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Classical (1 + 1)D cellular automata, as for instance Domany-Kinzel cellular automata, are
paradigmatic systems for the study of non-equilibrium phenomena. Such systems evolve in discrete
time-steps, and are thus free of time-discretisation errors. Moreover, they display non-equilibrium
phase transitions which can be studied by simulating the evolution of an initial seed. At any finite
time, this has support only on a finite light-cone. Thus, essentially numerically exact simulations
free of finite-size errors or boundary effects are possible, leading to high accuracy estimates of crit-
ical exponents. Here, we show how similar advantages can be gained in the quantum regime: The
many-body critical dynamics occurring in (1 + 1)D quantum cellular automata with an absorbing
state can be studied directly on an infinite lattice when starting from seed initial conditions. This
can be achieved efficiently by simulating the dynamics of an associated one-dimensional, non-unitary
quantum cellular automaton using tensor networks. We apply our method to a model introduced
recently and find accurate values for universal exponents, suggesting that this approach can be a
powerful tool for precisely studying non-equilibrium universal physics in quantum systems.

Introduction.— One of the most intriguing aspects of
non-equilibrium phase transitions (NEPTs) is the emer-
gence of universal behaviour: systems with very different
microscopic details can display the same scaling laws at
a macroscopic scale, both for key stationary and dynam-
ical quantities. As in equilibrium, an understanding of
such critical features comes from their classification into
universality classes [1–3]. Each class groups systems with
the same emergent behaviour, as identified by the values
of parameters known as critical exponents. However, in
contrast to equilibrium settings, even the simplest critical
non-equilibrium systems, e.g. those featuring absorbing
state phase transitions in the directed percolation (DP)
universality class, are not analytically solvable and their
exponents cannot be determined exactly.

To overcome this problem, efficient numerical schemes
for simulating non-equilibrium many-body dynamics are
required. This concerns both continuous time models,
such as the contact process [4], and discrete time evo-
lutions like in the paradigmatic Domany-Kinzel cellular
automata (DKCA) [5]. To estimate the values of criti-
cal exponents with high precision, a particularly powerful
approach is offered by studying critical behaviour in dis-
crete time systems following a local perturbation of the
absorbing state [4]. For instance, in the DKCA this is a
state with a single occupied site, as shown in Fig. 1(a).

The importance of such scenarios is two-fold. Firstly,
numerically-exact simulations can be performed directly
in the limit of an infinite system, i.e. free of finite-size
effects. This stems from the fact that the information
about the presence of a local perturbation propagates
with a strict light cone. Secondly, as a consequence, crit-

ical exponents can be extracted directly from such evolu-
tions by considering only a finite portion of the system,
see Fig. 1(b). Put together, simulations of models such
as the DKCA have allowed for unprecedented accuracy in
the estimation of the critical exponents defining NEPTs
in classical systems, and thus underpin the general un-
derstanding of out-of-equilibrium physics that results.

For quantum many-body systems (QMBSs), tracking
the evolution of an initial seed also provides access to key
universal quantities associated to NEPTs. However, the
corresponding simulations in continuous [6, 7] and dis-
crete time [8, 9] pose significant challenges. Indeed, owing
to the substantial technical barriers present in studying
out of equilibrium QMBSs, understanding the critical be-
haviour and universality classes of even seemingly simple
QMBSs displaying NEPTs remains an outstanding prob-
lem [10–13].

In this paper, we introduce a method to study NEPTs
in QMBSs that builds on the advantages of classical seed
simulations. We show that the discrete-time dynamics
of (1 + 1)D quantum cellular automata (QCA) starting
from a single seed can be simulated efficiently without
finite-size effects. While the (unitary) (1 + 1)D QCA is
represented by a 2D state, we consider the associated
(non-unitary) reduced evolution of a 1D row. To this
end we use a tensor network (TN) [14–24] that grows
dynamically, thus extending the range of application for
infinite-size TN methods [32–34] to the case of NEPTs
in QMBSs.

Just like their classical counterparts — which in-
clude the DKCA — (1 + 1)D QCA are free of time-
discretization errors. As such, our approach offers an ex-
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FIG. 1. Seed evolutions in a (1 + 1)D (quantum) cellular automaton: (a) Seed evolution of the classical Domany-Kinzel
cellular automaton at the critical site-DP point [3] performed directly on an infinite lattice. Occupied sites only fall inside the
indicated light-cone (dashed lines and shaded region). (b) The total number of occupied sites, N(t), is shown averaged over
1000 runs (solid black line). Even for relatively short times the universal power-law can be seen (straight solid red line), and
the observed exponent is in agreement with the expected value for 1D DP: θDP = 0.314. (c) In a (1+1)D QCA, a 2D lattice is
initiated in a product state with all empty sites apart from the first row which encodes the initial condition. The state |ψ(1)〉,
obtained by updating the target sites in the subsequent row via the application of three-body unitary gates, is shown. The
operator G1 is the product of the applied gates, thus |ψ(1)〉 = G1 |ψ(0)〉. (d) When (1 + 1)D QCA on an infinite lattice display
a strict light cone, the reduced dynamics of a row with seed initial conditions are fully captured by those of a finite-size reduced
state, ρ(t). The size of this state grows proportionally with time. This allows for the dynamics of the underlying unitary
(1 + 1)D QCA to be studied via the corresponding non-unitary dynamics of ρ(t) = Λ[ρ(t− 1)], free of finite-size effects.

tremely clean, flexible and efficient framework for study-
ing NEPTs in quantum systems. To demonstrate its po-
tential, we apply it to previously studied QCA [8]. The
method introduced here allows for the accurate estima-
tion of critical exponents at significantly reduced compu-
tational costs.

Single-seed dynamics in QCA.— Similarly to the case
of classical cellular automata [25] [c.f. Fig. 1(a)], the full
information about (1 + 1)D QCA is encoded in a two-
dimensional (tilted) lattice, as shown in Fig. 1(c). The
horizontal dimension represents space, while the vertical
one provides a notion of time [8, 9, 26, 27]. Each lat-
tice site is described by a two-level system, with basis
states |•〉 , |◦〉 denoting an occupied or an empty site, re-
spectively. The lattice is initialized with all sites in the
empty state, except for those in the zeroth row, which
encode the initial condition.

The evolution of this 2D lattice occurs via the action
of unitary operators (gates) on lattice sites. These gates
act on pairs of consecutive rows, such that at time-step
t, the “target” row t, is updated according to the state of
“control” row t−1. For concreteness, we consider a local
update rule with three-body gates, Gt,k, but the exten-
sion to gates with larger support (implementing longer-
ranged interactions) is immediate.

The gate Gt,k performs a controlled unitary operation
on the target site at (t, k), with controls at (t − 1, k−)
and (t − 1, k+), where k− (k+) refers to the control site
to the left (right) of target site k. In order for the QCA
to feature an absorbing state, we impose a constraint
on Gt,k: we assume that target sites are not modified
whenever the corresponding control sites are both found
in the empty state [8]. As such, if a control row has all
sites empty, no update takes place on their targets.

The global update for the entire row, Gt, is then an
ordered product of the gates Gt,k, one per target site.
In contrast to classical systems, one must pay special at-
tention to the ordering of the unitary quantum gates, as
these do not commute in general. As such, to preserve
a physical notion of causality — a concept which is also
key to the definition of QCA in the field of quantum
information (QI) [28, 29] — only those gate orderings
giving rise to a strict light cone, reminiscent of quan-
tum systems that feature a Lieb-Robinson bound [31],
will be considered. Choosing specific gate orderings will
certainly affect details of the evolution dynamics, but are
not expected to impact universal features, such as critical
exponents.

Due to the unitarity of the gates, the state of the
2D lattice after t time steps is pure, |ψ(t)〉. It contains
the full space-time information of the QCA and can be
used to compute unequal time observables, such as time-
correlation functions. However, here we focus on observ-
ables which can be computed from the reduced state of
the QCA on row t at time t. These observables provide
sufficient information to determine the universality class
of the considered model [3, 4, 8].

Mathematically, the reduced state is given by %(t) =
Tr′ (|ψ(t)〉 〈ψ(t)|), where Tr′ is the partial trace over all
sites with the exception of those in row t. The evolu-
tion of %(t) describes the discrete-time dynamics of a 1D
system. Corresponding to the classical case where irre-
versible 1D CA can be simulated by reversible (1 + 1)D
CA [30], the dynamics of %(t) are in general non-unitary.
Since gates act solely on consecutive rows, the evolution
of %(t) can be defined iteratively as

%(t) = Trt−1

[
Gt%(t− 1)⊗ |Ωt〉 〈Ωt| G†t

]
, (1)
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where |Ωt〉 is the t-th row configuration with all empty
sites and Trt−1 indicates the trace over the sites where
%(t− 1) is defined.

Turning now to dynamics ensuing from a single-seed
initial condition, we set %(0), i.e. the zeroth row of the
2D lattice, to be %(0) = σ+

seed |Ω0〉 〈Ω0|σ−seed, where σ+ =
|•〉〈◦| and σ− = (σ+)†, in such a way that the seed site
(at the centre of the initial row) is occupied. Clearly, for
this choice of the initial state, %(0) factorises as %(0) =
ρ◦ ⊗ ρ(0)⊗ ρ◦, where the matrix ρ◦ indicates an infinite
tensor product of empty states, while ρ(0) = |•〉〈•| has
support only on a single site.

The most striking consequence of the existence of a
strict light cone is that, for dynamics starting from a
state with finite non-trivial support such as the single-
seed, at any time %(t) can be factorised as %(t) = ρ◦ ⊗
ρ(t) ⊗ ρ◦. Here, ρ(t) has support only on a finite set of
sites, Lt, with size Lt = |Lt|. Consequently, the entire
reduced dynamics of the (1 + 1)D QCA can be captured
without finite size effects through the evolution of ρ(t) =
Λ [ρ(t− 1)], where Λ is the map that implements this
update, see Fig. 1(d).

In general, starting from any ρ(t− 1) and for any gate
ordering, the reduced dynamics can be implemented via
Eq. (1) as follows. First ρ(t− 1) is mapped into %(t− 1)
by attaching an infinite product of empty sites in row
t−1 to the left and right of Lt. Second, row t is included
in a product state of all empty sites. Third, the gates are
applied via Gt before, finally, the sites of row t − 1 are
traced out.

For orderings with strict light cones, this procedure
simplifies since sites outside the support Lt are in the
absorbing state and, thus, only a finite number of gates
in Gt act non-trivially. Therefore, the map Λ can be im-
plemented by considering only a finite number of extra
empty sites and gates (see also Fig. 2). In addition, for
any given t, Lt ≤ Lt−1 + v for some fixed integer v de-
termined by the gate and the ordering. In what follows,
we show how Λ can be expressed in terms of a finite
TN that updates a matrix product operator (MPO) rep-
resentation for ρ(t − 1) into an MPO representation of
ρ(t). This enables efficient numerical simulations of the
dynamics of ρ(t), allowing us to investigate universal as-
pects of the QCA, directly in the infinite lattice limit.

TNs for seed evolutions on infinite lattices.— For the
sake of clarity, we now specify a gate ordering. We choose
an alternating leftmost-rightmost ordering, where first
the leftmost target site is updated, then rightmost, then
the second leftmost and so on. Generalization to other
gate orderings is possible (see Supplemental Material [35]
for a discussion of another example). The alternating
leftmost-rightmost ordering leads to the lowest possible
increase in Lt, i.e. v = 1, and thus has minimal compu-
tational cost.

It is convenient to represent ρ(t) as an MPO. The map
Λ, which connects two MPOs with different supports, can

FIG. 2. Reduced dynamics of the (1 + 1)D QCA: (a)
To evolve ρ(t−1)→ ρ(t) through the map Λ, we begin via an
MPO representation of ρ(t− 1), shown here for t = 2. Empty
sites are then added at locations where gates act non-trivially.
This operation defines the state Ξt−1. We have depicted these
states here using the standard diagrammatic notation for TNs
[14, 22]. In this notation, tensors are represented by shapes
with a number of legs corresponding to their order. Each ten-
sor corresponding to operators in a local Hilbert space must
have two legs for the “physical” indices, here represented by a
solid black circle. Other “virtual” legs which join the shapes
(solid black lines) encode correlations between these, and we
denote the trivial legs (indicating no correlations) as dashed
lines. (b) The gates are then applied in MPO form to update
the state. By tracing out the sites of row t − 1, indicated
diagrammatically by removing physical legs, the exact TN
representation of ρ(t) is obtained. Approximating this by an
MPO allows the scheme to be iterated.

then be understood in terms of a TN, see Fig. 2. At any
given time, ρ(t − 1) is represented as an MPO [c.f. Fig.
2(a)] with maximum bond-dimension χ. To find the rep-
resentation for ρ(t), with our choice of the ordering, we
first expand ρ(t−1) by introducing a single empty site at
both boundaries and t + 1 empty sites (the target sites)
representing the subsequent row. This defines a new state
Ξt−1, with the same non-trivial part. At this point, we
can apply all the gates acting non-trivially on the QCA,
as shown in Fig. 2(b). This is achieved by representing
gates as three-site MPOs and applying these to the previ-
ous TN for Ξt−1. To obtain a TN for ρ(t), we then trace
out all sites related to row t−1. An exact representation
of ρ(t) as an MPO can be achieved by factorising the ten-
sors in row t− 1 and contracting them into those of row
t. However, such an operation will, in general, lead to an
exponential growth of the bond-dimension χ with time,
making numerical simulations infeasible. To avoid this,
the last step of the update consists in constructing an
approximate MPO for ρ(t). There are several strategies
for approximating ρ(t) using an MPO with fixed χ. For
TNs, a natural approach is to first map the MPO into
a matrix product state (MPS), apply standard approxi-
mation methods available for MPS [14, 18], and, finally,
map the MPS back into an MPO [35].

Critical Exponents for (1 + 1)D QCA.—To demon-
strate the potential of the method introduced here, we
consider the (1 + 1)D QCA defined by the local gate,

Gt,k = exp
[
−iΓ

(
Ut−1,(k−,k+)Pt−1,(k−,k+)σ

+
t,k + h.c.

)]
(2)

This gate implements a generalised rotation of the target
by an angle Γ, conditioned on the controls by a two-body
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FIG. 3. Critical behavior: (a) The evolution of the total number of occupied sites, N(t), is shown for t ∈ [1, 100] for various
values of Γ. This includes five intermediate values close to the critical point — as indicated by the almost linear behaviour
in the log-log plot — and two values (the bottom-most and top-most lines) further from the critical point, illustrating the
NEPT from a state of zero particles to one with a diverging number. In ascending order from the lowest line, the values
are Γ are 0.98, 0.995, 0.996, 0.997, 0.998, 0.999, 1.01. The inset shows θ(t) for the central five values. From these, the flattest
curve provides the estimate for the critical point, Γc = 0.997 ± 0.01, and exponent, θ = 0.307 ± 0.017. The shaded region
represents the error [35]. The estimated value of θ is consistent with that of 1D DP, indicated by the dotted green line. χ is the
maximum MPO bond-dimension used. (b) Corresponding plots for ω = 1 with Γ = 1.015, 1.03, 1.032, 1.034, 1.035, 1.04, 1.05.
These produce the estimates Γc = 1.034± 0.02 and θ = 0.32± 0.03, also consistent with 1D DP.

projector,

Pt,(k−,k+) = 1t,(k−,k+) − |◦◦〉〈◦◦|t,(k−,k+) . (3)

This dynamics thus has the absorbing state |... ◦ ◦...〉
which follows from Pt,(k−,k+) |◦◦〉t,(k−,k+) = 0 [26]. In

order to control the degree of quantum correlations [8],
we introduce the two-body unitary

Ut,(k−,k+) = exp
(
−iω

[
σzt,k−σ

y
t,k+

+ σyt,k−σ
z
t,k+

])
, (4)

where σy = −i |•〉〈◦|+ i |◦〉〈•| , σz = |•〉〈•|− |◦〉〈◦|. When
ω = 0 no entanglement is created in %(t) and it is always
separable. As ω is increased %(t) can become entangled,
before again becoming separable when ω = π/2.

This particular (1 + 1)D QCA was studied previously
for ω = 0 [26] and with ω > 0 [8]. In the first case, the
separability of %(t) allowed for the universality class to
be established as 1D DP, via a mapping to the site-DP
critical point of the DKCA. For ω > 0, TNs were used to
find bounds on the critical exponent α, associated to the
decay of the average particle density when starting from
homogeneous — all sites occupied — initial conditions
[3]. These exponents were also found to be consistent
with 1D DP. However, the accuracy of estimates were
limited by the computational difficulty of the simulation.
This was found to depend strongly on the value of ω, and
cases where Ut,(k−,k+) generated significant entanglement
were particularly challenging. As such, simulations with
values such as ω = 1 led to rather loose bounds on the
estimate of α.

Here, we study the dynamics of this (1 + 1)D QCA
starting from an initial seed state and using an alter-
nating leftmost-rightmost gate ordering. To test our
method, we consider the challenging ω = 1 case, using
ω = 0 for comparison. We focus on the total number of
occupied sites at time t,

N(t) =
∑
k∈Lt

Tr [n̂kρ(t)] , (5)

where n̂k is the operator n̂ = |•〉〈•| at a given site. At
the critical Γ, this average value is expected to display
a universal power-law behavior with critical exponent θ,
N(t) ∼ tθ [see Fig. 1(c)]. We can thus use N(t) both to
determine the critical point Γc for each ω and to estimate
the value of θ, as shown in Fig. 3.

For fixed ω, we take several values of Γ and simulate
ρ(t) up to t = 100 for different χ, the two highest of which
are shown in Fig. 3. We then calculate the effective ex-
ponent, θ(t) = log2 [N(t)/N(t/2)], which converges to
a constant for power-law behaviour and provides and
approximation for the exponent θ at criticality. Using
the highest value of χ available and taking the curve for
which θ(t) is closest to a constant, we estimate the crit-
ical value Γc as well as the exponent θ. Errors due to
finite χ are estimated via the difference of curves with
alternative χ values. For errors associated to the esti-
mation of the critical point, values of θ extracted from
curves with Γ ≈ Γc are used. For both ω = 0 and ω = 1,
the errors due to the estimate of Γc are far larger than
those attributable to finite χ. As such, the errors stated
in Fig. 3 correspond to those induced by the estimate of
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the critical point [35].

For ω = 0 and ω = 1, the estimated values of θ were
θ = 0.307± 0.017 and θ = 0.32± 0.03 respectively. Both
are consistent with 1D DP. Since the errors on these es-
timates are dominated by the resolution of the grid used
to find Γc, they can be reduced easily by finer searches.
This is in stark contrast to the homogeneous case. Not
only are the overall errors there larger due to the pres-
ence finite-size effects, but it is the error due to finite χ
that limits accuracy [8].

Conclusions and Outlook.— We have introduced a
general scheme for the simulation of seed evolutions in
(1 + 1)D QCA with an absorbing state. This allows for
the study of quantum NEPTs free of finite-size effects.
This method can be used to provide an accurate esti-
mates of the critical exponents related to the universal
dynamics of these models. Owing to the universality of
continuous NEPTs, the method introduced here can be
applied well beyond the particular considerations of QCA
to the study of out-of-equilibrium quantum many-body
systems with absorbing states more broadly. Further-
more, by considering systems with trivial (infinite tem-
perature) steady states, it can easily be extended to the
study of systems without absorbing states as well.

Nonetheless, QCA are also of interest in their own
right. Not only can they be considered as computational
models and analysed from the perspective of QI [28, 36–
38], but, as they are quantum many-body systems, their
emergent physical properties can be intriguing [39]. In
this regard, our method, along with (1 + 1)D QCA more
generally, may be rather useful as it allows for the explicit
study of emergent behavior in QCA — including non-
unitary QCA, far less studied than their unitary counter-
parts [9, 29, 40, 41]. Applying these tools for character-
izing non-equilibrium universality classes will potentially
provide general insights into the relationships between
the computational properties of QCA and their collec-
tive many-body behavior.
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Supplemental Materials

REDUCED STATE DYNAMICS WITH ODD-EVEN SCHEME

In this section, we consider the reduced state dynamics ρ(t) = Λ [ρ(t− 1)] for the more common “odd-even” gate
ordering. In this case, the update of a given target row t occurs by first updating all odd targets and then all even
ones. Since the fundamental gate G acts on two control sites, all odd (even) targets can be updated simultaneously
since the corresponding uniraty operators commute.

Defining Gt to be the operator that updates the full row of targets, this ordering defines the decomposition,

Gt = Get Got , (S1)

where,

Get =
∏
k even

Gt,k , (S2)

Got =
∏
k odd

Gt,k . (S3)

This ordering of the gates defines a reduced dynamics Λ for which the non-trivial part of the reduced density matrix
for a row, ρ(t) increases by two-sites at every time-step. In other words, this scheme givevs rise to a strict light cone
structure where v = 2. The corresponding update using tensor networks is illustrated in Fig. S1, with all details
contained in the caption.

APPROXIMATION OF REDUCED DYNAMICS USING MATRIX PRODUCT OPERATORS

When dealing with the approximation of pure states using TNs, one often uses matrix product states (MPS)
[14, 18, 22]. In this framework, one takes an MPS of fixed bond-dimension, |φ̃〉, and uses it as a variational ansatz to
approximate some desired state, |φ〉, also represented as an MPS but with higher bond-dimension. This is achieved by
adjusting the parameters contained in |φ̃〉 (the elements of the tensors that define it) so as to minimise the Hilbert-space
distance between the two states.

To apply this idea to matrix product operators (MPOs) and density matrices, one can map the density matrices to
states in the doubled space via the isomorphism |m〉〈n| → |m〉 |n〉 which implements ρ(t) → |ρ(t)〉. In terms of the
TNs, this maps the MPO representation of ρ(t) to an MPS representation of |ρ(t)〉 in a straightforward manner by
collecting together the physical “bra and ket” indices of the MPO into a single compound index for each site.

FIG. S1. The reduced dynamics of the (1 + 1)D QCA under an odd-even update scheme: (a) The update begins
with the MPO representation of ρ(t − 1), choosing t = 1 here. (b) Empty sites are then added to form two-row state Ξt−1.
In the present scheme, a single site to the left of the current reduced state MPO and two to the right can be used. In the
target layer t + 2 sites which have two of the previous control sites as parents on the tilted square lattice are added. (c)
After decomposing G as a three site MPO, the odd update is applied, with the first site in the target row being considered as
even for this purpose. Here, the overbar indicates complex conjugation. (d) The even update is then applied, such that all
Lt = Lt−1 + 2 targets have been updated. (e) Finally, the control row t− 1 is traced out, and the resulting two-layer network
represents ρ(t). This can subsequently be used to form an approximation of ρ(t) as an MPO.
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A state |ρ̃(t)〉 represented as an MPS can then be used as a variational approximation of |ρ(t)〉 by solving the
minimisation problem,

|ρ̃(t)〉 = argmin|ρ̃(t)〉∈MPS(χ)| |ρ(t)〉 − |ρ̃(t)〉 |2 , (S4)

where MPS(χ) indicates the set of MPS states with maximum bond-dimension χ.
Finally the MPS representation of |ρ̃(t)〉 can be mapped into an MPO representation by factorising the physical

indices that were previously grouped.
In the context of the reduced dynamics ρ(t) = Λ [ρ(t− 1)] considered in the main text, given an initial MPO

representation of ρ(t− 1), we produce an approximate MPO representation of ρ(t) as follows:

1. Represent the state |ρ(t)〉 as a two-layer network, by collecting the physical indices of the corresponding repre-
sentation of ρ(t).

2. Initiate an MPS ansatz state, |ρ̃〉.

3. Iteratively minimise the Hilbert-space norm between these two states, sweeping through site-by-site in the MPS
of |ρ̃〉 (i.e. sequentially minimise the parameters contained in a tensor corresponding to a particular site while
keeping the others fixed) to make efficient use of computational resources. This is achieved using standard MPS
methods [14].

4. Perform sweeps until a chosen observable has converged to sufficient accuracy. In the main text, we use the
total number of excitations between the exactly updated ρ(t) and the variational approximation.

5. Map the resulting MPS |ρ̃〉 to an MPO, which is then taken as the approximation of ρ(t) for subsequent iterations.

We note that, while this procedure is optimal for pure states, there is no such guarantee for mixed states, where
the natural distance measure between states is not the Hilbert-space norm used for the objective function of the
minimisation, but instead the trace norm. However, the procedure has proved effective in practice. In any case, we
emphasise that this approximation step can be replaced by any other desired method, as it is independent of the
overall approach taken in the main text.

ESTIMATION OF θ EXPONENT FROM N(t)

In this section, we provide details on the estimation procedure used for the critical point, Γc, and the critical
exponent θ, which established the values found for the (1 + 1)D QCA (2) considered in the main text and displayed
in Fig. 3.

To estimate Γc, we simulate seed evolutions and calculate N(t) for a grid of Γ, the resolution of which sets the
fundamental error in the estimation of Γc.

Constructing the effective exponent, θ(t), for each value of Γ, we estimate Γc as the value of Γ for which the curve
of θ(t) is closest to a constant. This is measured by the gradient averaged between t ∈ [50, 100], using the simulation
with the highest value of χ. The curve with the lowest absolute averaged gradient is then chosen for the estimate.

The error on this estimate is then taken as the maximum difference between this value of Γ and that of the closest
values of Γ above and below. If these are asymmetrically spaced around Γc, the larger value is chosen. As such, the
estimate of the critical point can be improved by taking finer grids in Γ, as is usual in analysis of classical systems
[3]. In the main text, we estimate that Γc = 0.997± 0.01 and Γc = 1.034± 0.02 for ω = 0 and 1 respectively.

The value of θ is then estimated from the value of θ(t) for Γc, averaged over t = [50, 100]. To estimate the error
in this value induced by the error in Γc, we take the maximum difference between this value and those calculated
similarly for the values of Γ directly above and below. This gives θ = 0.307± 0.017 and θ = 0.322± 0.031 for ω = 0
and ω = 1 respectively. We note this is much larger than the errors associated to the finite bond-dimension effects,
discussed below, and hence this is the overall error stated in the main text.

To estimate the errors induced by restricting the value of χ in simulations, we take the absolute difference between
the value of the observable at that time, and the value obtained from simulations with χ/2. In the main text, the two
highest values of χ used were χ = 128 and 256 for ω = 0 and ω = 1 respectively. As such, simulations with χ = 64
and 128 for ω = 0 and ω = 1 were used to estimate the finite bond-dimension errors.

In the case studied in the main text, the errors in N(t) due to χ where are most 0.09% and 3.75% for ω = 0, 1,
taken over all values of t ≤ 100 and Γ. The corresponding errors propagated to θ(t) can be seen visually in Fig. 3 via
the discrepancy of the lines for different χ values, and are much smaller than the associated error from Γc, indicated
by the shaded region.
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