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ABSTRACT

We explore unsupervised machine learning for galaxy morphology analyses using a
combination of feature extraction with a vector-quantised variational autoencoder
(VQ-VAE) and hierarchical clustering (HC). We propose a new methodology that
includes: (1) consideration of the clustering performance simultaneously when learn-
ing features from images; (2) allowing for various distance thresholds within the HC
algorithm; (3) using the galaxy orientation to determine the number of clusters. This
setup provides 27 clusters created with this unsupervised learning which we show are
well separated based on galaxy shape and structure (e.g., Sérsic index, concentration,
asymmetry, Gini coeflicient). These resulting clusters also correlate well with physi-
cal properties such as the colour-magnitude diagram, and span the range of scaling-
relations such as mass vs. size amongst the different machine-defined clusters. When
we merge these multiple clusters into two large preliminary clusters to provide a binary
classification, an accuracy of ~ 87% is reached using an imbalanced dataset, matching
real galaxy distributions, which includes 22.7% early-type galaxies and 77.3% late-type
galaxies. Comparing the given clusters with classic Hubble types (ellipticals, lentic-
ulars, early spirals, late spirals, and irregulars), we show that there is an intrinsic
vagueness in visual classification systems, in particular galaxies with transitional fea-
tures such as lenticulars and early spirals. Based on this, the main result in this work
is not how well our unsupervised method matches visual classifications and physical
properties, but that the method provides an independent classification that may be
more physically meaningful than any visually based ones.
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1 INTRODUCTION phological classification system in use today was first con-
structed by Hubble (1926), which was then revised by adding
a class for lenticulars (S0), a type of galaxy has a disk struc-
ture without apparent spiral arms (Hubble 1936; Sandage
1961). Since then, a number of detailed classification sys-
tems were proposed such as ones including the notation for
the inter and outer ring structure (de Vaucouleurs 1959) and

Galaxy structure and visual morphology have a strong con-
nection with their stellar population properties, such as sur-
face brightness, colour, and the formation history of galaxies
(Holmberg 1958; Dressler 1980). The dominant visual mor-
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different arm classes (Elmegreen & Elmegreen 1982, 1987),
among others.

However, visual classification systems can be intrin-
sically biased due to the subjective judgement of differ-
ent human classifiers. These human errors are unavoidable
and sometimes cannot be reproduced for carrying out a
statistical analysis. This greatly limits the ability to use
galaxy classification in a formal quantitative way. These is-
sues led astronomers to search for a quantitative descrip-
tion of galaxy structure based on the shape, structure,
and physical properties of galaxies which can in principle
be connected with visual morphology. For example, Princi-
pal Component Analysis (PCA) was applied to determine
the number of dominant features needed to reproduce the
variance shown in observation in Whitmore (1984) as well
as to provide an objective procedure for analysing galaxy
properties (also see Conselice 2006). Other studies such
as non-parametric methods, e.g., concentration, asymme-
try, smoothness/clumpiness, and Gini coefficient (Conselice
et al. 2000; Bershady et al. 2000; Abraham et al. 2003; Con-
selice 2003; Lotz et al. 2004; Law et al. 2007), and parametric
methods, e.g., Sérsic profile (Sérsic 1963, 1968) for measur-
ing galaxy structure were also proposed to provide a more
objective and quantitative classification systems than visual
assessment alone.

Even though quantitative measures of galaxy structure
are extremely useful for measuring properties such as the
merger history (e.g., Conselice 2003), morphological ‘classi-
fications’ into types is still an important and complementary
process. However, it is not clear if indeed we know what these
‘best types’ are such that whether a classification scheme re-
sults in relatively unique physical properties of the galaxies
or traces the merger history in each class.

Thus, in this study we build a galaxy morphological
classification system that does not involve human bias; we
do this through an unsupervised machine learning approach.
One may argue that supervised machine learning, as a more
established technique, might be more suitable for this task.
However, providing labelled data, which is essential to train
a supervised machine, must involve human judgement. Our
intention in this study is to avoid human bias. Second, the
high accuracy achieved by a supervised machine is based
on the given prior knowledge from labelled data. Therefore,
the performance of a supervised machine becomes uncertain
when the testing domain is different from the training do-
main (e.g., Dodge & Karam 2016; Rosenfeld et al. 2018).
In future surveys such as the Vera Rubin Observatory (for-
merly known as Large Synoptic Survey Telescope, LSST;
Tvezié et al. 2019)" will generate the size of the Sloan Digi-
tal Sky Survey (SDSS; York et al. 2000)? data over ten years
in one night. It is doubtful that the current data and human
labelling abilities and speed could facilitate an unbiased and
extensive labelled dataset for a supervised machine to ‘cor-
rectly’ classify the potentially unknown patterns within the
data of future surveys. Furthermore, this supervised learning
will always miss unusual systems.

For the reason discussed above, we use unsupervised
machine learning which is trained without any prior knowl-

L https://www.lsst.org
2 https://www.sdss.org

edge (e.g., galaxy labels, such as Hubble types). This ap-
proach is able to give us suggestive classifications from the
machine’s perspective based upon input features. However,
with an unsupervised machine learning technique it becomes
more challenging to have a ‘sensible’ classification, that is
one with more consistency with human opinion, when the
dimensionality of a feature space becomes high (curse of di-
mensionality, Bellman 1954; Keogh & Mueen 2017). In as-
tronomical studies, unsupervised machine learning applica-
tions have been mostly used in the studies of spectroscopic
data which is less dimensional than applying to imaging data
(e.g., Geach 2012; Krone-Martins & Moitinho 2014; Car-
rasco Kind & Brunner 2014; Siudek et al. 2018). Therefore,
unsupervised learning for galaxy classification is still in its
infancy.

There are currently several types of astronomical stud-
ies that apply unsupervised machine learning techniques
to images which reach reasonable results, including: galaxy
morphology (Hocking et al. 2018; Martin et al. 2020), strong
lensing identification (Cheng et al. 2020), and anomaly de-
tection (Xiong et al. 2018; Margalef-Bentabol et al. 2020).
For example, Hocking et al. (2018) and Martin et al. (2020)
apply a technique called Growing Neural Gas algorithm
(Fritzke 1994), which is a type of Self-organising Map (SOM,
Kohonen 1997), to extract features from images. These fea-
tures are then connected with a hierarchical clustering al-
gorithm (Hastie et al. 2009). On the other hand, Cheng
et al. (2020) use a fundamentally different approach by using
a convolutional autoencoder (Masci et al. 2011), which in-
cludes an architecture of convolutional neural networks, for
feature extraction. This method connects the extracted fea-
tures with a Bayesian Gaussian mixture model from which
a clustering analysis can be done.

In this study, we apply an architecture consisting of a
convolutional autoencoder, as convolutional neural networks
have demonstrated their capability for capturing representa-
tive and meaningful features from images (Krizhevsky et al.
2012). We do not use the same convolutional autoencoder as
Cheng et al. (2020), but we apply a newly developed tech-
nique from Google DeepMind (van den Oord et al. 2017;
Razavi et al. 2019) called ‘Vector-Quantised Variational
Autoencoder (VQ-VAE)’. This technique includes a vector
quantisation method that accelerates the time-consuming
process of feature extraction when using a convolutional au-
toencoder, as explained in Cheng et al. (2020). On the other
hand, for clustering algorithms, we decide to apply a modi-
fied hierarchical clustering method to group the data in or-
der to explore connections between the distances amongst
extracted features in feature space, and the number of clas-
sification clusters.

In this paper, we use this unsupervised machine learning
technique to develop a galaxy morphology classification sys-
tem defined by a machine, and compare it with traditional
visual classification system such as the Hubble sequence. We
furthermore also compare our machine developed classifica-
tion with galaxy physical properties, such as stellar mass,
colour, and physical size of galaxies. We use monochromatic
images throughout to focus only on the impact of galaxy
shape and structure on morphological classifications in this
paper. The methodology we develop is introduced in Sec-
tion 2, while the detailed description of how to approach
using our method and the data used in this study are shown
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in Section 3. Section 4 presents the results in this study.
Finally, we conclude the work in Section 5.

2 METHODOLOGY

In this section we explain our unsupervised machine learning
methodology that is used throughout this paper. We give a
brief overview here, before going into detail in the following
subsections.

Our unsupervised machine learning technique includes
a feature learning phase with a vector-quantised variational
autoencoder (VQ-VAE; Section 2.1 and Section 2.2) and a
clustering phase using a hierarchical clustering algorithm
(HC; Section 2.3). Several novel approaches for unsuper-
vised machine learning applications are made in this paper:
(1) the VQ-VAE considers both reconstruction and prelimi-
nary clustering results in the feature learning phase (Sec-
tion 2.2 and also see Section 3.3); (2) multiple different
distance thresholds are used to draw the decision lines on
the merger tree in the clustering process (Section 2.3); (3)
use the feature of galaxy orientation to decide the distance
thresholds applied in the clustering process (see details in
Section 2.3).

2.1 Vector-Quantised Variational Autoencoder (VQ-VAE)

The vector-quantised variational autoencoder (VQ-VAE)
was built by Google DeepMind (van den Oord et al. 2017;
Razavi et al. 2019) and was originally used for high-fidelity
image emulation. The task of image emulation is to learn the
distribution of the data given a set of training images, and
then to reproduce the images with the learnt distribution.
In details, the structure of an autoencoder (Fig. 1) contains
an encoder with a posterior distribution ¢ (z|z) and a prior
distribution p (z) where z is the input data and z represents
latent variable, and a decoder with a distribution p (z|z) for
reproducing the input data.

The VQ-VAE is a type of autoencoder which includes
the structure of convolutional neural networks and applies
a vector quantisation process (van den Oord et al. 2017) to
make the posterior and prior distribution become categori-
cal. By using a categorical distribution, the computational
time for training an autoencoder is significantly reduced
compared to other machine learning methods. For exam-
ple, in Cheng et al. (2020), it takes 0.0146 milliseconds (ms)
per pixel per epoch by a convolutional autoencoder running
on a NVIDIA TU102 [GeForce RTX 2080 Ti] GPU, while
in this work, a VQ-VAE takes 4.59 x 10~% ms per pixel per
epoch using the same device. This is an enormous difference
in training speed (30 times faster), but without reducing
the reconstruction ability. The reconstruction errors of both
methods are on average ~ 5 x 10™* when using the most op-
timal trained model. This shows the usefulness of a built-in
vector quantisation process to an autoencoder. More impor-
tantly, the improvement in computational efficiency makes it
feasible to apply such unsupervised techniques to large-scale
survey data, even allowing it to be included in the analysis
pipelines for future surveys.

Following the top coloured area in Fig. 1, the posterior
categorical distribution ¢ (z|z) is defined as (van den Oord
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et al. 2017; Razavi et al. 2019):

1 for k=argmin,||ze () — e;l|,

q(Z=k|x)={ (D)

0 otherwise

where z. (x) is the output of the encoder (the blue part at
the left in the figure), the value e; represents a vector in the
codebook which is used for vector-quantising the z. (), and
k is the index for the vector used in the selected codebook
(the top box of the yellow part in the figure). We then mea-
sure the vector-quantised representation z, (), which is the
input of the decoder (the blue shading at the right side in
the figure), through Equations 1 and 2.

2q (¥) = ex, where k = argmin,||ze (z) — e;l|,- (2)

The vector quantisation process is shown as the yellow part
in Fig. 1. The output of an encoder, z. (x) can be represented
by a combination of the index of different vectors, k, in the
codebook (the square in the middle of the yellow part). For
example, in Fig. 1, a voxel in the output of an encoder is
represented by a vector, es, after the vector quantisation. We
then use the index of these vectors to build a two dimensional
index map. For the pixel used in our example the value is
3. With this index map, we can rebuild the distribution,
zq (x), with the same dimension as z. () but in this case
each ‘pixel’ in z4 () is quantised to one of the vectors shown
in the codebook. For our example, the vector es is used for
the pixel. The distribution of z4 () is then used as the input
for the decoder to reconstruct the images.

The loss function of the original VQ-VAE contains three
parts: reconstructed loss, codebook loss, and commitment
loss. An additional penalty is considered later in the mod-
ified version of the VQ-VAE (see Section 2.2). The recon-
structed loss is measured by comparing the reconstructed
images with the input images. The codebook loss is used
to make the selected codebook, e;, approach the output of
the encoder, z. (x), while the commitment loss is applied to
encourage the z. () to be as close as possible to the chosen
codebook from the previous epoch. With these definitions,
the loss function, L, for the VQ-VAE is defined as (Razavi
et al. 2019):

L =logp (|2 () + [Isg [z¢ ()] = ell3 + Bllze () — sg ][5,
()

where the value sg is the stopgradient operator and S is
used for adjusting the weight of the commitment loss. The
study of van den Oord et al. (2017) found that their results
correlate with the value of 3, and no apparent change occurs
when f ranges from 0.1 to 2.0. Therefore, we set § = 0.25 in
this study which follows the setting in van den Oord et al.
(2017).

The details of the VQ-VAE architecture is shown in
Table 1. Four convolutional layers are used in both the en-
coder and decoder, and residual neural networks (ResNets,
He et al. 2016) are used in this architecture to create a deeper
neural network with less complexity. The activation function
applied in the convolutional layers is the Rectified Linear
Unit (ReLu) (Nair & Hinton 2010) such that f(z) = 0 if
z < 0 while f(z) = z if z > 0. The VQ-VAE code is based
upon the example provided in SONNET library (DeepMind
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Figure 1. A schematic architecture of the modified VQ-VAE used for feature extraction of images. The top aspect with a coloured
background is the main architecture of the VQ-VAE, which is then modified to consider the silhouette score calculated using the two
preliminary clusters given by k-medoids clustering as a part of the loss function when training VQ-VAE (see details in Section 2.2). The
blue shading at the left and right represents the encoder and the decoder, respectively while the yellow part shows the vector quantisation

process. The details of each layer are shown in Table 1

2018)* which is built on top of TENSORFLOW (Abadi et al.
2015)*. To train the VQ-VAE, we apply the Adam Optimiser
(Kingma & Ba 2014) and the learning rate is set to 0.0003
which is used in Razavi et al. (2019).

2.2 Modified VQ-VAE

In this study, we apply a modification to our original VQ-
VAE to consider both image reconstruction and a prelim-
inary clustering result when extracting the representative
features from images (Fig. 1). To achieve this goal, a penalty
defined by silhouette score (Rousseeuw 1987, Equation 4) is
added in the original loss of VQ-VAE (Equation 5). The sil-
houette score indicates how well clusters are separated from
each other and is defined by the formula,

b—a

®~ ax (b,a)’ )
where a represents the mean intra-cluster distance while b
is the distance between a cluster and its nearest neighbour
cluster. Therefore, a larger silhouette score indicates a better
separation between clusters in feature space. To train our
VQ-VAE, we minimise the final loss function combining the
loss described in Equation 3 and the penalty defined as,

Lo=(1-s)\, (5)

3 https://github.com/deepmind/sonnet
4 https://www.tensorflow.org

where s represents the silhouette score and A is a constant
used for making the magnitude of this penalty of the same
order as other losses used in the VQ-VAE (Section 2.1). The
value of \ is equal to 0.1 in our case.

As shown in Fig. 1, during the training of the VQ-VAE,
we interpolate an unsupervised instance-based clustering al-
gorithm called ‘k-medoid clustering’ (Maranzana 1963; Park
& Jun 2009) to obtain two preliminary clusters using a flat-
tened index map. The two clusters are then used for mea-
suring a silhouette score to evaluate the performance of the
initial clustering. This step is simply to make VQ-VAE in-
tentionally extract features that can not only be used to re-
construct the input images but also be well separated into at
least two distinctive groups in feature space. The Hamming
distance (Hamming 1950) is used as the distance metric as
our data is represented by the indices of the vectors in the
codebook whereby the number itself only represents a cate-
gory rather than a real value of the vector (more description
in Section 2.3). The ‘k-medoid clustering’ is used here for
a fast evaluation; in the main clustering process after fea-
ture extraction, we apply hierarchical clustering algorithms
(Section 2.3).

2.3 Uneven Iterative Hierarchical Clustering

In this section we describe our hierarchical clustering proce-
dure for identifying different types of clusters. Hierarchical
Clustering (HC; Johnson 1967; Hastie et al. 2009), in partic-
ular agglomerative HC (called sometimes ‘bottom-up’), first

MNRAS 000, 1-22 (2021)
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Type #channel  kernel size stride size  activation function
Encoder
Convolutional layer 64 4x4 2X2 ReLu
Convolutional layer 128 4x4 2x2 ReLu
Convolutional layer 128 4x4 2X2 ReLu
Convolutional layer 128 3x3 1x1 ReLu
ResNets
Pre-VQ
Convolutional layer 64 1x1 1x1
Decoder
Convolutional layer 128 3x3 1x1 ReLu
ResNets
Transposed Convolutional layer 128 4x4 2X2 ReLu
Transposed Convolutional layer 64 4x4 2x2 ReLu
Transposed Convolutional layer 1 4x4 2X2
ResNets
Convolutional layer 32 3x3 1x1 ReLu
Convolutional layer 128 1x1 1x1 ReLu

Table 1. The architecture used for the setup of the VQ-VAE used throughout this study.
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Figure 2. The schematic dendrogram of the HC process. Data-
points are shown on the z-axis, and gradually merge with each
other based on the distance (similarity) at the y-axis. Each solid
line represents a branch and each black circle indicates a stopping
point for the corresponding branch (see Section 3.4). The dashed
lines represents the leaves (clusters) after the stopping points.
The gray dotted line indicates a cut suggesting the number of
clusters in a branch without showing orientation effect (also see
Section 3.4; the results are shown in Section 4.2).

assigns each input as an individual group, then merges two
nearest (the most similar) groups together based upon the
measured pair distance in the feature space, recursively. The
‘bottom-up’ HC structure allows a different number of data-
points in clusters because it starts with individuals (Fig. 2).
Other kinds of clustering such as ‘top-down’ HC and K-
medoid clustering used in Section 2.2 start with clusters
themselves, which are more difficult to provide a starting
point for an uneven number of datapoints for the initial clus-
ters.
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The distance (similarity) measured in this study is
the Hamming distance (Hamming 1950). As stated in Sec-
tion 2.2, our data is represented by the index of the vectors
selected from the codebook. This is such that an index in-
dicates a category rather than the real value of a vector.
We compare two data sets represented by a set of features
labelled with indices. The Hamming distance is defined as
the number of mismatched indices between the pair over the
number of features used to represent the data. For example,
assuming that an image can be presented by four different
features labelled with the indices: 1, 2, 3, 4, after VQ-VAE;
in this case the Hamming distance is 0 if the other image is
represented as 1, 2, 3, 4 as well, and the Hamming distance
is 1 if it is represented by 4, 3, 2, 1.

For further clarification, Fig. 2 illustrates the clustering
process. Within this study, we realise that when all the data
are considered, the merging point can be less accurate due
to the mixture of blindly measured distances from a great
variety of extracted features in images. Therefore, we carry
out an iterative clustering process with a reverse concept
that we control the data used for doing HC from the top to
bottom. We first make the HC merge all data into two top
parent branches, then apply the second round of HC to the
data of a parent branch to obtain two children branches, and
apply the same procedure again to the sub-data of a child
branch to get two grandchildren branches, and so on. The
iterative action stops when it reaches a certain condition
(the black circle in Fig. 2; see Section 3.4).

In a typical HC, a uniform distance is used to determine
the final clusters. However, a uniform distance threshold is
not appropriate considering that galaxies’ appearance in dif-
ferent morphological types have different complexity, such
that spiral galaxies have a larger diversity in appearance
than elliptical galaxies. Therefore, in this study, we propose
to allow a different stopping point/distance threshold for
each branch depending on the complexity of the objects in
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the branch (see Section 3.4). For example, a branch which
consists of galaxies which can look very different within a
class may continue for many iterations, while others may
reach the stop criteria with fewer iterations due to a rela-
tively monotonous structure within the data of the branch.
For example, spiral galaxies can have a variety of spiral arms
appearances, i.e., different number of arms, different posi-
tions of arms, etc. Therefore, the distance between spiral-like
galaxies are generally larger than the distance between two
elliptical-like galaxies. This consideration is sensible and is
of great importance in morphological classification of galax-
ies; however, this is neglected in a typical HC algorithm.
Therefore, to distinguish it from a typical HC algorithm, we
call this setup ‘uneven clustering’ which provides us with
a more precise distinction in galaxy shape, structure, and
morphology.

3 IMPLEMENTATION

The pipeline of this study includes three main steps: (1)
feature selection; (2) feature learning (using the modified
VQ-VAE); and finally (3) clustering process. The data used
in this study are introduced in Section 3.1. The feature se-
lection is described in Section 3.2, and the setup for the
feature learning process using the modified VQ-VAE (Sec-
tion 2.2) is discussed in Section 3.3. Finally, in Section 3.4
we explain the details of the clustering process we use to
classify galaxies.

3.1 Data Sets

The imaging data used throughout this work is from the
Sloan Digital Sky Survey (SDSS) Data Release 7 (York et al.
2000; Abazajian et al. 2009) with a redshift cut of z < 0.2. In
order to focus on the impact of galaxy shape and structure
to morphological classifications, we utilise monochromatic
r-band images. An extension including colour and other fac-
tors is some to consider for the future. Here we are focused
on single-band morphological classification on features seen
and not in general a physical classification that might result
from considering galaxy colours and colour distributions.

To examine what types of systems our classification
clusters contain, as well as to have the flexibility within the
data distribution in our datasets, we use morphology labels
defined by T-Type (de Vaucouleurs 1964) and the proba-
bility of being a barred galaxy (Psqr). Both quantities are
obtained using deep learning techniques from Dominguez
Sénchez et al. (2018, hereafter, DS18). We define eight la-
bels including barred galaxies that contain significant fea-
tures shown in the Hubble morphological system: ellipticals
(E), lenticulars (S0), early spirals (eSp), late spirals (I1Sp),
irregulars (Irr), barred lenticulars (SBO), early barred spirals
(bar eSp), and late barred spirals (bar 1Sp).

The comparison of the classification scheme is shown in
Table 2; in which, S0, eSp, and 1Sp are separated into barred
and non-barred galaxies based on the value of Pyq,. We addi-
tionally include labels of irregular galaxies from three other
works: Fukugita et al. (2007), Nair & Abraham (2010), and
Oh et al. (2013) to provide more irregular galaxies in our
database. The morphological labels in our datasets are not

This work E S0 eSp ISp Irr
E S07,S0 SO/a-Sab Sb-Sdm Irr
DS18 -3 -2, -1 0-2 3-8 10

Table 2. The classification scheme used in this work and in
Dominguez Sénchez et al. (2018, DS18; presented in T-Type).
In DS18, they define the T-Type of -3 for ellipticals (F), -2 for
lenticulars at the early stage (S07), -1 for lenticulars at the in-
termediate to late stages (S0), 0 for S0/a, and the positive values
of T-Type are for different stages of spirals. Finally the T-Type
of 10 represents irregular galaxies (Irr).

used for training our machine, but to prepare an appropri-
ate dataset with a specific data distribution, and as a way
to examine the obtained clusters in terms of these types.

To investigate the differences in the classification sys-
tems defined by humans and those from a machine, as well
as potential application within our unsupervised machine
learning technique in future surveys, we prepare two differ-
ent datasets: which are ‘balanced’ and ‘imbalanced’. In the
balanced dataset, we artificially allocate the same number of
galaxy images to each morphological type. The eight human
defined morphological types have visually distinctive differ-
ences from each other; therefore, the purpose of this arrange-
ment is to allow our VQ-VAE consider fairly the characteris-
tics of each morphology type when extracting the represen-
tative features from input images. Otherwise it is possible
that some type of bias would result if the distribution of the
types we select are input into our VQ-VAE in the same frac-
tion as they are found in the nearby universe. In this case
we would find that the late-type disks would dominate over
early disks and ellipticals (e.g., Conselice 2006).

On the other hand, it is of great importance to know
how an unsupervised machine learning technique can be
applied in future surveys to explore a large scale of un-
known galaxies’ morphology in an ‘as is’ situation. That is,
we need to know how our VQ-VAE performs when galax-
ies are inputted from imaging observations of the real uni-
verse with no balancing. For this goal, we set up the ‘im-
balanced dataset’ with a realistic distribution in terms of
galaxy morphological types which follows the distribution of
nearby galaxies at z=0.033-0.044 as presented in Oh et al.
(2013). The type distributions of the balanced and imbal-
anced dataset are shown in Fig. 3.

3.2 Feature Selection

In this section we discuss a preprocessing procedure to re-
ject irrelevant information from images. The feature selec-
tion procedure is used to select the pixels in images that are
significant and which reflect the shape or structure of the tar-
gets. Cheng et al. (2020) showed that the background noise
can result in an overfit to the noise when training the convo-
lutional autonencoder. To solve this, Cheng et al. (2020) ap-
plied a simplified convolutional autoencoder to denoise the
images and emphasise the pixels from the targets themselves
before the main task is computed. However, a denoising pro-
cess by another autoencoder is time-consuming and could
potentially add artificial structure when reconstructing the
images. Therefore, in this study, we simply use a one sigma
clipping of pixel values measured through the background
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galaxies (Oh et al. 2013). The number shown above the coloured bar represents the fraction of the type in all data. The fraction of barred
galaxies are highlighted with hashed lines. The orange and light blue colouring represent early-type galaxies and late-type galaxies,

respectively.

noises as our selection threshold. Any pixel value is below
this criterion the pixel value is set as 0 (Martin et al. 2020).
Whilst this will remove noise, it will also potentially remove
outer fainter portions of the galaxies themselves. However,
this will retain the brighter portions of the inner parts of
galaxies where classification is done in any case. Removing
this fainter light does not have an effect on our measure-
ments as it would if we were measuring for example surface
brightness profiles.

3.3 Feature Learning

As described, in this study, we apply a modified vector-
quantised variational autoencoder (VQ-VAE) (see Sec-
tion 2.2) to carry out our unsupervised learning. Our VQ-
VAE basically learns the representative features from our
images. It considers a preliminary clustering result by in-
cluding an additional penalty (Equation 5) in the VQ-VAE
(Section 2.2). This modification helps to find not only better
representative features for image reconstruction, but also the
features that can be well separated into two initial groups
in feature space.

The main advantage of the VQ-VAE technique is to ac-
celerate the unsupervised feature extraction process which
is over 30 times faster than using a typical convolutional
autoencoder (e.g., Cheng et al. 2020) without a significant
trade-off to the reconstruction accuracy (Razavi et al. 2019).
This is achieved by quantising the values used for reconstruc-
tion (Section 2.1).

The hyper-parameters setting used in this study follows
the setup described in Razavi et al. (2019) except for the
codebook size. It determines the number of vectors avail-
able in the quantisation process (Section 2.1). This number
of vectors decides the ‘resolution’ of the reconstructed im-
ages. Namely, the more available vectors, the more details
can be presented in images. Razavi et al. (2019) use 512
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vectors in their codebook to generate high-fidelity emulated
images of different animals, e.g., dogs, cats. However, with a
different goal from emulation in our study, we realised dur-
ing analysis that a larger codebook size leads to a worse
clustering result. This is because the machine with a larger
codebook uses too many details of the images into account
when carrying out the clustering. These details help to com-
plete the puzzle when emulating images but they blur the
boundary in the feature space when doing clustering. In this
study, after a series of heuristic tests with different code-
book siezes, we choose a size of 16 for our codebook. This
choice forces the machine to use the provided vectors on the
most significant features and the initial two clusters show
the highest silhouette score while still retaining a certain
level of the reconstruction quality. This number of 16 may,
and probably does, differ within different instances of use.
The modified VQ-VAE models in the work trained using
balanced and imbalanced datasets have a silhouette score
of 0.321 and 0.306, respectively, between the two clusters
obtained by K-medoids clustering.

3.4 Clustering

Within the clustering task, we apply an uneven iterative
hierarchical clustering (Section 2.3) on the data represented
by a set of vector-quantised features obtained after the VQ-
VAE.

In this study, we propose a new approach to decide the
number of clusters within unsupervised machine learning ap-
plications. This approach can be used in other instances be-
yond using a VQ-VAE. Part of this is inspired by the fact
that the clusters can be highly sensitive to galaxy orienta-
tion. The concept we use is to take the threshold measured
by the features of galaxy orientation on the merger tree to
find where the effect of galaxy orientation in a branch starts
to appear (e.g., gray dotted lines in Fig. 2). In other words,
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this threshold also provides the number of classification clus-
ters that are not separated based on the galaxy orientation.
This threshold is defined by the average distance between
the artificially rotated images in a branch (drot),

YY) di
drot = m, (6)

where N is the number of datapoints in the branch, and d;;
represents the distance between an image 7 and image j. The
distance, d;;, is measured through the Hamming distance.

In this process we stop a branch and decide the number
of clusters within that branch when one of two criteria is
satisfied: (1) the d,o: suggests fewer than two clusters (< 2)
in a branch; (2) the difference between the dro.+ measured
using the data of a parent branch and the data of a child
branch are smaller than 0.015: that is, dp rot —dc,rot < 0.015.

The first criterion indicates that galaxy orientation is
considered when having more than two clusters (> 2) in
this branch (e.g., circle 1 and 2 on Fig. 2). Two clusters
are the minimal number to split; therefore, we stop the
iterative clustering in a branch when this criterion is sat-
isfied. On the other hand, the second criterion is used to
decide whether a branch (the parent branch) should have
more sub-branches (the child branches). The variation be-
tween branches is less significant when the difference in the
distance between the data of a parent branch and a child
branch is small (< 0.015). The value used in the second cri-
terion is measured based on the branches stopped due to the
first criterion. Therefore, there is no need to split a parent
branch when the second criterion is satisfied. The suggested
number of clusters by the d,o+ of the parent branch is then
the number of clusters in the branch without having the ef-
fect of galaxy orientation. For example in Fig. 2, the branch
stops at the circle 3 by satisfying the second criterion, and
the dro: (gray dotted line) suggests three clusters without
showing the effect of galaxy orientation in this branch.

This strategy provides a different approach for achiev-
ing ‘rotation-invariance’ in unsupervised machine learning
applications. One might consider building a rotationally in-
variant machine learning model or to ‘de-rotate’ galaxies as a
preprocessing procedure using either mathematical methods
or other machine learning techniques. For example, Martin
et al. (2020) tried to produce a rotationally invariant repre-
sentation using 2D Fast Fourier transforms before clustering.
However, to use a rotation-invariant unsupervised machine
learning model for galaxies can be time-consuming and chal-
lenging for several reasons: (1) artificially rotated galaxy im-
ages for each galaxy are essential to train a machine which
enormously increases the training sample sizes; (2) it is of-
ten difficult and uncertain to determine the orientation of a
galaxy; and (3) this model could be easily biased towards the
training set. It is therefore difficult, uncertain, and compu-
tationally costly to pre-process and eliminate galaxy orien-
tations with either mathematical methods or other machine
learning techniques.

Therefore, in this work we propose a novel way to deal
with this issue. We simply use galaxy orientation as a feature
to define the clusters in such a way that we avoid generating
clusters that might be sensitive to galaxy orientation. This
method may unintentionally exclude galaxies with other dis-
tinctive structural features. However, the main advantage of
this approach is not only to provide a different way of think-

ing but also to help with one of the prime issues in unsuper-
vised machine learning applications - what is the number of
clusters appropriate for a particular study?

4 RESULTS AND DISCUSSION
4.1 Unsupervised Binary Classification

Starting with a simple examination, we enforce our machine
to merge all galaxies in the balanced dataset into two prelim-
inary clusters. Randomly picked examples of galaxies within
the two clusters are shown in Fig. 4. Galaxies in one cluster
have clearly more features (featured group; e.g., arm struc-
ture) than the galaxies of the other cluster (less featured
group; more elliptical). We examine the morphological dis-
tribution in both clusters (left column in Fig. 5); one cluster
has ~ 96% late-type galaxies (LTGs) and the other one has
~ 60% early-type galaxies (ETGs).

Due to an unequal number between the ETGs and the
LTGs in the balanced dataset (Fig. 3), the fraction of ETGs
and LTGs in each cluster might be biased. We examine an-
other quantity, ‘dominance’, which represents the ratio be-
tween the fraction of a certain type in a given cluster to
the fraction of this type within the dataset (right column
in Fig. 5). This quantity removes the statistical influence
from different number of types used in the input datasets;
hence, it shows a better representation of the galaxy features
emphasised in the cluster. Through the dominance distribu-
tion, we observe that the featured and less featured group
are clearly dominated by the features of LTGs and ETGs,
respectively.

We further investigate the potential structural factors
considered when separating the two clusters. With the anal-
ysis of the two clusters, we can decide what are the major
structural factors in the clustering process. First of all it is
clear that with our unsupervised learning we obtain a sep-
aration into two main clusters where one correlates with
late-type galaxies and the other with early-type galaxies.
This verifies with a machine this basic dichotomy which has
existed in classification schemes for over 100 years.

However, we also want to compare our clusters with
more quantitiative measures. In Fig. 6, we compare a variety
of structural measurements such as concentration, asymme-
try, smoothness/clumpiness, Sérsic index, Gini coefficient,
M20, apparent half-light radius (Re, arcsec), and r-band
apparent magnitude (m,) between the two clusters. These
measurements, except for the r-band magnitude, are pro-
vided from the catalogue of Meert et al. (2015), and the
r-band magnitudes are from Simard et al. (2011). Within
these measurements, the Sérsic index, Gini coefficient, and
M20 show a clear separation, and the asymmetry shows a
minor separation between the two clusters in Fig. 6. This
indicates that our machine takes galaxy structure which cor-
relates with measurable structural parameters (asymmetry,
Gini coefficient, M20) and light distribution (Sérsic index)
into account rather than the apparent size and the apparent
brightness of galaxies, when categorising galaxies into the
two clusters. This is good, as it shows that our method does
not depend on distance or the apparent sizes of galaxies but
on the inherent morphologies and structures of the galaxies
themselves.
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featured group less featured group

Figure 4. Randomly picked examples of galaxies found within our two preliminary clusters using the balanced dataset. Galaxies in one
cluster have more features (left), and galaxies in the other group have relatively fewer features (right).
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Figure 5. The distribution of visual galaxy morphology in each cluster obtained using the balanced input dataset. The left column shows
the fraction of each morphology type in the clusters while the right column presents the dominance of each type. The ‘dominance’ is
defined by the fraction of a certain morphology type in the cluster divided by a fraction of this type within the dataset. The top row
shows the distribution of the ‘featured group’ while the bottom row presents the statistics for the ‘less featured group’.
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Figure 6. The comparison of structural measurements including: concentration, asymmetry, smoothness/clumpiness, Sérsic index, Gini
coefficient, M20, half-light radius (R.), and r-band apparent magnitude (m,) between the two initial clusters. The blue shading represents
the featured group while the orange shading is for the less featured group.

Note that the concentration and smoothness distribu-
tions show fewer differences between the two clusters. These
two quantities also do not have apparent differences between
the LTGs and ETGs in our dataset, because the galaxies in
our datasets are relatively faint (~ 74% galaxies fainter than
my = 16) and the image resolution is limited by the ground-
based seeing (>1 arcsec; the image sampling is 0.396 arcsec
per pixel). This also produces a small separation between
the two clusters in terms of asymmetry. Although we can-
not straightforwardly confirm the correlation between the
two clusters and the concentration parameter, the Gini co-
efficient and M20 provide a connection with the concept of
concentration.

Based on our visual assessment, we proceed to associate
the featured group to LTGs and the less featured group to
ETGs in order to compare these machine-predicted labels
with the catalogue labels. Using the balanced dataset, the
machine-predicted and the catalogue labels agree with an
accuracy of ~ 0.75 in this binary classification. The accuracy
is defined as the number of the correct matches between the
machine labels and the catalogue labels from all galaxies in
the dataset.

In Fig. 7, we present the T-Type distribution between
the two clusters. It shows that the main confusion in bi-
nary classification by our machine happens when classifying
early spirals into either ETGs or LTGs, in particular, Sab
galaxies (T-Type=2). When we exclude early spirals from
the balanced dataset, the accuracy increases to ~0.87 for
binary classification.

We discuss some plausible reasons for this misclassi-
fication compared to visual classification by our machine.
For example, one uncertainty originates from the provided

labels which combine the uncertainty of both visual classifi-
cations and machine learning predictions. Second, from our
machine’s perspective, in addition to the potential machine
learning uncertainty, another possible uncertainty is caused
by the reconstruction inaccuracy in the VQ-VAE, particu-
larly within spiral galaxies with insignificant arm structures.
However, although these causes are unavoidable, these con-
ditions exist only in a fairly small fraction of the data in
the input imaging dataset. The main reason for the mixture
of early spirals in both clusters is due to the intrinsic diffi-
culty of classifying this type into either ETGs or LTGs based
only on galaxy structure. The ‘early spirals’ in fact include
a wide range of transitional features which are difficult to
accurately define. The separation may become better when
including colour information; however, with our method, we
state the difficulty to discriminate early spirals when con-
sidering only galaxy appearance/structure in a unsupervised
machine learning methodology.

4.2 Machine Classification Scheme

In the previous section, we enforce our machine to provide
two initial clusters for a preliminary examination. However,
the main motivation for this study is to investigate the clas-
sification system a machine would suggest when ‘looking’
at galaxies and classifying them through machine learning.
We use the proposed method in Section 3 with the bal-
anced dataset to let the machine explore freely and suggest a
number of clusters to categorise the galaxies in the dataset.
Galaxies in our dataset are categorised into 27 classification
clusters by our machine. Comparing with previous work on
unsupervised learning which produced 160 clusters (Martin
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Figure 7. The T-Type distribution between the two preliminary
clusters within the balanced dataset. The corresponding visual
morphology class is shown in Table 2. The blue shading shows the
distribution of the featured group, while the light orange colour
represents the less featured group.

et al. 2020). Our method suggests that significantly fewer
number of galaxy morphology classifications are needed. In
addition to the different implementations applied in both
works, the difference in the number of obtained clusters
might be due to the fact that we only consider monochro-
matic images to investigate the impact of galaxy structure in
this study, while Martin et al. (2020) used coloured images.
Additionally, to have more available measurements of galaxy
structure and properties, we choose to use the imaging data
from the Sloan Digital Sky Survey (SDSS; York et al. 2000;
Abazajian et al. 2009) which has a worse resolution and im-
age sampling (0.396 arcsec per pixel) than the one used in
Martin et al. (2020, 0.168 arcsec per pixel). This may be a
reason for the resulting fewer number of clusters obtained
in our work. To further investigate galaxy morphology clas-
sifications, the colour information and images with better
resolutions will be considered in future work.

Randomly picked examples of images from each of the
27 clusters are shown in Fig. 8. The number shown on the
bottom left is the average value of the T-Type in the clus-
ters and the identification number of the cluster is shown
on the top right. The identification numbers of groups are
generated on the merger tree from left to right; therefore,
they are simply labels without physical interpretation. Ta-
ble 3 lists the characteristics of each cluster in structural
measurements, galaxy properties, and statistics. This can
be used to co-examine the figures shown from this section
to Section 4.4. Through visual assessment in Fig. 8, we find
that galaxies in some clusters show bars (e.g., g15 and g16 in
Fig. 8, while others show more elongated shapes than others.

In Fig. 9, we re-examine the influence of the major struc-
tural parameters such as the Sérsic index, asymmetry, Gini
coefficient, and M20 (Section 4.1), in separating clusters.
Each coloured circle represents one cluster and is coloured
by the average value of the T-Type in the cluster. The gray
lines in Fig. 9 show the error bars defined by the standard de-
viation for the two clusters with the maximum and minimum
average values of T-Type. Asymmetry, similar to Fig. 6,
shows less discrimination between different clusters in the
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parameter space. Except for this, we confirm again a clear
correlation between our machine classification clusters and
major structural features. Additionally, the given clusters
show a transition along with the T-Type. This suggests the
clusters are correlated with the visual morphology roughly
from early-types to late-types.

4.3 Machine Classifications versus Human Visual
Classifications

It is important to note that the goal of this work is not to
find a perfect agreement between our machine-based classifi-
cation and the visual morphologies. Our goals are to under-
stand the features used by our method to categorise galaxy
images, and to introduce a novel classification scheme ‘pro-
posed’ by our machine. That is, we want to develop a scheme
whereby galaxies are classified by a reproducible and scien-
tific computational way and not by human opinion.

To better understand our machine-based classes, we
compare them with visual morphological classes such as the
Hubble sequence, and discuss the visual features extracted
by our machine. To do this comparison, we associate each
cluster with one or a mix of Hubble types based on the dom-
inance of each type within each of the clusters (Fig. 10). As
mentioned in Section 4.1, the ‘dominance’ of each type is
the ratio between the fraction of a given morphology type
in the cluster to the fraction in the dataset. We associate
a given cluster with one or several morphology types when
the dominance of a certain type is > 1. This selection in-
dicates which kinds of visual features considered in a visual
morphology type are dominated in a cluster.

In Fig. 10, we show the accumulated distribution of the
classification clusters to one or a mix of visual morphol-
ogy types. Each coloured bar represents one cluster and the
deeper bluer colours indicate more barred galaxies than non-
barred galaxies within that given cluster. In Fig. 10, the
darkest blue represents a cluster with the strong bar domi-
nance, Dy pqar > 1 and the non-bar dominance, Dy nobar < 1
(see the last column in Table 3; e.g., g6 in the table). The
medium blue is for a cluster with both bar and non-bar
dominance > 1 (weak bar dominance; e.g., g27 in Table 3).
This criterion indicates that the features of a barred galaxy
are not distinctive in a cluster. The lightest blue is used
when the bar dominance is Dy par < 1 (no/less dominance;
e.g., gl4 and g19 in Table 3). Through the highlight of the
bar dominance in clusters in Fig. 10, our machine is shown
to successfully discriminate between barred and non-barred
galaxies. Examples of clusters with different bar dominance
are shown in Fig. 11.

We observe in Fig. 10 that no cluster is dominated by
either elliptical galaxies or early spirals only. The features
of elliptical galaxies are recognised to have a great similar-
ity to some lenticular galaxies by our machine. Visually, we
separate ellipticals and lenticulars mainly based on the disk
structure. However, compared to the cluster dominated by
only lenticulars (the g25 in Table 3) in Fig. 12, the galax-
ies in the two clusters dominated by E/S0 (g22; g23) lack
significant disk structure, whereas ‘g22’ represents the 22th
cluster, and so on (also see Fig. 8 and Table 3). However,
clusters with more disky galaxies, such as g27 (blue solid
line in Fig. 12), are dominated by a mix of SO and eSp. This
is likely an indication for an uncertainty in distinguishing
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Group <Sérsic n> <Gini> <M20> <A> <g—r> <Mag,> <logM.> <Re> Ny Dy, Fy par Dy par
ID (MQ) (kpC) (Fy) (Fg,D) (Dg,nobar)
gl 1.3 0.48 -1.84 0.16 0.63 -21.16 10.31 6.98 896 eSp/1Sp 0.54 1.45
(1.4%) (0.97) (1.22)

g2 1.6 0.47 -1.91 0.16 0.71 -21.5 10.47 9.48 441 eSp/1Sp 0.68 1.82
(0.69%) (0.93) (0.83)

g3 1.68 0.46 -1.85 0.15 0.71 -21.61 10.56 9.83 287 eSp/1Sp 0.74 1.97
(0.45%) (0.87) (0.7)

g4 1.63 0.5 -1.92 0.14 0.73 -21.32 10.46 6.92 2924 eSp/1Sp 0.34 0.91
(4.57%) (0.79) (1.75)

g5 1.17 0.46 -1.84 0.13 0.52 -20.19 9.79 6.52 2141 ISp 0.46 1.22
(3.35%) (0.76) (1.3)

g6 1.08 0.5 -1.85 0.14 0.63 -20.53 10.12 6.06 2463 eSp/1Sp 0.14 0.37
(3.85%) (0.8) (2.17)

g7 1.35 0.51 -1.73 0.19 0.46 -20.31 9.8 5.05 3055 1Sp/Irr 0.16 0.42
(4.77%) (0.78) (0.67)

g8 0.82 0.44 -1.55 0.14 0.38 -19.45 9.37 3.98 510 Irr 0.02 0.04
(0.8%) (0.97) (0.03)

g9 1.26 0.47 -1.64 0.16 0.36 -19.82 9.49 5.26 1291 1Sp/Irr 0.16 0.43
(2.02%) (0.94) (0.13)

gl0 1.13 0.48 -1.65 0.19 0.42 -20.31 9.75 5.15 946 1Sp/Irr 0.29 0.78
(1.48%) (0.94) (0.47)

gll 1.27 0.48 -1.66 0.18 0.36 -19.88 9.49 5.2 1130 1Sp/Irr 0.17 0.44
(1.77%) (0.88) (0.29)

gl2 1.33 0.46 -1.73 0.15 0.55 -20.99 10.22 7.32 1054 1Sp 0.74 1.99
(1.65%) (0.85) (0.5)

gl3 1.01 0.46 -1.75 0.14 0.51 -20.43 9.92 6.01 941 1Sp 0.51 1.37
(1.47%) (0.81) (1.27)

gl4d 1.39 0.52 -1.83 0.14 0.63 -20.62 10.16 5.7 2079 eSp/1Sp/Irr 0.12 0.32
(3.25%) (0.86) (1.76)

glb 1.85 0.48 -1.87 0.14 0.69 -21.64 10.61 8.9 1397 eSp/1Sp 0.73 1.94
(2.18%) (0.87) (0.64)

gl6 2.87 0.51 -2.02 0.15 0.83 -22.04 10.81 11.5 776 S0/eSp/1Sp 0.8 2.12
(1.21%) (0.8) (0.51)

gl7 1.47 0.48 -1.8 0.15 0.65 -21.43 10.46 7.15 989 eSp/1Sp 0.65 1.72
(1.55%) (0.93) (0.87)

gl8 1.82 0.53 -1.79 0.18 0.65 -20.95 10.2 6.51 553 eSp/1Sp/Irr 0.27 0.72
(0.86%) (0.79) (0.98)

gl9 1.43 0.5 -1.69 0.13 0.57 -20.59 10.0 6.4 1013 Irr 0.17 0.46
(1.58%) (0.59) (0.64)

g20 1.53 0.5 -1.69 0.15 0.54 -20.63 9.96 6.76 982 1Sp/Irr 0.22 0.58
(1.53%) (0.71) (0.53)

g21 2.56 0.53 -1.9 0.12 0.76 -21.29 10.46 7.8 2138 S0/eSp/ISp/Irr ~ 0.29 0.76
(3.34%) (0.68) (1.39)

g22 4.64 0.57 -2.09 0.1 0.94 -22.03 10.94 7.32 12733 E/SO 0.3 0.81
(19.9%) (0.78) (0.87)

g23 4.71 0.57 -2.09 0.11 0.94 -21.93 10.87 7.18 8474 E/SO 0.4 1.07
(13.24%) (0.8) (0.67)

g24 3.17 0.53 -2.04 0.13 0.81 -21.82 10.73 9.14 6420 S0/eSp/1Sp 0.69 1.85
(10.03%) (0.69) (0.56)

g25 3.81 0.56 -2.05 0.12 0.94 -21.67 10.78 6.26 3485 SO 0.23 0.61
(5.45%) (0.62) (1.77)

226 2.62 0.53 -2.02 0.13 0.85 -21.52 10.62 7.36 2056 S0/eSp/1Sp 0.27 0.72
(3.21%) (0.88) (1.89)

g27 2.53 0.52 -1.99 0.14 0.85 -21.64 10.69 8.08 2826 S0/eSp 0.53 1.41
(4.42%) (0.71) (1.21)

Table 3. The table lists the average values of structural measurements [Sérsic index, Gini coefficient, M20, Asymmetry (A)] and galaxy
properties [g — r, r-band absolute magnitude (Magr), stellar mass (logMy), physical size (Re, kpc)] in each machine-defined cluster.
Additionally, the statistics of each cluster are presented in the last four columns where Ny shows the number of galaxies in the cluster
and Fj indicates the percentage of total samples. The Dy lists the dominated types in each cluster, which are selected based on the
dominance of each morphology type, and Fy p shows the fraction of the dominated types in a cluster. The Fy 14, is the fraction of barred
galaxies in a cluster. Finally, Dy pqr and Dy pnopar is the dominance of barred galaxies and non-barred galaxies in a cluster, respectively.
The ordering follows the group IDs which are simply labels for convenience.

ellipticals, lenticulars, and early spirals in the visual classi-
fication system we use and not a defect of our unsupervised
learning. Only the lenticulars with a moderate range of Sér-
sic index (peaks at ~ 3; yellow solid line in Fig. 12) can be
separated from other morphology types.

Additionally, as stated in Section 4.1, early spirals are
difficult to categorised into either ETGs or LTGs, and as
such it is difficult to have a distinctive cluster dominated
by only this morphology type (Fig. 10) due to the broad

transitional features in this type. This again indicates the
intrinsic difficulty of visually separating early spirals from
other morphology types, such as lenticulars and late spirals.

Most of our clusters have a mixture of different Hub-
ble types within them which indicates galaxies with similar
features in appearance can be visually classifying into a vari-
ety of morphology types (see examples in Fig. 13). In other
words, a mix of galaxy structure in fact exists in a visu-
ally defined morphology type. This result reveals an intrinsic
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Figure 8. Randomly picked examples of images from each cluster listed in the order of the average value of the T-Type within that cluster
(Table 2). The number shown at the left bottom corner is the average value of the T-Type in the cluster. At the right top corner, the
identification number of the belonging cluster for the image is presented.

vagueness of the visual classification systems such that they
are not always accurately defined, with many galaxies not
optimally classified as a certain T-Type due to the diversity
of properties beyond a guessed at morphology.

One exception from the above discussion is our cluster
21 (g21 in Table 3 with a mix of four morphology types: S0,
eSp, 1Sp, Irr). This cluster is shown to have galaxies with
bright companions which overwhelms the brightness of the
central objects (the ‘@21’ row shown in Fig. 13). After the
feature selection and normalisation in Section 3.2, the cen-
tral objects might become negligible to the machine learning
compared to the companions. This can result in difficulty
for our machine to capture the structure of the central ob-
jects as well as group these galaxies correctly. On the other
hand, galaxies with companions are more likely to experi-
ence galaxy mergers, and thus this cluster can be used as an

MNRAS 000, 1-22 (2021)

indication to find potential merger events or compact groups
of galaxies.

4.4 Machine Classifications versus Physical Properties

In previous sections, we show that our machine learning
classifications trained with monochromatic images are cate-
gorised based on structural features (Section 4.2) and visual
features (Section 4.3). In this section, we examine several
galaxy properties in each machine-defined galaxy class.
First, Fig. 14 shows the average values of different
galaxy properties such as g —¢ colour, r-band absolute mag-
nitude (Magy), stellar mass (M. ), and galaxy physical sizes
(Re, in kpc) for each machine-defined cluster. The colours
and physical sizes are again taken from Simard et al. (2011)
while the stellar mass originates from Mendel et al. (2014).
Each cluster, as defined by the machine in this plot, has dis-
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tinctive physical properties in galaxy colour, absolute mag-
nitude, stellar mass, and physical size. Even though the dis-
crimination can be small in value when considering the error
bars, a clear transition of physical properties along with dif-
ferent clusters are shown.

In Fig. 15 we combine these properties together and plot
the colour-magnitude plane (left) and the mass-size plane
(right). Each circle represents one cluster, coloured by the

average value of the stellar mass of the galaxies in the cluster
for the colour-magnitude diagram, and by the average colour
value for the mass-size relations. Each star shows the average
value of the data within a certain visual morphology type
(written in black) for comparison. The machine-defined mor-
phology types fill in the gap within the correlation of galaxy
morphology and galaxy properties along with the Hubble
types. This indicates that the machine classification scheme
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Figure 11. Examples of the clusters with different bar dominance levels. Each row shows five randomly picked examples in the cluster,
where ‘g6’ represents the 6th cluster, and so on. From top to bottom, examples of no/less, weak, strong bar dominance are presented,
respectively. The galaxy morphology information is shown below each image.
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Figure 12. The Sérsic index distribution for the clusters dominated
by E/S0 galaxies (g22: red solid line; g23: red dashed line), SO
(g25: yellow solid line), and S0/eSp (g27 : blue solid line), where
‘@22’ represents the 22th cluster, and so on.

can construct the missing morphologies in the visual clas-
sification systems without involving human potential bias.
It will be interesting to investigate the correlation of these
machine-defined classifications with galaxy environment and
other galaxy properties, which will be left to study in a fu-
ture paper.

Additionally, we notice on the mass-size diagram (right
in Fig. 15) that the five orange clusters above the eSp star-
label are dominated by barred galaxies, in particular, the
top cluster with the largest average size has ~ 80% barred
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galaxies in the cluster (gl6 in Table 3). Galaxies in this
cluster have larger sizes, larger stellar masses, and are redder
in colour than other clusters with a mix of typical spiral
galaxies.

4.5 Dataset with a real distribution

To test the capability of our method on a realistic data dis-
tribution, we apply our method to the imbalanced dataset
(Fig. 3) which follows the distribution of intrinsic morphol-
ogy for nearby galaxies (Oh et al. 2013, Section 3.1). In
this section, we examine the performance using this dataset
for: (1) binary classification (Section 4.5.1) and (2) multiple
classification clusters (Section 4.5.2) using the imbalanced
dataset, and compare the results with the one using the bal-
anced dataset.

4.5.1 Unsupervised binary classification

Similar to Section 4.1 for the balanced dataset, we merge the
imbalanced dataset into two preliminary clusters (Example
of galaxies in each is shown in Fig. 16). Although the imbal-
anced data has a significantly different distribution in galaxy
types from the balanced dataset, our machine obtains two
preliminary clusters with similar features to the two clusters
provided using the balanced dataset (Fig. 4). As before, one
cluster is dominated by galaxies with many distinct features
while the other has galaxies with significantly fewer features.

Fig. 17 shows the morphological fractions of different
types (left column) and the dominance of each morphology
type in each cluster (right column). The dominance is, again,
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Figure 13. Examples of images of galaxies from clusters with a mix of many visual morphology types. Each row shows five randomly
picked examples within the cluster, where ‘g22’ represents the 22th cluster, and so on. The morphology information is shown below each

image.

the ratio between the morphological fraction in the cluster to
the fraction in the dataset. This quantity removes the impact
of the imbalanced numbers between each type, and indicates
the visual features emphasised in a cluster. The two clus-
ters are clearly dominated by LTGs and ETGs, respectively.

Additionally, the dominance distribution of the imbalanced
dataset is completely consistent with that of the balanced
dataset (Fig. 5). This confirms that no matter which data
distribution is used, our machine is capable of separating
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the two clusters based on the specific features existing in
the corresponding morphology types.

Additionally, applying our method to the imbalanced
dataset we get an initial accuracy of ~0.87 in separating
ETGs from LTGs. The accuracy is again defined as the num-
ber of correct matches from the total samples. The reason
for a higher accuracy compared with the balanced dataset
is due to a lower fraction of early spirals in the imbalanced
dataset (~ 8%) than the balanced dataset (~ 25%). When
we exclude the early spirals from the imbalanced dataset,
the accuracy barely changes, and it is consistent with the
accuracy obtained when using the balanced dataset (accu-
racy: ~0.87; Section 4.1). These results show the ability of
our method to achieve reliable binary morphological classifi-
cation for large surveys with unknown morphological mixes.

4.5.2  Multiple classification clusters

Following Section 3.4, and using the imbalanced dataset, we
obtain the same number of clusters, 27, as when we used
the balanced dataset through our method of determining
the number of clusters (Section 4.2). The clustering results
for both datasets are very close to each other, with only very
minor differences. For example, 7 clusters are separated un-
der the less featured group using the balanced dataset while
8 clusters are obtained using the imbalanced dataset. Con-
versely, we obtain 20 clusters for the featured group using
the balanced dataset, and 19 using the imbalanced dataset.

In Fig. 18, we associate the classification clusters for the
imbalanced, realistic, data set with Hubble types based on
the dominance of each type. We find no clean clusters for el-
lipticals (E), lenticulars (S0), early spirals (eSp), irregulars
(Irr) when using the imbalanced dataset. The lack of clusters
for £ and eSp is due to the same reasons for the balanced

dataset discussed in Section 4.2: these two visual morpholo-
gies are intrinsically difficult to separated from other mor-
phology types. Additionally, in Section 4.2, we conclude that
to get a clean SO cluster, galaxies have to show a moderate
disk structure (Fig. 12). However, there is not a sufficient
number of lenticulars with the relevant features due to the
low fraction of this type in the imbalanced dataset (Fig. 3).
It is impossible for the machine to classify a galaxy that
does not exist in some abundence within the dataset; there-
fore, we miss the pure S0 cluster when using the imbalanced
dataset. On the other hand, irregular galaxies do not have a
specific structure; therefore, it is easy to be confused them
with some late spirals with less structured appearances by
our machine, based on only galaxy structure and without
the prior knowledge of ‘late sprials’ or ‘irregulars’. They also
suffer from the similar cause of the missing S0 cluster: the
insufficient number of irregular galaxies in our imbalanced
set decreases the possibility of the distinctive irregulars to
be picked out by our machine.

Similar to the results of the balanced dataset, the sep-
aration between clusters might ‘improve’ in terms of being
closer to a more physical classification when we consider
colour information in our machine. Therefore, this will be
an important part in future work.

5 CONCLUSIONS

In this paper, we present an unsupervised machine learning
technique by applying a combination of a feature extractor
- a vector-quantised variational autoencoder (VQ-VAE) and
a hierarchical clustering algorithm (HC). This method in-
volves a vector quantisation process which provides a rate
of classification with a feature extractor in the learning phase

MNRAS 000, 1-22 (2021)
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at least 30 times faster than a typical convolutional antoen-
coder used in Cheng et al. (2020) on the same device.

To sensibly explore galaxy morphologies and investigate
the suggestive number of galaxy morphological classes, we
propose some novel modifications to the machine learning
algorithms used in this work (Section 2). First, we include
a preliminary clustering result in the VQ-VAE architecture
during the feature learning process. This helps to extract fea-
tures that can not only reproduce the input images but also
be well separated into two preliminary clusters in feature
space. Second, different distance thresholds are used within
each branch in the merger tree in the HC process rather than
a single distance threshold for a whole tree. This flexibil-
ity prevents the creation of unnecessary clusters separating
galaxies with few features, while allowing more clusters for
galaxies that show larger variation. Another innovation is to
use galaxy orientation (a potential problem when classifying
galaxies) to our advantage, helping to decide the number of
clusters (Section 3.4).

Using the monochromatic images from the Sloan Digi-
tal Sky Survey (SDSS), we first explore galaxy classifications
using a dataset with a balanced number of galaxies in each
morphological class (Section 3.1). This is done to reduce po-
tential biases associated with number imbalances. Using this
method we obtain 27 clusters within this balanced dataset.
We find that our method separates the classification clus-
ters based on galaxy shape and structure (e.g., Sérsic index,
asymmetry, Gini coefficient, M20). We then associate our
classification clusters with the Hubble sequence based on
the dominance of each type in a given cluster (Section 4.2).
Clusters with barred, weak-barred, and non-barred galax-
ies are well distinguished by our machine. However, when
using the balanced dataset, no clean clusters are found for
ellipticals or early spirals (Fig. 10). Additionally, most clus-
ters are associated with a mixture of Hubble types. We thus

conclude that there is a fundamental difficulty in separating
accurately galaxies with transitional features such as lentic-
ular galaxies and early spirals with a machine. This applies
both to visual and machine classifications.

In addition, we find that each machine classification
cluster has characteristic galaxy properties (e.g., colours,
masses, luminosities, sizes) that transition smoothly along
the Hubble sequence. In future work, we will further investi-
gate if this unsupervised method could provide a more phys-
ically meaningful classification system than a purely visual
classification one.

Overall, the machine classification clusters provide a
reasonable and detailed scheme for galaxy morphological
classification based on a combination of multiple structural
parameters, avoiding human errors and biases. The domi-
nate features in our classification clusters can be used as
the foundation of an objective alternative to the Hubble se-
quence. Since our system separates well galaxies with differ-
ent shape, structure, and physical properties, it may prove
useful in generic galaxy formation and evolution studies. The
system may be improved by including multi-colour imaging
and velocity maps. Galaxies at higher redshifts have struc-
tures which look significantly different from those of nearby
galaxies, such as those we examine in this study. Thus, it
would be interesting to apply our technique to higher red-
shift galaxies to see whether the VQ-VAE method would
classify galaxies in the earlier universe into our clusters or if
it would suggest new ones.

To test the performance of our method with realistic
morphological distributions, we also apply it to an imbal-
anced dataset which follows the morphological distribution
of nearby galaxies. The results are very similar to the ones
obtained with the balanced dataset, showing that our sys-
tem is able to deal with large galaxy samples with more
realistic morphological mixes. It also shows that our set up
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is not sensitive to different distributions of input galaxy mor-
phologies, but can handle a range of distributions of various
galaxy input ‘types’.

As mentioned earlier, in the future we plan to carry out
a more detailed comparison between a machine-defined clas-
sification and a visual classification to investigate the pros
and cons between the two ways. In addition, we intend to
apply the techniques developed here to multi-colour images
with better resolution such as the data from the Dark Energy
Survey and the Euclid Space Telescope. Velocity maps from
integral-field spectroscopic surveys could also be included.
The resulting classification system(s) should prove very use-
ful to better understand galaxy properties, their formation
and evolution. We also expect that the future development
of this work will result in a fundamental change in how we
approach galaxy morphological classification - both visually
and when using machine learning.
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