it is the absence of them that renders the CS
approximation unable to capture quantum entanglement.

We further point out in the φcl-φq representation that the quantum properties are
usually accompanied by the appearance of φq. Recall, from the last section, the central
role that the φq plays in the Leggett-Garg or temporal Bell inequalities and here in the
origin of the violation of spatial Bell inequalities, through the quantum vertices.

Another example is the commutation relation,

〈[φ̂(t,x), π̂(t,y)]〉 = i~δd (x− y) , (4.4)

which is in fact a q-cl two-point function. To see this, first recall, from the field-
configuration representation of the path integral, that the field momentum can be
computed via

π(t,y) ≡ lim
dt→0

φ(t+ dt,y)− φ(t,y)
dt . (4.5)

It is then straightforward to derive the commutation relation and obtain

〈[φ̂(t,x), π̂(t,y)]〉 = lim
dt→0

〈φ̂(t,x)φ̂(t+ dt,y)− φ̂(t+ dt,y)φ̂(t,x)〉
dt

= lim
dt→0

〈φ−(t,x)φ−(t+ dt,y)− φ+(t+ dt,y)φ+(t,x)〉
dt

= − lim
dt→0

〈φq(t,x)φcl(t+ dt,y)〉
dt (4.6a)

= −〈φq(t,x)πcl(t,y)〉 . (4.6b)

In the free theory, the relevant two-point function in eq. (4.6a) is given by

〈φq(t1,x)φcl(t2,y)〉 = −i~θ (t2 − t1)
∫ ddp

(2π)d
sin (ωp(t2 − t1))

ωp
eip·(x−y) , (4.7)

which, as a double-check, gives the correct delta function in the limit dt→ 0.
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In retrospect, when facing eq. (3.27), the explicit Wigner function in the example,
and noticing φcl

0 and πcl
0 are independently distributed, one might doubt whether the ini-

tialization would respect the commutation relation. Now, as we see, one should in fact
compute the two-point function in eq. (4.6b) in order to check the commutation rela-
tion. Note that φq0 and πcl

0 appear in the kernel of the Weyl transform (2.5). Thus,
by a substitution φq

0W =
(
i~δW/δπcl

0

)
and then integration by parts, we can verify

〈[φ̂(t0,x), π̂(t0,y)]〉 = i~δd(x − y). In particular, the validity does not depend on the
detail of the Wigner function or the initial density matrix, but only on the Weyl transform.

5 Conclusions

We have studied QFT from the viewpoint of statistics. A general feature of the real-time
path integrals is that the PDF is complex-valued, and, as a result, standard statistical tools,
such as Markov chain or Monte Carlo, cannot be applied directly. This is reminiscent of
the so-called “numerical sign problem”. To deal with the complex path integral, we can
seek to use the Lefschetz thimble method, and we can summarize the following general
properties of the real-time path integral (for further details, see refs. [31, 32]):

• The real-time path integral admits a two-part separation into the initial density
matrix (via the Wigner function W ) and the dynamical part (e−I). The initial
Wigner function provides the initial data for the dynamical part, and it can be either
non-negative- or generally real-valued. The dynamical part, on the other hand, is
purely a phase term, which is always situated on the edge of the convergent region
in the complexified φ-space.

• Applying the Lefschetz thimble approach to the dynamical part, we find that the
saddle points consist of classical trajectories. In particular, for each initialization,
there exists a unique classical trajectory/saddle point/Lefschetz thimble.

• The exponent in the dynamical part (e−I) includes only odd terms in φq. If we
throw away any higher-order terms in φq, integrating out the φq leads to functional
delta functions that pick out the classical solutions. This leads to the CS approxi-
mation. Note that, after they have been integrated out, the φq fields become hidden
in the sense that we can no longer compute φq-dependent operators within the CS
approximation.

In this paper, we have further pointed out that the complex PDF is a necessary con-
dition for the violation of Bell-type inequalities, since, if the distribution function is non-
negative, one can always apply the sampling method, and the so-generated samples cannot
violate Bell-type inequalities. In this sense, the CS approximation is not expected to yield
any violation of Bell-type inequalities, as it is restricted to non-negative PDFs.

This observation, however, leads to a conundrum that the free theory in a coherent
state, for which the CS approach makes no approximations, admits a violation of the
Leggett-Garg or temporal Bell inequalities. We resolved this puzzle by demonstrating
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that, for the example measurement operator Q̂ = sign(φ̂), the temporal two-point function
depends on both φcl and φq. Note that the PDF involving φcl only is non-negative, but
the PDF with φq included is complex. This further validates our conclusion above that a
complex PDF is needed for violations of Bell-type inequalities.

We have also identified a key difference between the spatial and temporal Bell-type
inequalities. We first recall that, in any (local) QFT [35], any two operators with spacetime
arguments that are spacelike separated commute. In the language of φcl-φq, this is obvious
because the product of two operators contains φcl only. Thus, the spatial Bell inequalities
have classical analogues, and one can therefore compute them directly within the CS ap-
proximation (but one will not see a violation). In comparison, there are no such analogues
for the temporal Bell-type inequalities due to the explicit dependence on φq. In this case,
the CS approximation should not be used to compute Leggett-Garg inequalities directly,
not even as an approximation.

These observations in relation to the CS approximation and Bell-type inequalities can
be summarized as follows:

1. The CS approximation is consistent with the full QFT treatment for a non-negative
initial Wigner function in the case of spatial Bell inequalities and in the absence of
interactions, because the configuration φq = 0 is picked out.

2. The CS approximation fails to capture violations of spatial Bell inequalities for the
free theory, because we are restricted to non-negative Wigner functions.

3. We suspect that the CS approximation cannot be made consistent for spatial Bell
inequalities for interacting theories, even for a non-negative initial Wigner function,
because of the non-trivial φq dependence, which will prevent us from identifying a
CS equivalent for the true QFT correlation function.

4. The naive application of the CS approximation to the free theory cannot capture the
violation of temporal Bell inequalities due to the φq dependence of the measurement
operators. While, for the free theory, we have been able to identify a CS-equivalent
correlation function (viz. the sine integral expression rather than the product of
sign functions in our example), the identification of such a prescription may not be
straightforward in the interacting case, as per point 3. above.

The CS approximation is quantitatively sound when occupation numbers are large, i.e.,
φcl is much larger than φq. Discarding higher-order terms in φq altogether then allows
straightforward sampling of a non-negative initial PDF and evolution with classical equa-
tions of motion. While this prescription follows explicitly from the quantum path integral,
as we have described, it amounts in practice to performing a (ensemble-averaged) classi-
cal field theory simulation. However, what we have seen in this work is that attempts to
stretch the CS approximation to truly quantum phenomena require extreme care. In the
non-interacting case, one would expect agreement between quantum and classical results
because of the linearity of both the quantum operator equations and the classical equations
of motion. However, we have seen that the CS prescription does not in general give the
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correct qualitative result, because the observables themselves may be constructed from the
φq. As a result, the step in which φq is integrated out does not go through. It is cer-
tainly illuminating to think of the CS approximation as a limit of the thimble formalism of
the quantum path integral, but its applicability remains valid only for phenomena where
φcl � φq, both for the evolution and the observables— the classical realm.

Having found that the CS prescription can fail even for a free, linear theory, one
may wonder about quantum corrected, or semiclassical approaches such as (truncated)
Schwinger-Dyson (SD)/Kadanoff-Baym (KB) evolution. These involve solving directly for
the (quantum) correlators, the Greens functions, and so for a free theory the result must
be exact, as it involves no approximation of the evolution nor (in principle) of the initial
conditions. For instance, unlike the CS approximation, KB preserves the basic quantum
commutator and hence the “half”, zero-point fluctuations. From the point of view of
computing Leggett-Garg inequalities, the issue becomes how to express the observable
in terms of the n−point functions of the theory. This is non-trivial, and likely involves
computing an entire series expansion. We have not attempted this here.

Acknowledgments

The work of PM was supported by a Leverhulme Trust Research Leadership Award (Grant
No. RL-2016-028) and a Nottingham Research Fellowship from the University of Notting-
ham. The work of PS was supported in part by STFC grant ST/P000703/1.

A QM correlation function

In order to make contact with the Schwinger-Keldysh calculation, we can write the corre-
lation function [eq. (3.15)] in the form

1
2〈{Q̂1, Q̂2}〉 =

[1
2

∫
dφ+ dφ− Ψ†(φ−, t2)Q(φ−)K(φ−, t2;φ+, t1)Q(φ+)Ψ(φ+, t1)

]
+ c.c. .

(A.1)
After making all the relevant substitutions, this becomes

1
2〈{Q̂1, Q̂2}〉 = ω

2π~
(
1− e2iω(t1−t2)

)−1/2
e−

ω∆2
4~ (2+e−2iωt1+e2iωt2)

×
[
−
∫ +∞

−∞

dξ+
π

∫ +∞

−∞

dξ−
π

ξ+
ξ2

+ + ε2
ξ−

ξ2
− + ε2

]

×
[∫

dφ+ dφ− e−A[(φ+)2+(φ−)2]−B+φ+−B−φ−−Cφ+φ−
]

+ c.c. , (A.2)

where we have written

sign(φ±) = i

∫ +∞

−∞

dξ±
π

ξ±
ξ2
± + ε2

e−iφ
±ξ± , (A.3)
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with ε ≡ 0+, and defined

A ≡ ω

2~ (1− i cot[ω(t2 − t1)]) , (A.4a)

B+ ≡ −ω∆
~
e−iωt1 + iξ+ , B− ≡ −ω∆

~
eiωt2 + iξ− , (A.4b)

C ≡ iω

~
cosec[ω(t2 − t1)] . (A.4c)

The φ+ and φ− integrals can be performed analytically, so long as Re
[
4A2 − C2] > 0, and

we arrive at the result
1
2〈{Q̂1, Q̂2}〉 = −

∫ +∞

−∞

dξ+
π

∫ +∞

−∞

dξ−
π

ξ+
ξ2

+ + ε2
ξ−

ξ2
− + ε2

× Re
{
e−

~
4ω [ξ2

++2eiω(t1−t2)ξ+ξ−+ξ2
−]−i∆[ξ+ cos(ωt1)+ξ− cos(ωt2)]

}
= −

∫ +∞

−∞

dξ+
π

∫ +∞

−∞

dξ−
π

ξ+
ξ2

+ + ε2
ξ−

ξ2
− + ε2

e−
~

4ω (ξ2
++2 cos[ω(t1−t2)]ξ+ξ−+ξ2

−)

× cos
{ ~

2ω sin[ω(t1 − t2)]ξ+ξ− + ∆ [ξ+ cos(ωt1) + ξ− cos(ωt2)]
}
. (A.5)

After making the change of variables√
~/ωξ± → ξ± ,

√
~/ωε→ ε , (A.6)

we have
1
2〈{Q̂1, Q̂2}〉=−

∫ +∞

−∞

dξ+
π

∫ +∞

−∞

dξ−
π

ξ+
ξ2

+ +ε2
ξ−

ξ2
−+ε2

e−
1
4(ξ2

++2cos[ω(t1−t2)]ξ+ξ−+ξ2
−)

×cos

1
2 sin[ω(t1− t2)]ξ+ξ−+

√
ω∆2

~
[ξ+ cos(ωt1)+ξ− cos(ωt2)]


=−

∫ +∞

−∞

dξ+
π

∫ +∞

−∞

dξ−
π

ξ+
ξ2

+ +ε2
ξ−

ξ2
−+ε2

e−
1
4 (ξ++ξ−)2+sin2[ω(t1−t2)/2]ξ+ξ−

×cos

1
2 sin[ω(t1− t2)]ξ+ξ−+

√
ω∆2

~
[ξ+ cos(ωt1)+ξ− cos(ωt2)]

 , (A.7)

in which we see that the only dependence on the model parameters is through the parameter
c = ω∆2/(2~).

Instead, by making the change of variables

φ± = φcl ± 1
2φ

q (A.8)

in eq. (A.2), the integral can be written in the form
1
2〈{Q̂1, Q̂2}〉 = ω

2π~
(
1− e2iω(t1−t2)

)−1/2
e−

ω∆2
4~ (2+e−2iωt1+e2iωt2)

×
[
−
∫ +∞

−∞

dξ+
π

∫ +∞

−∞

dξ−
π

ξ+
ξ2

+ + ε2
ξ−

ξ2
− + ε2

]

×
[∫

dφcl dφq e−A
cl(φcl)2−Bclφcl−Aq(φq)2−Bqφq

]
+ c.c. , (A.9)
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where

Acl ≡ 2A+ C = ω

~
(1 + i tan [ω(t2 − t1)/2]) , (A.10a)

Aq ≡
1
4(2A− C) = ω

4~ (1− i cot [ω(t2 − t1)/2]) , (A.10b)

Bcl ≡ B+ +B− = −ω∆
~

(
e−iωt1 + eiωt2

)
+ i(ξ+ + ξ−) , (A.10c)

Bq ≡ 1
2
(
B+ −B−

)
= −ω∆

2~
(
e−iωt1 − eiωt2

)
+ i

2(ξ+ − ξ−) . (A.10d)

The factor (
1− e2iω(t1−t2)

)−1/2 ∫
dφq e−A

q(φq)2−Bqφq −→
t1=t2

√
πh

ω
(A.11)

is independent of time in the limit t1 = t2. In fact, this is because one obtains a delta
function of φq in this limit. To see this, we need to make use of the following limit
representation of the delta function:

lim
ε→0+

1√
2πiε

e
ix2
2ε = δ(x) , (A.12)

with
ε = tan[ω(t2 − t1)/2] , x =

√
ω

2~φ
q . (A.13)

We can then take

lim
t1→t2

(
1−e2iω(t1−t2)

)−1/2 ∫
dφq e−A

q(φq)2−Bqφq = lim
t1→t2

(2πitan[ω(t2− t1)/2]
1−e2iω(t1−t2)

)1/2
(A.14)

×
∫

dφq e−
ω
4~ (φq)2−Bqφq (2πitan[ω(t2− t1)/2])−1/2 ei

ω
4~ (φq)2 cot[ω(t2−t1)/2] ,

and since

lim
t1→t2

(2πi tan[ω(t2 − t1)/2]
1− e2iω(t1−t2)

)1/2
=
√
π

2 , (A.15)

and
lim
t1→t2

Bq = iω∆
~

sin[ωt2] + i

2(ξ+ − ξ−) , (A.16)

we are justified in writing

lim
t1→t2

(
1− e2iω(t1−t2)

)−1/2 ∫
dφq e−A

q(φq)2−Bqφq =
√
π

2

∫
dφq δ

(√
ω

2~φ
q
)

=
√
π~
ω
,

(A.17)
as above.

B Path integral for the dynamical part

For the dynamical part e−I , we have the continuum expression given in eq. (2.2). However,
to gain a better understanding of the real-time path integral, it is convenient to consider
the discrete form

I = − i
~

∫
ddx

m−1∑
j=1

[
φq
j (x)

φcl
j+1(x)− φcl

j+1(x)
dt − dt

+∞∑
n=1

(
φq
j (x)

)2n+1

22n(2n+ 1)! V
(2n+1)

]
, (B.1)
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where we have adopted the shorthand notation4

φcl
j+1(x) ≡ 2φcl

j (x)− φcl
j−1(x)− dt2

(
−∇2φcl

j (x) + V (1)
)
. (B.2)

We first notice that there are only linear terms in φcl
m(x), where tm is the latest time on the

contour. Thus, if we integrate all φcl
m(x) out, we will obtain the functional delta functions

δ
(
φq
m−1(x)

)
. We can then proceed to integrate out all φq

m−1(x), and the result will have an
exponent similar to eq. (B.1), but now with tm−1 as the end point. This corresponds to the
contraction of the contour along the real-time line, and it is for this reason that the φq will
play no role in the spatial Bell inequalities in section 4. For further details, see refs. [31, 32].

On the other hand, without the higher-order derivatives of the potential, e.g., in a free
theory, we can integrate out all φq simply via∫

dφq
j (x) exp

− i
~

ddxφq
j

φcl
j+1(x)− φcl

j+1(x)
dt

 = 2π~dt
ddx δ

(
φcl
j+1(x)− φcl

j+1(x)
)
. (B.3)

Given the shorthand notation (B.2), the delta function above simply enforces the classical
trajectory for φcl

j+1, given φcl
j and φcl

j−1. We also note that we interpret eq. (B.3) in the
sense that space has also been discretized, with eq. (B.3) referring to a particular spatial
point x. With this delta function, we can further integrate out the φcl fields. This is how
we proceed with the denominator in passing from eq. (3.18b) to eq. (3.20).

For the numerator, we need to proceed a little differently, due to the presence of exter-
nal operators. For sites on which none of the operators are located, we can still apply the
integral above, which leads to the same delta functions. On the special sites at t1 (denoted
with a discrete index j1), where an operator is situated, we apply the following integral:∫

dφq
j1

(x1) exp

− i
~

ddxφq
j1

(x1)
φcl
j1+1(x1)− φcl

j1+1(x1)
dt


× 1

2

[
sign

(
φcl
j1(x1) +

φq
j1

(x1)
2

)
+ sign

(
φcl
j1(x1)−

φq
j1

(x1)
2

)]

= 2~dt
ddx

sin
(

2φcl
j1

(x1)ddx
~dt

(
φcl
j1+1(x1)− φcl

j1+1(x1)
))

φcl
j1+1(x1)− φcl

j1+1(x1)
. (B.4)

As with eq. (B.3), eq. (B.4) arises from discretizing space, with the equation holding for
a particular position x1. In comparison to the denominator, a delta function

δ

(
φcl
j1+1(x1)− φcl

j1+1(x1)
)

(B.5)

has been replaced by

1
π

sin
(

2φcl
j1

(x1)ddx
~dt

(
φcl
j1+1(x1)− φcl

j1+1(x1)
))

φcl
j1+1(x1)− φcl

j1+1(x1)
. (B.6)

Notice that this reduces to the same delta function in the limit 2φcl
j1(x1)ddx/(~dt)→ 0.

4The derivatives of the potential are understood as functions of φcl
j (x). The expression here is tantamount

to eq. (2.11) in ref. [32]. We point out, however, that there is a typo there: in eqs. (2.11) and (2.15) of
ref. [32], the sign in front of the λ term should be positive.
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We are now in a position to integrate out the remaining φq, which fall into two cat-
egories: those between t0 and t1, and those between t1 and t2. Each integration results
in a delta function of the form in eq. (B.3), and so the remaining φcl integrals (except for
φcl
j1+1(x1)) pick out the classical trajectories, one starting at t0, and the other starting at
t1. As a result, we can integrate out all φcl in the numerator, except φcl

j1+1(x1). If we
now return to eq. (3.18b) and define the double angle brackets 〈〈. . . 〉〉 to be a shorthand
notation for the path integrals without the φ±0 integrals, we find

1
2
〈〈[

sign(φ+
j1

(x1)) + sign(φ−j1(x1))
]
sign(φcl

j2(x2))
〉〉

= 1
π

∫
dφcl

j1+1(x1)
sin
(

2φ̃cl
j1

(x1)ddx
~dt

(
φcl
j1+1(x1)− φ̃cl

j1+1(x1)
))

φcl
j1+1(x1)− φ̃cl

j1+1(x1)
sign( ˜̃φcl

j2(x2))

= 1
π

∫
dπcl

j1(x1)
sin
(

2φ̃cl
j1

(x1)ddx
~

(
πcl
j1(x1)− π̃cl

j1(x1)
))

πcl
j1

(x1)− π̃cl
j1

(x1)
sign( ˜̃φcl

j2(x2)) , (B.7)

where we have introduced the momentum fields

πcl
j1(x1) ≡

φcl
j1+1(x1)− φ̃cl

j1(x1)
dt and π̃cl

j1(x1) ≡
φ̃cl
j1+1(x1)− φ̃cl

j1(x1)
dt . (B.8)

The tilde refers to the classical trajectories with the initial data at t0. The ˜̃φcl
j2(x2) also

satisfies the classical equation, but with the initial data at t1, i.e., including πcl
j1(x1). Thus,

along with the initial Wigner function, we obtain the expression given in eq. (3.20).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407
[INSPIRE].

[2] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47
(1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].

[3] J.S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics Physique Fizika 1 (1964) 195
[INSPIRE].

[4] A.J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: is the flux there
when nobody looks?, Phys. Rev. Lett. 54 (1985) 857 [INSPIRE].

[5] J. Klauder and B. Skagerstam, Coherent states — applications in physics and mathematical
physics, World Scientific, Singapore (1985).

[6] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological
perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part
3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].

– 19 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.1703727
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C2%2C407%22
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C20%2C1018%22
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysicsPhysiqueFizika.1.195%22
https://doi.org/10.1103/PhysRevLett.54.857
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C54%2C857%22
https://doi.org/10.1142/0096
https://doi.org/10.1016/0370-1573(92)90044-Z
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C215%2C203%22


J
H
E
P
0
3
(
2
0
2
1
)
0
7
7

[7] C. Greiner and B. Müller, Classical fields near thermal equilibrium, Phys. Rev. D 55 (1997)
1026 [hep-th/9605048] [INSPIRE].

[8] G.D. Moore and N. Turok, Classical field dynamics of the electroweak phase transition, Phys.
Rev. D 55 (1997) 6538 [hep-ph/9608350] [INSPIRE].

[9] G. Aarts and J. Smit, Classical approximation for time dependent quantum field theory:
diagrammatic analysis for hot scalar fields, Nucl. Phys. B 511 (1998) 451 [hep-ph/9707342]
[INSPIRE].

[10] A. Rajantie, P.M. Saffin and E.J. Copeland, Electroweak preheating on a lattice, Phys. Rev.
D 63 (2001) 123512 [hep-ph/0012097] [INSPIRE].

[11] F. Cooper, A. Khare and H. Rose, Classical limit of time dependent quantum field theory: a
Schwinger-Dyson approach, Phys. Lett. B 515 (2001) 463 [hep-ph/0106113] [INSPIRE].

[12] G. Aarts and J. Berges, Classical aspects of quantum fields far from equilibrium, Phys. Rev.
Lett. 88 (2002) 041603 [hep-ph/0107129] [INSPIRE].

[13] J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false
vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228]
[INSPIRE].

[14] J. Smit and A. Tranberg, Chern-Simons number asymmetry from CP-violation at electroweak
tachyonic preheating, JHEP 12 (2002) 020 [hep-ph/0211243] [INSPIRE].

[15] A. Arrizabalaga, J. Smit and A. Tranberg, Tachyonic preheating using 2PI − 1/N dynamics
and the classical approximation, JHEP 10 (2004) 017 [hep-ph/0409177] [INSPIRE].

[16] A. Rajantie and A. Tranberg, Looking for defects in the 2PI correlator, JHEP 11 (2006) 020
[hep-ph/0607292] [INSPIRE].

[17] J. Berges and T. Gasenzer, Quantum versus classical statistical dynamics of an ultracold
Bose gas, Phys. Rev. A 76 (2007) 033604 [cond-mat/0703163] [INSPIRE].

[18] J. Berges and S. Roth, Topological defect formation from 2PI effective action techniques,
Nucl. Phys. B 847 (2011) 197 [arXiv:1012.1212] [INSPIRE].

[19] M. Revzen, P.A. Mello, A. Mann and L.M. Johansen, Bell’s inequality violation with
non-negative Wigner functions, Phys. Rev. A 71 (2005) 022103 [quant-ph/0405100].

[20] J. Berges, S. Borsányi, D. Sexty and I.-O. Stamatescu, Lattice simulations of real-time
quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].

[21] A. Kamenev and A. Levchenko, Keldysh technique and nonlinear sigma-model: basic
principles and applications, Adv. Phys. 58 (2009) 197 [arXiv:0901.3586] [INSPIRE].

[22] T. Fritz, Quantum correlations in the temporal Clauser-Horne-Shimony-Holt (CHSH)
scenario, New J. Phys. 12 (2010) 083055 [arXiv:1005.3421].

[23] E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50
(2011) 347 [arXiv:1001.2933] [INSPIRE].

[24] T. Epelbaum, F. Gelis and B. Wu, Nonrenormalizability of the classical statistical
approximation, Phys. Rev. D 90 (2014) 065029 [arXiv:1402.0115] [INSPIRE].

[25] Y. Tanizaki and T. Koike, Real-time Feynman path integral with Picard-Lefschetz theory and
its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386]
[INSPIRE].

– 20 –

https://doi.org/10.1103/PhysRevD.55.1026
https://doi.org/10.1103/PhysRevD.55.1026
https://arxiv.org/abs/hep-th/9605048
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605048
https://doi.org/10.1103/PhysRevD.55.6538
https://doi.org/10.1103/PhysRevD.55.6538
https://arxiv.org/abs/hep-ph/9608350
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9608350
https://doi.org/10.1016/S0550-3213(97)00723-2
https://arxiv.org/abs/hep-ph/9707342
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707342
https://doi.org/10.1103/PhysRevD.63.123512
https://doi.org/10.1103/PhysRevD.63.123512
https://arxiv.org/abs/hep-ph/0012097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0012097
https://doi.org/10.1016/S0370-2693(01)00872-3
https://arxiv.org/abs/hep-ph/0106113
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0106113
https://doi.org/10.1103/PhysRevLett.88.041603
https://doi.org/10.1103/PhysRevLett.88.041603
https://arxiv.org/abs/hep-ph/0107129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0107129
https://doi.org/10.1103/PhysRevD.67.103501
https://arxiv.org/abs/hep-ph/0208228
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0208228
https://doi.org/10.1088/1126-6708/2002/12/020
https://arxiv.org/abs/hep-ph/0211243
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0211243
https://doi.org/10.1088/1126-6708/2004/10/017
https://arxiv.org/abs/hep-ph/0409177
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0409177
https://doi.org/10.1088/1126-6708/2006/11/020
https://arxiv.org/abs/hep-ph/0607292
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0607292
https://doi.org/10.1103/PhysRevA.76.033604
https://arxiv.org/abs/cond-mat/0703163
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0703163
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://arxiv.org/abs/1012.1212
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.1212
https://doi.org/10.1103/physreva.71.022103
https://arxiv.org/abs/quant-ph/0405100
https://doi.org/10.1103/PhysRevD.75.045007
https://arxiv.org/abs/hep-lat/0609058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0609058
https://doi.org/10.1080/00018730902850504
https://arxiv.org/abs/0901.3586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.3586
https://doi.org/10.1088/1367-2630/12/8/083055
https://arxiv.org/abs/1005.3421
https://arxiv.org/abs/1001.2933
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.2933
https://doi.org/10.1103/PhysRevD.90.065029
https://arxiv.org/abs/1402.0115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.0115
https://doi.org/10.1016/j.aop.2014.09.003
https://arxiv.org/abs/1406.2386
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2386


J
H
E
P
0
3
(
2
0
2
1
)
0
7
7

[26] A. Cherman and M. Ünsal, Real-time Feynman path integral realization of instantons,
arXiv:1408.0012 [INSPIRE].

[27] S. Bose, D. Home and S. Mal, Nonclassicality of the harmonic-oscillator coherent state
persisting up to the macroscopic domain, Phys. Rev. Lett. 120 (2018) 210402
[arXiv:1509.00196].

[28] A. Alexandru, G. Basar, P.F. Bedaque, S. Vartak and N.C. Warrington, Monte Carlo study
of real time dynamics on the lattice, Phys. Rev. Lett. 117 (2016) 081602 [arXiv:1605.08040]
[INSPIRE].

[29] A. Alexandru, G. Basar, P.F. Bedaque and G.W. Ridgway, Schwinger-Keldysh formalism on
the lattice: a faster algorithm and its application to field theory, Phys. Rev. D 95 (2017)
114501 [arXiv:1704.06404] [INSPIRE].

[30] J. Martin and V. Vennin, Obstructions to Bell CMB experiments, Phys. Rev. D 96 (2017)
063501 [arXiv:1706.05001] [INSPIRE].

[31] Z.-G. Mou, P.M. Saffin, A. Tranberg and S. Woodward, Real-time quantum dynamics, path
integrals and the method of thimbles, JHEP 06 (2019) 094 [arXiv:1902.09147] [INSPIRE].

[32] Z.-G. Mou, P.M. Saffin and A. Tranberg, Quantum tunnelling, real-time dynamics and
Picard-Lefschetz thimbles, JHEP 11 (2019) 135 [arXiv:1909.02488] [INSPIRE].

[33] W.-Y. Ai, B. Garbrecht and C. Tamarit, Functional methods for false vacuum decay in real
time, JHEP 12 (2019) 095 [arXiv:1905.04236] [INSPIRE].

[34] M.P. Hertzberg and M. Yamada, Vacuum decay in real time and imaginary time formalisms,
Phys. Rev. D 100 (2019) 016011 [arXiv:1904.08565] [INSPIRE].

[35] M. Headrick, Lectures on entanglement entropy in field theory and holography,
arXiv:1907.08126 [INSPIRE].

[36] A. Alexandru, G. Basar, P.F. Bedaque and N.C. Warrington, Complex paths around the sign
problem, arXiv:2007.05436 [INSPIRE].

[37] M.P. Hertzberg, F. Rompineve and N. Shah, Quantitative analysis of the stochastic approach
to quantum tunneling, Phys. Rev. D 102 (2020) 076003 [arXiv:2009.00017] [INSPIRE].

[38] J. Braden, M.C. Johnson, H.V. Peiris, A. Pontzen and S. Weinfurtner, New semiclassical
picture of vacuum decay, Phys. Rev. Lett. 123 (2019) 031601 [arXiv:1806.06069] [INSPIRE].

– 21 –

https://arxiv.org/abs/1408.0012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.0012
https://doi.org/10.1103/physrevlett.120.210402
https://arxiv.org/abs/1509.00196
https://doi.org/10.1103/PhysRevLett.117.081602
https://arxiv.org/abs/1605.08040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.08040
https://doi.org/10.1103/PhysRevD.95.114501
https://doi.org/10.1103/PhysRevD.95.114501
https://arxiv.org/abs/1704.06404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.06404
https://doi.org/10.1103/PhysRevD.96.063501
https://doi.org/10.1103/PhysRevD.96.063501
https://arxiv.org/abs/1706.05001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.05001
https://doi.org/10.1007/JHEP06(2019)094
https://arxiv.org/abs/1902.09147
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09147
https://doi.org/10.1007/JHEP11(2019)135
https://arxiv.org/abs/1909.02488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02488
https://doi.org/10.1007/JHEP12(2019)095
https://arxiv.org/abs/1905.04236
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.04236
https://doi.org/10.1103/PhysRevD.100.016011
https://arxiv.org/abs/1904.08565
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08565
https://arxiv.org/abs/1907.08126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.08126
https://arxiv.org/abs/2007.05436
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05436
https://doi.org/10.1103/PhysRevD.102.076003
https://arxiv.org/abs/2009.00017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.00017
https://doi.org/10.1103/PhysRevLett.123.031601
https://arxiv.org/abs/1806.06069
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.06069

	Introduction
	Classical-Statistical approximation and Lefschetz thimbles
	(Temporal) Leggett-Garg inequalities
	Violation of the Leggett-Garg inequalities
	A conundrum

	(Spatial) Bell inequalities
	Conclusions
	QM correlation function
	Path integral for the dynamical part

