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Abstract
This paper develops a concept of 2-categorical algebraic quantum field theories
(2AQFTs) that assign locally presentable linear categories to spacetimes. It is proven
that ordinary AQFTs embed as a coreflective full 2-subcategory into the 2-category
of 2AQFTs. Examples of 2AQFTs that do not come from ordinary AQFTs via this
embedding are constructed by a local gauging construction for finite groups, which
admits a physical interpretation in terms of orbifold theories. A categorification of
Fredenhagen’s universal algebra is developed and also computed for simple examples
of 2AQFTs.
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1 Introduction and summary

An algebraic quantumfield theory (AQFT) is a functorA : C → AlgK from a category
of spacetimesC to the category of associative and unital algebras over a fieldK, which
satisfies certain physically motivated axioms such as Einstein causality and the time-
slice axiom [12,22,29]. The (non-commutative) algebra A(c) that is assigned to an
object c ∈ C is interpreted as the algebra of quantum observables of the theory on the
spacetime c.

Describing quantum observables in terms of ordinary algebras in AlgK is however
insufficient to capture the important, but rather subtle, higher categorical structures
that feature in gauge theories. For instance, in the context of the BRST/BV formalism
[26,27], the quantumobservables of a gauge theory are described by differential graded
algebras (dg-algebras) and the latter contain in general more information than their 0-
th cohomology, which is the ordinary algebra of gauge invariant quantum observables.
An axiomatic framework for homotopy-coherent AQFTs with values in dg-algebras
was developed in [6], see also [4] for a review and [3] for concrete examples. In these
works, it was also shown that the higher structures encoded by dg-algebras are crucial
for formalizing descent (i.e., local-to-global) properties of quantum gauge theories.

The main aim of this paper is to develop another concept of higher categorical
AQFTs which describe quantum observables in terms of locally presentable K-linear
categories. As we explain in detail below, such AQFTs are more sensitive to global
aspects of quantum gauge theories than the homotopy AQFTs based on dg-algebras
studied previously in [6,26,27]. For example, they properly capture finite gauge trans-
formations in contrast to only infinitesimal ones.

In order to motivate why it is reasonable to describe quantum observables of gauge
theories by locally presentable K-linear categories, let us first recall why ordinary
AQFTs assign associative and unital K-algebras. From the point of view of quantum
theory, a (non-commutative) algebra A ∈ AlgK is interpreted as a quantized function
algebra on the phase space X of a physical system, i.e., A arises as a (deformation)
quantization of the commutative algebra O(X) of K-valued functions on X . If X is a
sufficiently “nice” space (in technical terms, X is an affine scheme over K), there is no
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loss of information when passing from X to its function algebra O(X). This explains
why it is justified to quantize the space X by quantizing its function algebra O(X).

However, many important examples of phase spaces that feature in physics are
not of this “nice” kind. For instance, if the phase space X is a stack, as it happens
to be in a gauge theory, it is in general not true that X is faithfully encoded by its
function algebraO(X), which in this case is a dg-algebra. To understand the example
below, let us recall that stacks are higher categorical spaces that are compared by
a suitable kind of weak equivalences (in contrast to isomorphisms), see, e.g., [46]
for the relevant model category structure. To ensure that the assignment of function
dg-algebras X �→ O(X) is well defined, i.e., compatible with the weak equivalences
of stacks, one has to study dg-algebras up to weak equivalences too, which in this
case are given by dg-algebra maps that induce quasi-isomorphisms on the underlying
chain complexes. In particular, this implies that the function dg-algebra on a stack
is just determined up to weak equivalence. (The precise statement here is that the
assignment of function dg-algebras to stacks is a Quillen functor between certain
model categories, see [6,46] for the details.) As an illustrative example of a stack
that is not faithfully encoded by its function dg-algebra, let G be a finite group and
consider the quotient stack BG:={∗}//G. The latter is a non-trivial stack, namely
the classifying stack of principal G-bundles. The corresponding function dg-algebra
O(BG) = C•(G, K) is then given by the group cochains with values in the trivial
G-representation K. Taking, for example, G = Z2, the cyclic group of order 2, all
cohomology groups Hn(Z2, K) = 0, for n �= 0, are trivial if K has characteristic
zero, and H0(Z2, K) = K. It then follows that O(BZ2) � K = O({∗}) is weakly
equivalent in themodel category of dg-algebras to the function algebra of the point {∗},
i.e., all information about the group G = Z2 is lost when passing from the stack BG
to its function dg-algebra. As a consequence, it is in general not reasonable to quantize
a stack X by quantizing its function dg-algebra O(X). We would like to emphasize
that these issues arise for finite gauge transformations and not for infinitesimal gauge
transformations. In particular, everyLie algebroid X = Y//g is completely determined
by its function dg-algebra, which in this case is given by the Chevalley–Eilenberg
cochains O(X) = CE•(g,O(Y )) on the Lie algebra g with values in the ordinary
function algebra O(Y ) of the affine scheme Y . As a consequence, such models with
infinitesimal gauge transformations may be described within the BRST/BV formalism
[3,26,27] and its axiomatization in the framework of homotopy AQFT [6].

The feature that stacks are in general not completely determined by their func-
tion dg-algebras is well known to algebraic geometers, see, e.g., [10] for an excellent
overview,who have also proposed the following interesting solution: Instead of assign-
ing a function dg-algebraO(X) to a space or stack X , it is better to assign the category
QCoh(X) of quasi-coherent sheaves on X . The latter is a locally presentable sym-
metric monoidal K-linear category that should be interpreted roughly as the category
of vector bundles over X . This is indeed a better choice because, by a theorem of
Lurie [39], every geometric stack X can be reconstructed from its quasi-coherent
sheaf category QCoh(X). This fact becomes evident in our illustrative example BG
from above: We observe that QCoh(BG) = RepK(G) is the symmetric monoidal
category of K-linear representations of G. By Tannakian reconstruction, RepK(G)

encodes the full information about the group G, hence QCoh(BG) is indeed much
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richer than the function dg-algebraO(BG) considered in the previous paragraph (think
of G = Z2 for example). Furthermore, for a “nice” space X , i.e., an affine scheme
over K, the usual function algebra O(X) can be recovered as follows: One finds that
in this case QCoh(X) � ModO(X) is the symmetric monoidal K-linear category of
(right)modules over the commutative algebraO(X), henceO(X) can be reconstructed
fromQCoh(X) as the endomorphism algebra End(O(X)) ∼= O(X) of the rank 1 free
moduleO(X) ∈ ModO(X), i.e., as the endomorphism algebra of the monoidal unit of
QCoh(X). This means that for “nice” spaces the function algebra perspective and the
quasi-coherent sheaf category perspective are compatible and carry the same infor-
mation.

The previous paragraph explained the need to move from the function algebra
perspective to the quasi-coherent sheaf category perspective. This, however, raises
another question: What does it mean to quantize a quasi-coherent sheaf category?
As an illustrative example, let us start with the case where the space X is “nice,”
i.e., affine, and assume that we already have a non-commutative algebra A ∈ AlgK
that quantizes the function algebra O(X). We may then form the locally presentable
K-linear category ModA of right A-modules and interpret it as a quantization of the
quasi-coherent sheaf category QCoh(X) � ModO(X). It is important to observe the
following structural difference between ModA and ModO(X): The tensor product
⊗O(X)

on ModO(X) is only well defined because O(X) is a commutative algebra
and hence every right O(X)-module is automatically an O(X)-bimodule. Since the
quantized algebra A is non-commutative, there is no counterpart on ModA of the
tensor product structure onModO(X). However, there is a counterpart onModA of the
monoidal unit O(X) ∈ ModO(X), which is given by the object A ∈ ModA of the K-
linear categoryModA. This suggests that the quantization of the symmetric monoidal
K-linear category QCoh(X) should be a pointed K-linear category, i.e., a K-linear
category together with the choice of an object in it, see, e.g., [7,31]. We would like
to emphasize that this idea was made precise in the framework of derived algebraic
geometry, see [15,42] and also Toën’s ICM 2014 contribution [47]. In this context,
the quantization of a derived stack X endowed with an n-shifted symplectic structure
is described by a quantization of the symmetric monoidal ∞-category QCoh(X)

of quasi-coherent sheaves as an En-monoidal ∞-category. Since the phase space of
a physical system is 0-shifted symplectic, we recover our intuition that one should
quantize QCoh(X) as an E0-monoidal, i.e., pointed, K-linear category.

Let us explain in more detail the content of the present paper and the results we
obtain: In Sect. 2, we introduce an equivalent perspective on ordinary AQFTs as pref-
actorization algebras [17] with values in the symmetric monoidal category AlgK of
associative and unital K-algebras. This perspective will be used in Sect. 3 to introduce
our concept of categorified AQFTs (called 2AQFTs) that describe quantum observ-
ables by locally presentable K-linear categories, in contrast to associative and unital
algebras. In more detail, we define a 2AQFT as a (weak) prefactorization algebra on
an orthogonal category C (cf. Definition 2.1) with values in the symmetric monoidal
2-category PrK of locally presentable K-linear categories. In Sect. 4, we explore the
relationship between ordinary AQFTs and our concept of 2AQFTs. We construct a
biadjunction (cf. Theorem 4.3) that exhibits the 1-category of ordinary AQFTs as a
coreflective full 2-subcategory of the 2-category of 2AQFTs. This implies in particu-
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lar that our framework for 2AQFTs includes ordinary AQFTs faithfully. Furthermore,
every 2AQFT has an underlying ordinary AQFT (cf. Sect. 4.1) that is obtained by
truncating its higher categorical structures and is interpreted as the underlying gauge
invariant quantum observables. We shall illustrate through simple examples (see, e.g.,
Example 5.7) that this truncation does not in general capture the 2AQFT fully, which
means that the latter has additional higher structures that are invisible at the level of
gauge invariant observables. Even though we currently do not know of any directways
to access these higher structures through measurements, they appear to be physically
relevant in more indirect ways. For instance, we shall illustrate in Example 6.4 that
the higher categorical structures of 2AQFTs are essential for capturing the desired
descent (i.e., local-to-global) properties of gauge theories.

In Sect. 5, we develop a local gauging construction for AQFTs with finite group
actions, which allows us to construct concrete examples of 2AQFTs that admit an
interpretation as categorified orbifold theories. The main result of this section is The-
orem 5.11: We prove that a categorified orbifold theory is truncated, i.e., equivalent to
an ordinary AQFT, if and only if a suitable Hopf–Galois condition is fulfilled, which
can be interpreted as a non-commutative analog of the condition that a G-action on
a space is free. This matches with the intuition that an orbifold σ -model with a quo-
tient stack X//G as target boils down to an ordinary σ -model with the quotient space
X/G as target whenever G acts freely on the space X (cf. Remark 5.12). In Sect. 6,
we study a local-to-global extension for 2AQFTs (called Fredenhagen’s universal
category), which is a higher categorical analog of Fredenhagen’s universal algebra
[23–25]. This is related to factorization homology [2,7,8]; however, we do not restrict
ourselves to topological QFTs. We develop concrete models for computing Freden-
hagen’s universal category and provide simple examples for extensions of 2AQFTs
from intervals to the circle S

1. Appendix A introduces the relevant formalism for
2-categorical operad theory that we use throughout this paper.

2 AQFTs and algebra-valued prefactorization algebras

Let us fix once and for all a field K of characteristic zero. We briefly review the
definition of algebraic quantum field theories (AQFTs) on an orthogonal category C
in the sense of [5]. We then prove that such theories admit an equivalent description
in terms of prefactorization algebras on C with values in the symmetric monoidal
category AlgK of associative and unital K-algebras. The latter perspective will be
particularly useful for developing a categorification of AQFTs in Sect. 3.

Definition 2.1 An orthogonal categoryC:=(C,⊥) is a small categoryC together with
a subset ⊥ ⊆ MorC t×t MorC of the set of pairs of morphisms with a common target,
such that:

(i) If ( f1, f2) ∈ ⊥, then ( f2, f1) ∈ ⊥.
(ii) If ( f1, f2) ∈ ⊥, then (g f1 h1, g f2 h2) ∈ ⊥, for all composable C-morphisms

g, h1 and h2.

We shall denote orthogonal pairs ( f1, f2) ∈ ⊥ also by f1 ⊥ f2.
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Example 2.2 Let Open(M) be the category of non-empty open subsets U ⊆ M of
a manifold M with morphisms U → V given by subset inclusions U ⊆ V ⊆ M .
We introduce an orthogonality relation ⊥M by declaring two morphisms U1,U2 ⊆
V ⊆ M to be orthogonal if and only if U1 ∩ U2 = ∅. The orthogonal category
Open(M):=(Open(M),⊥M ) may be used to describe factorization algebras [17]
and, for M = S

1 the circle, also chiral conformal AQFT [33].

Example 2.3 The orthogonal categoryLoc relevant for locally covariant AQFT [12,22]
is given by the category Loc of oriented and time-oriented globally hyperbolic
Lorentzian manifolds, with orthogonality relation⊥Loc determined by causal disjoint-
ness, see, e.g., [5] for the details. For a fixed M ∈ Loc, consider the slice category
Loc/M and pull back the orthogonality relation ⊥Loc along the canonical functor
Loc/M → Loc. The resulting orthogonal category Loc/M may be used to describe
Haag–Kastler style AQFTs [29] on a fixed M ∈ Loc.

Definition 2.4 An algebraic quantum field theory (AQFT) on an orthogonal category
C is a functor A : C → AlgK to the category of associative and unital K-algebras
that satisfies the ⊥-commutativity property: For all orthogonal pairs ( f1 : c1 → t) ⊥
( f2 : c2 → t), the induced commutator

[
A( f1)(−),A( f2)(−)

]
A(t) : A(c1) ⊗ A(c2) −→ A(t) (2.1)

is zero. The category of AQFTs on C is the full subcategory

AQFT(C) ⊆ Fun(C,AlgK) (2.2)

of the functor category that consists of all ⊥-commutative functors.

In preparation for our definition of categorified AQFTs in Sect. 3, we prove that
the category AQFT(C) is equivalent to the category of AlgK-valued prefactoriza-
tion algebras on C. The following definition introduces a colored operad PC that
generalizes the prefactorization operad of Costello and Gwilliam [17] to an arbitrary
orthogonal category C. The operad of Costello and Gwilliam is recovered by taking
C = Open(M) for a manifold M , see Example 2.2. For the relevant background and
notations for colored operads, we refer the reader to [5,49] and also to Appendix A.

Definition 2.5 The prefactorization operadPC associatedwith an orthogonal category
C is the Set-valued colored operad defined by the following data:

(1) The objects of PC are the objects of the category C.
(2) The sets of operations are

PC

(t
c
) :=

{
f :=( f1, . . . , fn) ∈

n∏

i=1

C(ci , t) : fi ⊥ f j for all i �= j
}
, (2.3)

for each object t ∈ C and each tuple of objects c:=(c1, . . . , cn) ∈ Cn . For the
empty tuple c = ∅, we set PC

(
t∅
):={∗t } to be a singleton.
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(3) The composition maps γ : PC

( t
a
) × ∏n

i=1 PC

(ai
bi

) → PC

(t
b
)
, where b:=(b1, . . . ,

bn) denotes the concatenation of tuples, are given by composition in the category
C, i.e.,

γ
(
f , (g

1
, . . . , g

n
)
) := f g := (

f1 g11, . . . , f1 g1k1, . . . , fn gn1, . . . , fn gnkn
)
.

(2.4)

(4) The identity operations are 1:=idt ∈ PC

(
t
t

)
.

(5) The permutation actions PC(σ ) : PC

(t
c
) → PC

( t
cσ

)
are given by

PC(σ )( f ) := f σ :=( fσ(1), . . . , fσ(n)). (2.5)

Let us endow the category AlgK of associative and unital K-algebras with its stan-
dard symmetric monoidal structure. The tensor product of two algebras A, B ∈ AlgK
is given by the tensor product algebra A ⊗ B. Concretely, that is the tensor product
of vector spaces with multiplication given by (a ⊗ b) (a′ ⊗ b′):=(a a′) ⊗ (b b′) and
unit element 1A ⊗ 1B ∈ A ⊗ B. The monoidal unit is K ∈ AlgK and the symmetric
braiding is given by the AlgK-morphisms τ : A ⊗ B → B ⊗ A , a ⊗ b �→ b ⊗ a.
The symmetric monoidal category AlgK has an associated Set-valued colored operad
(see, e.g., [21]) that we denote by the same symbol AlgK. Concretely, the objects are
the objects of AlgK and the sets of operations are given by

AlgK
(B
A
) :=AlgK

( n⊗

i=1
Ai , B

)
. (2.6)

The composition maps are determined by the monoidal structure, the identity opera-
tions are the identity morphisms, and the permutation actions are obtained from the
symmetric braiding.

Definition 2.6 The category ofAlgK-valued prefactorization algebras onC is defined
by

AlgPC
(AlgK) := [PC,AlgK], (2.7)

where AlgK is regarded as a colored operad (as explained above) and [−,−] denotes
the Hom-category from Remark A.6.

Remark 2.7 Let us unpack this definition by using the definitions from Appendix A.
(These definitions simplify drastically in the present case because both PC and AlgK
are Set-valued colored operads. Hence, all coherence data are necessarily trivial. Non-
trivial coherence data will be needed to describe categorified AQFTs in Remark 3.4.)

AnAlgK-valued prefactorization algebra F ∈ AlgPC
(AlgK) is given by the follow-

ing data:

(1) For each c ∈ C, an associative and unital K-algebra F(c) ∈ AlgK.
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(2) For each tuple f = ( f1, . . . , fn) ∈ PC

(t
c
)
of mutually orthogonal C-morphisms,

an AlgK-morphism (called factorization product)

F( f ) :
n⊗

i=1

F(ci ) −→ F(t) (2.8)

from the tensor product algebra
⊗n

i=1 F(ci ). For the empty tuple c = ∅, the
AlgK-morphism F(∗t ) : K → F(t) associated with the only element ∗t ∈ PC

(
t∅
)

is necessarily the unit of F(t), because K is the initial object in AlgK.

These data are required to satisfy the following axioms:

n⊗

i=1

ki⊗

j=1
F(bi j )

F( f g)

F(g):= ⊗
i F(g

i
) n⊗

i=1
F(ai )

F( f )

F(t)

(2.9a)

F(idt ) = idF(t) : F(t) −→ F(t) (2.9b)

n⊗

i=1
F(cσ(i))

F( f σ)

τσ
n⊗

i=1
F(ci )

F( f )

F(t)

(2.9c)

In the last diagram, we have denoted by τσ : ⊗n
i=1 F(cσ(i)) → ⊗n

i=1 F(ci ) , aσ(1) ⊗
· · · ⊗ aσ(n) �→ a1 ⊗ · · · ⊗ an the AlgK-morphism that permutes the factors of the
tensor product algebra.

A morphism ζ : F → G in AlgPC
(AlgK) is a family of AlgK-morphisms ζc :

F(c) → G(c), for all c ∈ C, such that the diagrams

n⊗

i=1
F(ci )

F( f )

⊗
i ζci

n⊗

i=1
G(ci )

G( f )

F(t)
ζt

G(t)

(2.10)

commute, for all f ∈ PC

(t
c
)
.

It is easy to see that every A ∈ AQFT(C) defines an AlgK-valued prefactorization
algebra on C by introducing the factorization products

A( f ) :
n⊗

i=1
A(ci )

⊗
i A( fi )

A(t)⊗n
μn
A(t)

A(t) , (2.11)
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where μn
A(t) : A(t)⊗n → A(t) , a1 ⊗ · · · ⊗ an �→ a1 · · · an denotes the n-ary multi-

plication in the associative and unital algebra A(t) ∈ AlgK. Using ⊥-commutativity
and fi ⊥ f j , for all i �= j , one shows that A( f ) is indeed an AlgK-morphism on

the tensor product algebra. Furthermore, every AQFT(C)-morphism ζ : A → B
defines an AlgPC

(AlgK)-morphism between the corresponding prefactorization alge-

bras; hence, we obtain a functor AQFT(C) → AlgPC
(AlgK). Note that this functor

is fully faithful.
Conversely, we have the following lemma showing that every AlgK-valued prefac-

torization algebra is completely determined by an underlying AQFT.

Lemma 2.8 For every F ∈ AlgPC
(AlgK), the factorization product F( f ) for f =

( f1, . . . , fn) ∈ PC

(t
c
)
factorizes as

F( f ) :
n⊗

i=1
F(ci )

⊗
i F( fi )

F(t)⊗n
μn
F(t)

F(t) , (2.12)

where μn
F(t) denotes the n-ary multiplication in the associative and unital algebra

F(t) ∈ AlgK. In particular, F is completely determined by its underlying functor
F : C → AlgK, which satisfies the ⊥-commutativity property from Definition 2.4 and
hence defines an AQFT.

Proof Using the composition maps from Definition 2.5, we compute

γ
(
f , (∗c1, . . . , ∗ck−1 , idck , ∗ck+1 , . . . , ∗cn )

) = fk, (2.13)

for all k = 1, . . . , n, where ∗t ∈ PC

(
t∅
)
denotes the unique arity zero operation. The

corresponding commutative diagram in (2.9a) then reads as

n⊗

i=1
F(ci )

F( f )
F(t)

k−1⊗

i=1
K ⊗ F(ck) ⊗

n⊗

i=k+1
K

⊗
i F(∗ci )⊗F(idck )⊗⊗

i F(∗ci )

∼= F(ck)

F( fk )

(2.14)

Using further that F(idck ) = idF(ck ) (cf. (2.9b)) and that F(∗ci ) : K → F(ci ) is the
unit of F(ci ) ∈ AlgK (cf. Remark 2.7), the commutative diagram (2.14) implies that

F( f )
(
1F(c1) ⊗ · · · ⊗ 1F(ck−1) ⊗ ak ⊗ 1F(ck+1) ⊗ · · · ⊗ 1F(cn)

) = F( fk)(ak),
(2.15)

for all ak ∈ F(ck). By definition of the product of a tensor product algebra, it then
follows that

F( f )(a1 ⊗ · · · ⊗ an) = F( f1)(a1) · · · F( fn)(an), (2.16)
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for all a1 ⊗ · · ·⊗ an ∈ ⊗n
i=1 F(ci ), which proves (2.12). Using further that every two

elements of the form a ⊗ 1B and 1A ⊗ b commute in a tensor product algebra A⊗ B,
it follows that the underlying functor F : C → AlgK is ⊥-commutative. ��

Summing up, we have proven the following

Theorem 2.9 For every orthogonal category C, there exists a canonical isomorphism

AQFT(C) ∼= AlgPC
(AlgK) (2.17)

between the category of AQFTs onC and the category ofAlgK-valued prefactorization
algebras on C.

Remark 2.10 The equivalent description of AQFTs in terms of AlgK-valued pref-
actorization algebras provides an interesting conceptual interpretation of the ⊥-
commutativity property from Definition 2.4. From the prefactorization algebra point
of view, every quantum field theory comes with two different kinds of “multiplica-
tions,” namely the object-wise products μF(c) : F(c)⊗F(c) → F(c), for every c ∈ C,
and the factorization products F( f ) : ⊗n

i=1 F(ci ) → F(t), for every tuple f of mutu-
ally orthogonal C-morphisms. These two kinds of “multiplications” are compatible
with each other because the factorization products F( f ) are AlgK-morphisms. The
⊥-commutativity property is thus a consequence of an Eckmann–Hilton argument.

3 Definition of 2AQFTs

The aim of this section is to introduce a categorification of the concept of AQFTs,
which we shall call 2-categorical algebraic quantum field theories (2AQFTs). While
ordinary AQFTs assign associative and unital K-algebras to the objects of an orthog-
onal category C, our concept of 2AQFTs will assign locally presentable K-linear
categories, cf. [1,11].

Recall that a K-linear category is a category D that is enriched over the symmetric
monoidal categoryVecK of vector spaces over K. Concretely, this means that we have
a vector spaceD(d, d ′) ∈ VecK of morphisms, for every pair of objects d, d ′ ∈ D, and
that the composition maps ◦ : D(d ′, d ′′)×D(d, d ′) → D(d, d ′′) areK-bilinear, for all
d, d ′, d ′′ ∈ D. Given two K-linear categories D and E, a K-linear functor F : D → E
is a functor such that the maps F : D(d, d ′) → E(Fd, Fd ′) are K-linear, for all
d, d ′ ∈ D.

A K-linear category D is called locally presentable if it is 1.) cocomplete, i.e., has
all small colimits, and 2.) generated under small colimits by a set � ⊂ D0 of objects
that are λ-presentable for some infinite cardinal λ, see, e.g., [11] for a recollection of
the relevant material on locally presentable categories. The natural concept of functors
F : D → E between two locally presentable K-linear categories D and E is given by
co-continuousK-linear functors, i.e.,K-linear functors that preserve all small colimits.
Natural transformations in this context are just ordinary natural transformations.

Definition 3.1 The operad PrK of locally presentable K-linear categories is the Cat-
enriched colored operad (cf. Definition A.1) defined by the following data:

123



Categorification of algebraic quantum field theories Page 11 of 49    35 

(1) The objects are all locally presentable K-linear categories.
(2) ForT andD = (D1, . . . ,Dn) locally presentableK-linear categories, the category

of operations is the full subcategory

PrK
(T
D
) ⊆ Fun

( n∏

i=1

Di ,T
)

(3.1)

of the functor category that consists of all functors F : ∏n
i=1 Di → T that are

K-linear and co-continuous in each variable. For the empty tuple D = ∅, we set
PrK

(
T∅
):=Fun(1,T), where 1 is the category with only one object and its identity

morphism.
(3) The composition functors γ : PrK

(T
D
) × ∏n

i=1 PrK
(Di
Ei

) → PrK
(T
E
)
are given by

composition of functors and (horizontal) composition of natural transformations,
i.e.,

γ
(
F, (G1, . . . ,Gn)

) := F G := F
n∏

i=1

Gi , (3.2a)

γ
(
α, (β1, . . . , βn)

) := α ∗ β := α ∗
n∏

i=1

βi . (3.2b)

(4) The identity 1-operations are the identity functors 1:=idT ∈ PrK
(
T
T

) ⊆
Fun(T,T).

(5) The permutation action functors PrK(σ ) : PrK
(T
D
) → PrK

( T
Dσ

)
are given by

PrK(σ )(F) := F flipσ , PrK(σ )(α) := α ∗ Idflipσ
, (3.3)

where flipσ : ∏n
i=1 Dσ(i) → ∏n

i=1 Di is the permutation functor and Idflipσ
:

flipσ ⇒ flipσ its identity natural transformation.

Remark 3.2 With some abuse of notation, we will sometimes denote by the same
symbolPrK the underlying 2-category of 1-ary operations of theCat-enriched colored
operad fromDefinition 3.1. It should be clear from the context whether wemean by the
symbolPrK aCat-enriched colored operad or a 2-category. The underlying 2-category
PrK is known to be (closed) symmetric monoidal with respect to the Kelly–Deligne
tensor product D�E of locally presentable K-linear categories, whose monoidal unit
is given by the K-linear category VecK of vector spaces, see [34] and also [11] for a
review. This symmetric monoidal structure is linked as follows to our Cat-enriched
colored operad from Definition 3.1: By the universal property of the Kelly–Deligne
tensor product, the categories of operations

PrK
(T
D
) � LinK,c

( n

�
i=1

Di ,T
)

(3.4)
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are equivalent to the categories of co-continuous K-linear functors out of the Kelly–
Deligne tensor product. Hence, the Cat-enriched colored operad PrK can also
be understood as the operad associated with the symmetric monoidal 2-category
(PrK,�,VecK). This alternative perspective will become useful in some of our com-
putations in Sects. 4–6.

Recalling Theorem 2.9, ordinaryAQFTs onC are equivalentlyAlgK-valued prefac-
torization algebras, i.e., AQFT(C) ∼= AlgPC

(AlgK). Replacing the target AlgK with
PrK suggests the following

Definition 3.3 The 2-category of 2-categorical algebraic quantum field theories
(2AQFTs) on an orthogonal category C is defined as the Hom-2-category (cf.
Remark A.6)

2AQFT(C) :=AlgPC
(PrK) := [PC,PrK], (3.5)

where PC is the prefactorization operad from Definition 2.5 and PrK is the Cat-
enriched colored operad from Definition 3.1.

Remark 3.4 Let us unpack this definition by using the definitions from Appendix A.
An object A ∈ 2AQFT(C) is given by the following data:

(1) For each c ∈ C, a locally presentable K-linear category A(c) ∈ PrK.
(2) For each tuple f = ( f1, . . . , fn) ∈ PC

(t
c
)
of mutually orthogonal C-morphisms,

a functor (called factorization product)

A( f ) :
n∏

i=1

A(ci ) −→ A(t) (3.6)

that is K-linear and co-continuous in each variable. For the empty tuple c = ∅,
this defines an object at :=A(∗t ) ∈ A(t) (called pointing, see, e.g., [7]) that is
associated with the only element ∗t ∈ PC

(
t∅
)
.

(3) For each f ∈ PC

( t
a
)
and g = (g

1
, . . . , g

n
) ∈ ∏n

i=1 PC

(ai
bi

)
, a natural isomorphism

n∏

i=1

ki∏

j=1
A(bi j )

A( f g)

A(g) := ∏
i A(g

i
) n∏

i=1
A(ai )

A( f )

A2
( f ,g)

A(t)

(3.7)

(4) For each t ∈ C, a natural isomorphism

A0
tA(t)

idA(t)

A(idt )

A(t)

(3.8)
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(5) For each f ∈ PC

(t
c
)
and permutation σ ∈ 
n , a natural isomorphism

n∏

i=1
A(cσ(i))

A( f σ)

flipσ
n∏

i=1
A(ci )

A( f )

Aσ
f

A(t)

(3.9)

These data are required to satisfy the axioms from Definition A.2.
A 1-morphism ζ : A → B in 2AQFT(C) is given by the following data:

(1) For each c ∈ C, a co-continuous K-linear functor ζc : A(c) → B(c).
(2) For each f ∈ PC

(t
c
)
, a natural isomorphism

n∏

i=1
A(ci )

A( f )

∏
i ζci

n∏

i=1
B(ci )

B( f )
ζ f

A(t)
ζt

B(t)

(3.10)

Note that, for f = ∗t ∈ PC

(
t∅
)
, this amounts to an isomorphism ζ∗t : bt

∼=−→
ζt (at ) inB(t) from the pointing bt = B(∗t ) ∈ B(t) to the image of the pointing
at = A(∗t ) ∈ A(t) under the functor ζt : A(t) → B(t).

These data are required to satisfy the axioms from Definition A.4.
A 2-morphism� : ζ ⇒ κ between two 1-morphisms ζ, κ : A → B in 2AQFT(C)

is given by the following data:

(1) For each c ∈ C, a natural transformation

�cA(c)

ζc

κc

B(c)

(3.11)

These data are required to satisfy the axioms from Definition A.5.

Remark 3.5 Category-valued prefactorization algebras were studied before in the con-
text of factorization homology of 2-manifolds [7,8]. Our framework for 2AQFTs
allows us to interpret the examples studied in these papers as 2-dimensional topo-
logical AQFTs. This is achieved by considering the orthogonal category Man2 of
2-dimensional (oriented or framed) manifolds, with orthogonality relation given by
disjointness, and restricting to topological theories by considering locally constant
prefactorization algebras, i.e., prefactorization algebras that assign to every isotopy
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equivalence f : M → N in Man2 an equivalence A( f ) : A(M) → A(N ) in the
2-category PrK.

4 Inclusion-truncation biadjunction

In this section, we explore the relationship between ordinary AQFTs and our concept
of 2AQFTs from Definition 3.3. We shall show that every A ∈ 2AQFT(C) has an
underlying ordinary AQFT π(A) ∈ AQFT(C), which we call the truncation of A.
Our truncation construction is given by a 2-functor π : 2AQFT(C) → AQFT(C). We
shall also define, for every A ∈ AQFT(C), a 2AQFT ι(A) ∈ 2AQFT(C) that assigns
to each object c ∈ C the locally presentable K-linear category ι(A)(c) = ModA(c)
of right A(c)-modules. This construction is given by an inclusion pseudo-functor
ι : AQFT(C) → 2AQFT(C). Inclusion and truncation are compatible with each
other in the sense that they determine a biadjunction ι � π , see, e.g., [44,45] and
also [38] for the relevant bicategorical background. We prove that this biadjunction
exhibitsAQFT(C) as a coreflective full 2-subcategory of 2AQFT(C). The conceptual
meaning and relevance of this result is as follows: On the one hand, ordinary AQFTs
can be studied equally well inside the 2-category of 2AQFTs by applying the fully
faithful inclusion pseudo-functor ι : AQFT(C) → 2AQFT(C). There is no loss of
information in doing so, because the unit η : id ⇒ π ι of the biadjunction is a natural
isomorphism and hence one can recover every A ∈ AQFT(C) from its corresponding
2AQFT ι(A) by applying the truncation 2-functor. On the other hand, the 2-category
2AQFT(C) has in general also objects that do not lie in the essential image of the
inclusion pseudo-functor ι. These are the genuine 2AQFTs that are not fully determined
by their truncation to an ordinary AQFT. We refer to Sect. 5 for concrete examples.

4.1 Truncation

Given anyA ∈ 2AQFT(C), we define its truncation π(A) ∈ AQFT(C), which is an
ordinary AQFT, by providing the required data listed in Remark 2.7:

(1) For each c ∈ C, we set

π(A)(c) :=End(ac) :=A(c)(ac, ac) (4.1)

to be the endomorphism algebra of the pointing ac ∈ A(c). (Note that this is an
associative and unital K-algebra, because A(c) is a K-linear category.)

(2) For each non-empty tuple f = ( f1, . . . , fn) ∈ PC

(t
c
)
of mutually orthogo-

nal C-morphisms, the given functor A( f ) : ∏n
i=1A(ci ) → A(t) restricts to

endomorphism algebras asA( f ) : ∏n
i=1 End(aci ) → End

(
A( f )(ac1, . . . , acn )

)
.

BecauseA( f ) is K-linear in each variable, we obtain an AlgK-morphismA( f ) :
⊗n

i=1 End(aci ) → End
(
A( f )(ac1, . . . , acn )

)
from the tensor product algebra.

The coherence map in (3.7) that is associated with ( f , ∗c):=( f , (∗c1 , . . . , ∗cn ))
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provides an isomorphism A2
( f ,∗c) : A( f )(ac1, . . . , acn ) → at in the category

A(t), which we use to define the AlgK-morphism

π(A)( f ) :
n⊗

i=1

π(A)(ci ) −→ π(A)(t),

h1 ⊗ · · · ⊗ hn �−→ A2
( f ,∗c) ◦ A( f )(h1, . . . , hn) ◦ (A2

( f ,∗c))
−1,

(4.2)

where◦denotes composition inA(t).As noted inRemark2.7, theAlgK-morphism
π(A)(∗t ) : K → π(A)(t) associated with the empty tuple ∗t ∈ PC

(
t∅
)
is the unit

idat of π(A)(t).

Using the axioms of 2AQFTs from Remark 3.4, it is easy to check that π(A)

satisfies the axioms ofAlgK-valued prefactorization algebras fromRemark 2.7.Hence,
π(A) ∈ AQFT(C) is an AQFT by Theorem 2.9.

Let us consider now a 1-morphism ζ : A → B in 2AQFT(C). For each c ∈
C, the K-linear functor ζc : A(c) → B(c) restricts to endomorphism algebras as
ζc : End(ac) → End(ζc(ac)). The coherence map in (3.10) that is associated with ∗c
provides an isomorphism ζ∗c : bc → ζc(ac) in the category B(c), which we use to
define the AlgK-morphism

π(ζ )c : π(A)(c) −→ π(B)(c),

h �−→ (ζ∗c )−1 ◦ ζc(h) ◦ ζ∗c . (4.3)

Using the axioms of 1-morphisms of 2AQFTs from Remark 3.4, it is easy to check
that π(ζ ) : π(A) → π(B) is a morphism of AlgK-valued prefactorization algebras
in the sense of Remark 2.7, and hence by Theorem 2.9 a morphism of AQFTs.

Let � : ζ ⇒ κ be a 2-morphism between two 1-morphisms ζ, κ : A → B in
2AQFT(C). Using the axioms from Remark 3.4, we obtain a commutative diagram

bc

ζ∗c ∼=

= bc

∼= κ∗c

ζc(ac)
�c

κc(ac)

(4.4)

in the category B(c), where isomorphisms are indicated by ∼=. Hence, �c in this
diagram is an isomorphism too. From (4.4) and (4.3), we compute

π(κ)c(h) = (κ∗c )−1 ◦ κc(h) ◦ κ∗c = (ζ∗c )−1 ◦ (�c)
−1 ◦ κc(h) ◦ �c ◦ ζ∗c

= (ζ∗c )−1 ◦ ζc(h) ◦ ζ∗c = π(ζ )c(h), (4.5)

where in the third step we used that (3.11) is a natural transformation. Hence, π(κ) =
π(ζ ) : π(A) → π(B) define the same morphism in AQFT(C) and we can set
π(�):=Id : π(ζ ) ⇒ π(κ).
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Proposition 4.1 For every orthogonal category C, the construction above defines a
2-functor

π : 2AQFT(C) −→ AQFT(C), (4.6)

which we call the truncation 2-functor.

4.2 Inclusion

LetA ∈ AQFT(C) be an ordinaryAQFT, regarded as anAlgK-valued prefactorization
algebra via Theorem 2.9. We define its inclusion ι(A) ∈ 2AQFT(C) by providing the
data listed in Remark 3.4:

(1) For each c ∈ C, we set

ι(A)(c) :=ModA(c) (4.7)

to be the K-linear category of right A(c)-modules. This is a locally presentable
K-linear category, see, e.g., [11].

(2) For each non-empty tuple f = ( f1, . . . , fn) ∈ PC

(t
c
)
of mutually orthogonal

C-morphisms, the given AlgK-morphism A( f ) : ⊗n
i=1 A(ci ) → A(t) induces

a restriction functor A( f )∗ : ModA(t) → Mod⊗n
i=1 A(ci ), which admits a left

adjoint functor (called the induced module functor)

A( f )! = (−) ⊗⊗n
i=1 A(ci )

A(t) : Mod⊗n
i=1 A(ci ) −→ ModA(t). (4.8)

The latter functor is clearly K-linear and co-continuous. Observe further that the
functor ⊗n : ∏n

i=1 VecK → VecK , (V1, . . . Vn) �→ V1 ⊗ · · · ⊗ Vn taking n-ary
tensor products of vector spaces induces a functor

⊗n :
n∏

i=1

ModA(ci ) −→ Mod⊗n
i=1 A(ci ) (4.9)

that is K-linear and co-continuous in each variable. We define by composition

ι(A)( f ) :
n∏

i=1
ModA(ci )

⊗n

Mod⊗n
i=1 A(ci )

A( f )!
ModA(t) . (4.10)

For the empty tuple c = ∅, we set the pointing ι(A)(∗t ):=A(t) ∈ ModA(t) to be
the rank 1 free A(t)-module.
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(3) The coherence natural isomorphisms in (3.7) are given by pasting of

n∏

i=1

ki∏

j=1
ModA(bi j )

⊗
∑

ki

∏
i ⊗ki n∏

i=1
Mod⊗ki

j=1 A(bi j )

∏
i A(g

i
)!

⊗n

(�)

n∏

i=1
ModA(ai )

⊗n
(��)

Mod⊗n
i=1

⊗ki
j=1 A(bi j )

A( f g)!

(
⊗

i A(g
i
))!

Mod⊗n
i=1 A(ai )

A( f )!

(���)

ModA(t)

(4.11)

The natural isomorphisms (�) and (��) are canonically determined by the coher-
ence isomorphisms for tensor products. (Recall that the induced module functor
(4.8) is given by a relative tensor product.) The natural isomorphism (���) is
canonically determined by uniqueness (up to a unique natural isomorphism) of
left adjoint functors and the strict composition property (

⊗
i A(g

i
))∗ A( f )∗ =

(
A( f )

⊗
i A(g

i
)
)∗ = A( f g)∗ of the right adjoints, see also (2.9a).

(4) The coherence natural isomorphisms in (3.8) are canonically determined by
uniqueness of left adjoint functors and the strict identity property A(idt )∗ =
id∗

A(t) = idModA(t) of the right adjoints, see also (2.9b).
(5) The coherence natural isomorphisms in (3.9) are given by pasting of

n∏

i=1
ModA(cσ(i))

⊗n

flipσ
n∏

i=1
ModA(ci )

⊗n
(�)

Mod⊗n
i=1 A(cσ(i))

A( f σ)!

(τσ )! Mod⊗n
i=1 A(ci )

A( f )!

(��)

ModA(t)

(4.12)

The natural isomorphism (�) is canonically determined by the coherence iso-
morphisms for tensor products, and the natural isomorphism (��) is canonically
determined by uniqueness of left adjoint functors and the strict permutation prop-
erty (τσ )∗ A( f )∗ = (

A( f ) τσ

)∗ = A( f σ)∗ of the right adjoints, see also (2.9c).

Since the coherences in (3-5) are canonically given by coherence isomorphisms, one
confirms that ι(A) ∈ 2AQFT(C) satisfies the axioms of 2AQFTs from Remark 3.4.

Let us consider now a morphism ζ : A → B in AQFT(C). Then, the following
data define a 1-morphism ι(ζ ) : ι(A) → ι(B) in 2AQFT(C), see also Remark 3.4:
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(1) For each c ∈ C, we set

ι(ζ )c := (ζc)! : ModA(c) −→ ModB(c) (4.13)

to be the K-linear and co-continuous induced module functor along the given
AlgK-morphism ζc : A(c) → B(c).

(2) The coherence natural isomorphisms in (3.10) are given by pasting of

n∏

i=1
ModA(ci )

⊗n

∏
i (ζci )! n∏

i=1
ModB(ci )

(�)
⊗n

Mod⊗n
i=1 A(ci )

A( f )!

(
⊗

i ζci )! Mod⊗n
i=1 B(ci )

B( f )!
(��)

ModA(t)
(ζt )!

ModB(t)

(4.14)

where (�) is canonically determined by the coherence isomorphisms for tensor
products and (��) is canonically determined by uniqueness of left adjoint func-
tors and the strict naturality property (

⊗
i ζci )

∗ B( f )∗ = (
B( f )

⊗
i ζci

)∗ =
(
ζt A( f )

)∗ = A( f )∗ (ζt )
∗ of the right adjoints, see also (2.10).

Proposition 4.2 For every orthogonal category C, the construction above defines a
pseudo-functor

ι : AQFT(C) −→ 2AQFT(C), (4.15)

which we call the inclusion pseudo-functor.

4.3 Biadjunction

We now prove that the pseudo-functors in Propositions 4.1 and 4.2 determine a biad-
junction, with the inclusion ι : AQFT(C) → 2AQFT(C) as the left adjoint and the
truncation π : 2AQFT(C) → AQFT(C) as the right adjoint.

We describe first the unit η : id ⇒ π ι of this biadjunction, which is easier than
the counit ε : ι π ⇒ id because AQFT(C) is just a 1-category, hence η is a natural
transformation between ordinary functors. Let A ∈ AQFT(C) be an ordinary AQFT.
From the explicit descriptions of π and ι in Sect. 4.1 and 4.2, we observe that

(π ι(A))(c) = End(A(c)) = ModA(c)
(
A(c),A(c)

)
(4.16)

is the endomorphism algebra of the rank 1 free module A(c) ∈ ModA(c), for every
c ∈ C. We define the A-component ηA : A → π ι(A) of the unit η as the AQFT(C)-
morphism determined by the component AlgK-morphisms
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(ηA)c : A(c) −→ End(A(c)) , a �−→ μA(c)(a ⊗ −), (4.17)

for all c ∈ C, where explicitly μA(c)(a ⊗ −) : A(c) → A(c) , a′ �→ a a′ is the right
A(c)-module endomorphism given by left multiplication by a ∈ A(c). Naturality of
ηA in A ∈ AQFT(C) is obvious; hence, we have constructed the desired natural
transformation η : id ⇒ π ι. We further observe that η is a natural isomorphism
because each of its components (4.17) is an isomorphism, with inverse given by the
AlgK-morphism (ηA)−1

c : End(A(c)) → A(c) , h �→ h(1A(c)) that evaluates an
endomorphism h on the unit element 1A(c) ∈ A(c).

Using the natural transformation η : id ⇒ π ι, we can define, for every A ∈
AQFT(C) and B ∈ 2AQFT(C), a functor between Hom-categories

(̃−) : 2AQFT(C)
(
ι(A),B

) −→ AQFT(C)
(
A, π(B)

)
, (4.18)

where we note that the target is a discrete category, i.e., a category with only identity
morphisms. To a 1-morphism ζ : ι(A) → B in 2AQFT(C), this functor assigns the
AQFT(C)-morphism

ζ̃ : A
ηA

π ι(A)
π(ζ )

π(B) . (4.19)

Given any 2-morphism � : ζ ⇒ κ between 1-morphism ζ, κ : ι(A) → B in
2AQFT(C), we have already seen in Sect. 4.1 that π(ζ ) = π(κ), hence setting �̃ =
Id : ζ̃ ⇒ ζ̃ = κ̃ consistently defines the functor (4.18).

Theorem 4.3 LetC be any orthogonal category. Then, the functor (4.18) is an equiva-
lence of categories, for everyA ∈ AQFT(C) andB ∈ 2AQFT(C). As a consequence,
we obtain a biadjunction

ι : AQFT(C) 2AQFT(C) : π , (4.20)

whose left adjoint is the inclusion pseudo-functor fromProposition 4.2 andwhose right
adjoint is the truncation 2-functor from Proposition 4.1. Because the unit η : id ⇒ π ι

is a natural isomorphism, this biadjunction exhibits the categoryAQFT(C)of ordinary
AQFTs as a coreflective full 2-subcategory of the 2-category 2AQFT(C).

Proof Let us recall from [11] the following fact: For any associative and unital K-
algebra A ∈ AlgK, denote byBEnd(A) the fullK-linear subcategory ofModA ∈ PrK
on the object A ∈ ModA. (Note that BEnd(A) is just the endomorphism alge-
bra End(A) regarded as a K-linear category with only one object.) Then, for any
locally presentable K-linear category D ∈ PrK, the restriction along the inclusion
BEnd(A) ⊆ ModA of K-linear categories induces an equivalence (i.e., a fully faithful
and essentially surjective functor)

LinK,c
(
ModA,D

) � LinK
(
BEnd(A),D

)
(4.21)
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from the full subcategory of Fun(ModA,D) that consists of K-linear and co-
continuous functors to the full subcategory of Fun(BEnd(A),D) that consists of
K-linear functors. Using this result, we can check that the functor (4.18) is fully
faithful and essentially surjective as claimed.

Faithful: Let �,� : ζ ⇒ κ be 2-morphisms between the 1-morphisms ζ, κ : ι(A) →
B in2AQFT(C). (Note that �̃ = �̃ is automatic.) From (4.4)wededuce that, for every
c ∈ C, themorphisms�c = �c : ζc(A(c)) → κc(A(c)) inB(c) coincide. This means
that the two natural transformations �c,�c : ζc ⇒ κc between the co-continuous K-
linear functors ζc, κc : ModA(c) → B(c) have the same restriction along the inclusion
BEnd(A(c)) ⊆ ModA(c). Recalling that the restriction functor (4.21) is faithful, we
conclude that �c = �c : ζc ⇒ κc coincide as natural transformations, for all c ∈ C,
and hence that � = � : ζ ⇒ κ coincide as 2-morphisms in 2AQFT(C). This shows
that the functor (4.18) is faithful.

Full: Let ζ, κ : ι(A) → B be 1-morphisms in 2AQFT(C) such that ζ̃ = κ̃ : A →
π(B) inAQFT(C). (Recall thatAQFT(C) only has identity 2-morphisms.) For each
c ∈ C, consider the morphism κ∗c ◦ (ζ∗c )−1 : ζc(A(c)) → κc(A(c)) in B(c). Using
ζ̃ = κ̃ , one shows that this defines a natural transformation between the restrictions
along the inclusion functor BEnd(A(c)) ⊆ ModA(c) of the co-continuous K-linear
functors ζc, κc : ModA(c) → B(c). Recalling that the restriction functor (4.21) is
full, there exists a natural transformation �c : ζc ⇒ κc whose A(c)-component is
κ∗c ◦ (ζ∗c )−1. We still have to prove that the collection �c, for all c ∈ C, defines a
2-morphism � : ζ ⇒ κ between the 1-morphisms ζ, κ : ι(A) → B in 2AQFT(C).
This amounts to showing that the diagram

B( f )
∏

i ζci

ζ f

Id∗∏
i �ci

B( f )
∏

i κci

κ f

ζt ι(A)( f )
�t∗Id κt ι(A)( f )

(4.22)

of natural transformations commutes, for all f ∈ PC

(t
c
)
. Since this diagram lives in

the category PrK
( B(t)
ι(A)(c)

)
, i.e., all functors are K-linear and co-continuous in each

variable, we deduce from the equivalences in (3.4) and (4.21) that the diagram (4.22)
of natural transformations commutes if and only if the corresponding component on
the object

∏n
i=1 A(ci ) ∈ ∏n

i=1ModA(ci ) commutes. This can be checked directly by
using that ζ, κ : ι(A) → B are 1-morphisms in 2AQFT(C). (Here the axioms of
Definition A.4 enter explicitly.) This shows that the functor (4.18) is full.

Essentially surjective: Let ζ : A → π(B) be any AQFT(C)-morphism. We
denote its component AlgK-morphisms by ζc : A(c) → End(bc), for all c ∈ C.
Recalling that A(c) ∈ AlgK is naturally isomorphic via η (cf. (4.17)) to the endo-
morphism algebra End(A(c)) of the object A(c) ∈ ModA(c), we define a functor
ζ̂c : BEnd(A(c)) → B(c) that sends the only object A(c) ∈ BEnd(A(c))
to bc ∈ B(c) and each BEnd(A(c))-morphism h ∈ End(A(c)) to the B(c)-
morphism ζ̂c(h):=ζc((ηA)−1

c (h)). This functor is by construction K-linear, i.e.,
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ζ̂c ∈ LinK(BEnd(A(c)),B(c)). Since the functor (4.21) is essentially surjective,
there exists a K-linear and co-continuous functor κc ∈ LinK,c(ModA(c),B(c)) and
a natural isomorphism κ∗c from the functor ζ̂c to the restriction along the inclusion
BEnd(A(c)) ⊆ ModA(c) of the functor κc. Because A(c) ∈ BEnd(A(c)) is the only
object, the natural isomorphism κ∗c consists of a singleB(c)-isomorphism κ∗c : bc →
κc(A(c)), with naturality being encoded in the condition κc(h) ◦ κ∗c = κ∗c ◦ ζ̂c(h),
for all h ∈ End(A(c)). Note that we have just constructed part of the data defining a
1-morphism κ : ι(A) → B in 2AQFT(C) (cf. Remark 3.4). To complete the data, we
have to construct, for each f ∈ PC

(t
c
)
, a natural isomorphism κ f : B( f )

∏
i κci ⇒

κt ι(A)( f ) between functors from
∏n

i=1ModA(ci ) to B(t) that are K-linear and co-
continuous in each variable. Using again the equivalences in (3.4) and (4.21), this
problem is equivalent to constructing aB(t)-isomorphism, denotedwith a slight abuse

of notation also by κ f : B( f )
(∏

i κci
(∏

i A(ci )
)) → κt

(
ι(A)( f )

(∏
i A(ci )

))
, ful-

filling the naturality condition κt

(
ι(A)( f )(h)

)
◦ κ f = κ f ◦ B( f )

(∏
i κci (h)

)
, for

all h ∈ ∏n
i=1 End(A(ci )). We define the B(t)-isomorphism κ f according to

B( f )
(∏

i κci
( ∏

i A(ci )
)) κ f

κt

(
ι(A)( f )

( ∏
i A(ci )

))

∼= κt

(
ι(A)2

( f ,∗c)

)

B( f )
( ∏

i bci
)

B2
( f ,∗c)

∼=B( f )
(∏

i κ∗ci
)

bt κ∗t
κt (A(t))

(4.23)

and observe that the required naturality condition for κ f follows from naturality of κ∗c
and of ζ . This provides us with the desired natural isomorphism κ f : B( f )

∏
i κci ⇒

κt ι(A)( f ) andhence completes the data needed to define a 1-morphismκ : ι(A) → B

in 2AQFT(C). It remains to check that the relevant axioms hold (cf. Remark 3.4 and
Definition A.4). Using once again the equivalences in (3.4) and (4.21), confirming
these axioms can be reduced to checking that certain diagrams in B(t) commute.
This can be done directly by using that ι(A) andB are objects in 2AQFT(C). (Here,
the axioms of Definition A.2 enter explicitly.) Since by construction the AQFT(C)-
morphisms κ̃ = ζ : A → π(B) coincide, this shows that the functor (4.18) is
essentially surjective. ��
Remark 4.4 The counit ε : ι π ⇒ id of the inclusion-truncation biadjunction is deter-
mined implicitly by Theorem 4.3, see, e.g., [38, Definition 2.5 and Remark 2.6] for
further details onbiadjunctions. ItsB-component εB : ι π(B) → B is a 1-morphism
in 2AQFT(C)which maps under the equivalence of categories in (4.18) to the identity
ε̃B = idπ(B) : π(B) → π(B) inAQFT(C). Note that the latter property determines
the 1-morphism εB up to invertible 2-morphisms in 2AQFT(C).

The counit allows us to detect whether an object B ∈ 2AQFT(C) lies in the
essential image of the inclusion pseudo-functor ι : AQFT(C) → 2AQFT(C).
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Definition 4.5 We say that B ∈ 2AQFT(C) is truncated if the corresponding com-
ponent εB : ι π(B) → B of the counit is an equivalence in 2AQFT(C).

Thismeans that a truncated 2AQFTB is fully determined by its truncationπ(B) ∈
AQFT(C), which is an ordinary AQFT, as it can be reconstructed (up to equivalence)
by applying the inclusion pseudo-functor ι. Our goal in Sect. 5 is to construct examples
of 2AQFTs that are not truncated in the above sense.

5 Gauging construction and orbifold 2AQFTs

We present a construction of 2AQFTs from the data of an ordinary AQFT A ∈
AQFT(C) that is endowed with an action of a finite group G. (A generalization to
infinite groups or also algebraic groups is possible; however, we prefer to restrict our-
selves to finite groups for which we can prove the main Theorem 5.11 of this section,
see also the related Theorem 5.9.) This construction can be interpreted physically as
a local gauging of A with respect to G and the resulting 2AQFT as the corresponding
categorified orbifold theory, see Proposition 5.4 and Remark 5.6. Let us start with
introducing some relevant terminology.

Definition 5.1 LetC be an orthogonal category and G a finite group. A G-equivariant
AQFT on C is a pair (A, ρ) consisting of an object A ∈ AQFT(C) and a repre-
sentation ρ : G → Aut(A) of G as natural automorphisms of A. A morphism
ζ : (A, ρ) → (B, σ ) ofG-equivariant AQFTs is anAQFT(C)-morphism ζ : A → B
that commutes with the G-actions, i.e., ζ ρ(g) = σ(g) ζ , for all g ∈ G. We denote by
G-AQFT(C) the category of G-equivariant AQFTs on C.

Remark 5.2 Our choice of terminology in Definition 5.1 is motivated by the following
equivalent perspective on G-equivariant AQFTs. Let us denote by RepK(G) the cate-
gory ofK-linear representations ofG. Recall that this is a (closed) symmetricmonoidal
category with monoidal product given by the tensor product V ⊗W of representations,
monoidal unit given by the trivial representation K and symmetric braiding given by
the flip map. Hence, we can introduce the category G-AlgK:=AlgAs(RepK(G)) of
associative and unital algebras inRepK(G), which are also called G-equivariant asso-
ciative and unital K-algebras. (Note that for the trivial group G = {e}, this is just
the category AlgK that we considered in Sect. 2.) It is then easy to check that a G-
equivariant AQFT (A, ρ), as introduced in Definition 5.1, is the same data as a functor
C → G-AlgK to the category of G-equivariant associative and unital K-algebras that
satisfies the ⊥-commutativity property from Definition 2.4. From this perspective,
morphisms of G-equivariant AQFTs are just natural transformations of functors from
C to G-AlgK.

Given any G-equivariant AQFT (A, ρ) ∈ G-AQFT(C), one can construct its
associated orbifold theory AG

0 ∈ AQFT(C) by taking the invariants of the action
ρ : G → Aut(A), see, e.g., [41,48]. We have added a subscript 0 to emphasize that, as
we shall show in Proposition 5.4, the traditional orbifold theory AG

0
∼= π(AG) is only

the truncation of an in general richer categorified orbifold theory AG ∈ 2AQFT(C).
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(We shall illustrate later in Example 6.4 that these higher categorical structures are
particularly important for local-to-global constructions.) The latter will be described
by a gauging construction that we develop in this section. We also refer to Remark 5.6
for a physical interpretation of our gauging construction and the resulting categorified
orbifold theory.

As a preparation, let us briefly recall some standard facts and constructions from
the theory of equivariant algebras and modules. As already mentioned in Remark 5.2,
the representation category RepK(G) of a finite group G is a (closed) symmetric
monoidal category; hence, we can introduce the category G-AlgK of G-equivariant
associative and unitalK-algebras. Analogously to the non-equivariant caseAlgK from
Sect. 2, this category is symmetric monoidal with monoidal product the tensor product
algebra A⊗ B (endowed with the tensor product G-action), monoidal unit the algebra
K (endowed with the trivial G-action) and symmetric braiding given by the flip map.
For every object A ∈ G-AlgK, one can introduce the locally presentable K-linear
category G-ModA:=ModA(RepK(G)) of G-equivariant right A-modules. An object
in this category is an object V ∈ RepK(G) together with a RepK(G)-morphism
V ⊗ A → V that satisfies the usual axioms of a right A-action. Morphisms are
RepK(G)-morphism that preserve the right A-actions. Similarly to the non-equivariant
case, given any morphism κ : A → B in G-AlgK, one can define a K-linear induced
module functor κ! = (−) ⊗A B : G-ModA → G-ModB . This functor has a right
adjoint given by the restriction functor κ∗ : G-ModB → G-ModA. As a consequence,
κ! is a co-continuousK-linear functor between locally presentableK-linear categories,
i.e., a 1-morphism in the 2-category PrK.

Let now (A, ρ) ∈ G-AQFT(C) be any G-equivariant AQFT on C. We define its
gaugingAG ∈ 2AQFT(C) by a G-equivariant generalization of the inclusion pseudo-
functor ι from Sect. 4.2. Concretely, AG is described by the following data as listed
in Remark 3.4:

(1) For each c ∈ C, we set

AG(c) :=G-ModA(c) (5.1)

to be the locally presentable K-linear category of G-equivariant right modules
over the G-equivariant associative and unital K-algebra A(c) ∈ G-AlgK.

(2) For each non-empty tuple f = ( f1, . . . , fn) ∈ PC

(t
c
)
of mutually orthogonal

C-morphisms, we define the functor

AG( f ) :
n∏

i=1
G-ModA(ci )

⊗n

G-Mod⊗n
i=1 A(ci )

A( f )!
G-ModA(t) ,

(5.2)

where ⊗n : (V1, . . . , Vn) �→ V1 ⊗ · · · ⊗ Vn is the functor assigning the n-
ary tensor product of representations (equipped with the induced structure of
a G-equivariant module over the tensor product of algebras) and A( f )! is the
induced module functor for G-equivariant modules along the G-AlgK-morphism
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A( f ) : ⊗n
i=1 A(ci ) → A(t). Note that the functor (5.2) is K-linear and co-

continuous in each variable, i.e., it defines a 1-operation in PrK. For the empty
tuple c = ∅, we set the pointing to be AG(∗t ):=A(t) ∈ G-ModA(t).

(3-5) The coherence isomorphisms forAG are completely analogous to the ones for the
inclusion ι(A) ∈ 2AQFT(C) from Sect. 4.2.

Let us consider now a morphism ζ : (A, ρ) → (B, σ ) in G-AQFT(C). Then,
the following data defines a 1-morphism ζG : AG → BG in 2AQFT(C), see also
Remark 3.4:

(1) For each c ∈ C, we set

(ζG)c := (ζc)! : G-ModA(c) −→ G-ModB(c) (5.3)

to be the K-linear and co-continuous induced module functor for G-equivariant
modules along the G-AlgK-morphism ζc : A(c) → B(c).

(2) The coherence isomorphisms for ζG : AG → BG are completely analogous to
the ones for ι(ζ ) : ι(A) → ι(B) from Sect. 4.2.

Proposition 5.3 For every orthogonal categoryC and finite group G, the construction
above defines a pseudo-functor

(−)G : G-AQFT(C) −→ 2AQFT(C), (5.4)

which we call the gauging construction.

The following result relates our gauging construction to the traditional concept of
orbifold theories from [41,48].

Proposition 5.4 For every G-equivariant AQFT (A, ρ) ∈ G-AQFT(C), there exists
a natural isomorphism AG

0
∼= π(AG) in AQFT(C) between the traditional orbifold

theoryAG
0 (that assigns subalgebras of G-invariants) and the truncation (cf. Sect. 4.1)

of the gauging construction AG ∈ 2AQFT(C) from Proposition 5.3.

Proof From the description of the truncation 2-functor in Sect. 4.1, we obtain that
π(AG)(c) = End(A(c)) is the endomorphism algebra of the G-equivariant module
A(c) ∈ G-ModA(c), for each c ∈ C. Since morphisms in G-ModA(c) preserve by
definition the G-action, it follows that End(A(c)) is isomorphic to the subalgebra of
G-invariants in A(c), hence π(AG)(c) ∼= AG

0 (c) is isomorphic to the algebra that is
assigned by the traditional orbifold theory AG

0 . Using further the explicit description
of the factorization products of π(AG) from Sect. 4.1, one checks that this family of
AlgK-isomorphisms defines an AQFT(C)-isomorphism π(AG) ∼= AG

0 . Naturality of
this isomorphism in (A, ρ) ∈ G-AQFT(C) is obvious. ��

The previous proposition provides a justification for the following terminology.

Definition 5.5 We call the gauging construction AG ∈ 2AQFT(C) the categorified
orbifold theory associated with the G-equivariant AQFT (A, ρ) ∈ G-AQFT(C).
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Remark 5.6 In addition to our result in Proposition 5.4, there is further justification for
calling the 2AQFT AG a categorified orbifold theory. The presentation in this remark
is intentionally rather informal, which is convenient to convey our main message.

Let us recall that the field configurations of a classical σ -model are given by maps
φ : 
 → X from a world-sheet 
 to a target space X . When a finite group G
acts on the target space X , one can form the orbifold (i.e., quotient stack) X//G
and consider the corresponding orbifold σ -model whose field configurations are now
maps φ : 
 → X//G with values in a stack. As a consequence, the “space” of field
configurations is a stack too, namely the mapping stack

Fields(
) :=Map
(

, X//G

)
. (5.5)

In order to study local aspects of this field theory, let us introduce the orthogonal
categoryDisk(
), whose underlying categoryDisk(
) ⊆ Open(
) consists of open
subsets U ⊆ 
 that are diffeomorphic to a Cartesian space U ∼= R

m and whose
orthogonal category structure is the restriction to Disk(
) of the orthogonal category
structure from Example 2.2 onOpen(
). Considering such subsetsU ⊆ 
, the stack
of fields is equivalent to the stacky quotient

Fields(U ) � Map(U , X)//G (5.6)

of the ordinary mapping space Map(U , X) by the finite group G. If we ignore
for the moment the stacky quotient by G, we are in the familiar scenario where
the space of fields Map(U , X) is just an ordinary space and not a stack. For-
mal deformation quantization of such a field theory leads to an ordinary AQFT
A ∈ AQFT(Disk(
)), which in the case there are no anomalies will carry a G-
action, i.e., (A, ρ) ∈ G-AQFT(Disk(
)). By construction, A(U ) is a deformation
quantization of a suitable G-equivariant function algebra O(Map(U , X)).

Things get more interesting when we consider the stacky quotient by G in (5.6).
From the perspective of [10,39], which we recalled in Sect. 1, it is better to assign to
the stack Fields(U ) in (5.6) its category of quasi-coherent sheaves

QCoh
(
Fields(U )

) � QCoh
(
Map(U , X)//G

) � G-ModO(Map(U ,X)), (5.7)

which is the symmetric monoidal category of G-equivariant modules over the clas-
sical G-equivariant function algebraO(Map(U , X)). The G-equivariant quantization
A(U ) of O(Map(U , X)) from the previous paragraph then allows us to introduce the
pointed category AG(U ) = G-ModA(U ), which we interpret as a pointed category
quantizing the symmetric monoidal category QCoh(Fields(U )) (cf. Sect. 1) and rec-
ognize as our gauging construction. Hence, our gauging construction encodes local
aspects of orbifold σ -models. It is well known that orbifold theories exhibit rich global
phenomena, such as the so-called twisted sectors and anomalies, see, e.g., [32] for an
excellent review. Simple examples of some of these phenomena will be discussed later
in Sect. 6.

We still have to address the important question whether or not it is possible to
obtain genuine non-truncated AG ∈ 2AQFT(C) from our gauging construction. This
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will of course depend on details of the group G and its action ρ : G → Aut(A)

on A ∈ AQFT(C). For example, if G = {e} is the trivial group, then the gauging
construction from Proposition 5.3 coincides with the inclusion pseudo-functor ι from
Proposition 4.2, hence gauging the trivial group G = {e} always leads to truncated
2AQFTs in the sense of Definition 4.5. On the other hand, it is very easy to give simple
examples of gaugings that define non-truncated 2AQFTs.

Example 5.7 LetG be afinite group andconsider the trivialAQFTA = K ∈ AQFT(C)

that assigns A(c) = K ∈ AlgK to every c ∈ C. When endowed with the trivial G-
action ρ : G → Aut(K) , g �→ idK, this defines a G-equivariant AQFT (K, ρ) ∈
G-AQFT(C). Note that the corresponding traditional orbifold theory K

G
0 = K is

of course the trivial AQFT too. In contrast, the categorified orbifold theory K
G ∈

2AQFT(C) that is obtained from our gauging construction is much more interesting.
It assigns to every c ∈ C the representation category K

G(c) = G-ModK = RepK(G)

of the group G and its factorization products K
G( f ) = ⊗n : ∏n

i=1 RepK(G) →
RepK(G) are given by the n-ary tensor products of representations. The pointing
K

G(∗t ) = K ∈ RepK(G) is given by the trivial representation. By Proposition 5.4,
the truncation π(KG) ∼= K

G
0 = K of this 2AQFT is the trivial theory.

Our claim is that the categorified orbifold theory K
G ∈ 2AQFT(C) is not trun-

cated, whenever G �= {e} is non-trivial. To prove this claim, we consider as explained
in Remark 4.4 the corresponding component εKG : ι π(KG) → K

G of the counit
of the inclusion-truncation biadjunction. This is a 1-morphism in 2AQFT(C) whose
components (εKG )c : ι π(KG)(c) � VecK → K

G(c) = RepK(G) are given by co-
continuous K-linear functors from the category of vector spaces to the representation
category of G. Because 1-morphisms in 2AQFT(C) preserve the pointings (up to
coherence isomorphisms), we know that the 1-dimensional vector space K ∈ VecK
is mapped to a trivial representation (εKG )c(K) ∼= K ∈ RepK(G). Using further
that every vector space V ∼= ⊕

b∈B K ∈ VecK is isomorphic to a coproduct of the
1-dimensional vector spaceK (by choosing a basis B) and co-continuity of the functor
εKG , we observe that the essential image of (εKG )c : VecK → RepK(G) lies in the
full subcategory of trivial G-representations; hence, it cannot be an equivalence of
categories as every finite group G �= {e} admits non-trivial K-linear representations.
As a consequence, the component εKG : ι π(KG) → K

G of the counit is not an equiv-
alence in 2AQFT(C) and hence the categorified orbifold theory K

G ∈ 2AQFT(C) is
not truncated.

Quite remarkably, it is possible to characterize precisely those G-equivariant
AQFTs (A, ρ) ∈ G-AQFT(C) whose associated gauging construction AG ∈
2AQFT(C) is truncated.Our arguments belowmake use of some standard terminology
and results fromHopf–Galois theory, see, e.g., [19] and also the review article [40]. Let
H be a Hopf algebra over K. (In our applications below, H = O(G) = Map(G, K)

is the function Hopf algebra of a finite group G.) A right H -comodule algebra is an
algebra A ∈ AlgK endowed with a right H -coaction δ : A → A ⊗ H that is an
AlgK-morphism. We denote by B:=AcoH :={a ∈ A : δ(a) = a ⊗ 1H } ⊆ A the
subalgebra of H -coaction invariants.

123



Categorification of algebraic quantum field theories Page 27 of 49    35 

Definition 5.8 The algebra extension B = AcoH ⊆ A is called H -Hopf–Galois if the
canonical map

β : A ⊗B A −→ A ⊗ H , a ⊗B a′ �−→ (a ⊗ 1H ) δ(a′) (5.8)

is bijective.

Associated with any right H -comodule algebra A are two K-linear categories of
interest: First, we have the categoryModH

A of right (H , A)-Hopf modules. An object
in this category is a right A-module V ∈ ModA that is endowed with a compatible
right H -comodule structure δV : V → V ⊗ H , i.e., δV (v a) = δV (v) δ(a), for all
v ∈ V and a ∈ A. The morphisms in ModH

A are K-linear maps that preserve both
the A-actions and the H -coactions. Second, we have the K-linear category ModB of
right modules over the subalgebra B = AcoH ⊆ A of H -coaction invariants. These
two categories are related by a K-linear adjunction

� : ModB ModH
A : � , (5.9)

whose left adjoint � = (−) ⊗B A is the induced module functor, where W ⊗B A
is endowed with the right H -coaction id ⊗B δ, for all W ∈ ModB , and whose right
adjoint � = (−)coH is the functor taking H -coaction invariants V coH :={v ∈ V :
δV (v) = v ⊗ 1H }, for all V ∈ ModH

A . We shall need the following result (cf. [40,
Theorem 5.6]), which is originally due to Doi and Takeuchi [19].

Theorem 5.9 Let H be finite dimensional. Then, B = AcoH ⊆ A is H-Hopf–Galois if
and only if the counit ε : �� ⇒ id of the adjunction (5.9) is a natural isomorphism.

In the case of interest to us, the Hopf algebra H = O(G) = Map(G, K) is given by
the functionHopf algebra of a finite groupG. In particular, H is finite dimensional.One
easily observes that a rightO(G)-coaction δV : V → V ⊗O(G) is the same datum as
a group action ρ : G → Aut(V ) by the relationship ρ(g)(v) = v(0) 〈v(1), g〉, where
we used Sweedler notation δV (v) = v(0) ⊗v(1) and the duality pairing 〈·, ·〉 : O(G)⊗
K[G] → K. In particular, rightO(G)-comodule algebras are precisely G-equivariant
algebras A ∈ G-AlgK and the K-linear category ModO(G)

A of right (O(G), A)-Hopf
modules is the locally presentable K-linear category G-ModA of G-equivariant right
A-modules. Moreover, the subalgebra B = AcoH = AG

0 ⊆ A of O(G)-coaction
invariants is precisely the subalgebra of G-invariants.

Corollary 5.10 Let G be a finite group and H = O(G) the function Hopf algebra of
G. In this case, the adjunction in (5.9) reads as

� : ModB G-ModA : � . (5.10)

This is an (adjoint) equivalence in the 2-category PrK of locally presentable K-linear
categories if and only if B = AcoH = AG

0 ⊆ A is O(G)-Hopf–Galois.
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Proof The left adjoint functor � = (−) ⊗B A is clearly K-linear and co-continuous,
i.e., a 1-morphism in PrK. The right adjoint functor � = (−)coH = (−)G0 assigns the
G-invariants (given by a categorical limit), which for actions of finite groups G and
char(K) = 0 coincides with theG-coinvariants (i.e., a categorical colimit). Hence, the
right adjoint � is a K-linear and co-continuous functor too and the adjunction (5.10)
is in the 2-category PrK.

The unit η : id ⇒ � � of the adjunction (5.10) is given by the components
ηW : W → (W⊗B A)G0 , w �→ w⊗B1A, for allW ∈ ModB . Using again that forming
G-invariants coincides with forming G-coinvariants, we find that η : id ⇒ � � is a
natural isomorphism. Our claim then follows from Theorem 5.9. ��

Theorem 5.11 Let G be a finite group and (A, ρ) ∈ G-AQFT(C) a G-equivariant
AQFT. Then, the categorified orbifold theory AG ∈ 2AQFT(C) is truncated if and
only if the algebra extension AG

0 (c) ⊆ A(c) is O(G)-Hopf–Galois, for all c ∈ C.

Proof Recalling Definition 4.5, the 2AQFT AG ∈ 2AQFT(C) is by definition trun-
cated if the corresponding component εAG : ι π(AG) → AG of the counit of the
inclusion-truncation biadjunction from Theorem 4.3 is an equivalence in 2AQFT(C).
The component εAG of the counit is determined uniquely (up to invertible 2-morphisms
in 2AQFT(C)) by the condition ε̃AG = idπ(AG ) : π(AG) → π(AG) on its adjunct
under (4.18). Using the explicit description of the inclusion and truncation pseudo-
functors from Sect. 4 and the one of the gauging construction from the present
section, one observes that the induced module functors �c = (−) ⊗AG

0 (c) A(c) :
ι π(AG)(c) ∼= ModAG

0 (c) → AG(c) = G-ModA(c) (together with the obvious coher-

ence isomorphisms) define a 1-morphism � : ι π(AG) → AG in 2AQFT(C) that
satisfies �̃ = idπ(AG ) : π(AG) → π(AG). Hence, � ∼= εAG and we can equivalently
investigate if � is an equivalence in 2AQFT(C).

By a straightforward but slightly lengthy calculation, one proves that a 1-morphism
in 2AQFT(C) is an equivalence if and only if all its components are equivalences in the
2-category PrK. (In this proof, one uses that every equivalence in any 2-category (here
PrK) can be upgraded to an adjoint equivalence in order to define the quasi-inverse
1-morphism in 2AQFT(C).) Thus, to prove that AG ∈ 2AQFT(C) is truncated we
can equivalently study the components �c = (−) ⊗AG

0 (c) A(c) : ModAG
0 (c) →

G-ModA(c), for all c ∈ C. By Corollary 5.10, these components are equivalences in
PrK if and only if the algebra extension AG

0 (c) ⊆ A(c) is O(G)-Hopf–Galois, for all
c ∈ C. This completes the proof. ��

Remark 5.12 We would like to emphasize that our result in Theorem 5.11 matches
perfectly our physical interpretation of the gauging construction AG ∈ 2AQFT(C) in
terms of orbifold σ -models fromRemark 5.6. The H = O(G)-Hopf–Galois condition
from Definition 5.8 should be interpreted as a non-commutative algebraic generaliza-
tion of a free G-action on a space, see, e.g., [40, Examples 2.11 and 2.12]. Because
the quotient stack X//G � X/G corresponding to a free G-action is equivalent to
the ordinary quotient space, the resulting “orbifold” σ -model in this case is just an
ordinary σ -model with target space X/G. In particular, for free G-actions one does
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not expect higher categorical features in the corresponding “orbifold” σ -model. This
is precisely what we have proven in Theorem 5.11 for orbifold quantum field theories.

We conclude this section by presenting more examples of non-truncated and also
truncated categorified orbifold theories AG ∈ 2AQFT(C).

Example 5.13 Let us denote byDisk(S1) ⊂ Open(S1) the full subcategory of all non-
empty open intervals I ⊂ S

1 in the circle S
1. Restricting the orthogonality relation⊥S1

from Example 2.2, we obtain a full orthogonal subcategory Disk(S1) ⊂ Open(S1).
Objects A ∈ AQFT(Disk(S1)) are interpreted as chiral conformal AQFTs [33]. In
this example we set K = C to be the field of complex numbers. Let us consider
the following specific theory, which is called the chiral free boson. To each interval
I ⊂ S

1, we assign the canonical commutation relations (CCR) algebra

A(I ) := T⊗
C
C∞
c (I )

/〈
ϕ1 ⊗ ϕ2 − ϕ2 ⊗ ϕ1 − i�

∫

I
ϕ1 dϕ2 1

〉
∈ AlgC, (5.11)

where � ∈ R is the deformation parameter, i.e., Planck’s constant (treated here as
a number and not as a formal parameter), C∞

c (I ) denotes the vector space of com-
pactly supported real-valued functions on I ⊂ S

1 and T⊗
C
C∞
c (I ):= ⊕∞

n=0(C
∞
c (I )⊗

R

C)⊗n ∈ AlgC is the complexified free algebra. To each interval inclusion ιJI : I → J ,
we assign the AlgK-morphism A(ιJI ) : A(I ) → A(J ) that is defined on the genera-
tors by pushforward (i.e., extension by zero) of compactly supported functions. This
defines an AQFT A ∈ AQFT(Disk(S1)) in the sense of Definition 2.4.

Let us consider the representation ρ : G = Z2 → Aut(A) of the cyclic group
of order 2 that is defined on the generators of A(I ) by multiplication with ±1, i.e.,
ρ(±1)(ϕ) = ±ϕ, for all ϕ ∈ A(I ). This defines a Z2-equivariant AQFT (A, ρ) and
we can form the corresponding categorified orbifold theoryAZ2 ∈ 2AQFT(Disk(S1))

from Definition 5.5. To find out whether this theory is truncated or not, we use our
results from Theorem 5.11. Let us consider an arbitrary interval I ⊂ S

1 and set
A:=A(I ). Observe that the subalgebra B:=AZ2

0 ⊂ A of Z2-invariants is the even part
of the algebra (5.11). Regarding A = A(I ) as a B-bimodule, we obtain a direct sum
decomposition A = B ⊕ V , where V is the odd part of (5.11). Hence, the source of
the canonical map (5.8) is isomorphic to A ⊗B A ∼= B ⊕ (V ⊗B V ) ⊕ V ⊕ V . Using
further that A ⊗ O(G) ∼= ∏

g∈G A, the canonical map (5.8) explicitly reads as

β : B ⊕ (V ⊗B V ) ⊕ V ⊕ V −→
∏

g∈Z2

A,

b + v ⊗B v′ + v1 + v2 �−→
(
b + v v′ + v1 + v2
b − v v′ + v1 − v2

)
. (5.12)

Note that the canonical map β is bijective if and only if the map μ : V ⊗B V →
B , v ⊗B v′ �→ v v′ that is induced by the multiplication μ : A ⊗ A → A on (5.11)
is bijective.

Let us consider first the case where the deformation parameter � = 0 is zero,
which describes a classical (i.e., not quantized) field theory. In this case, (5.11) is a
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complexified symmetric algebra over C∞
c (I ) and the map μ : V ⊗B V → B is not

surjective because its image is at least quadratic in the generators. This implies that
the canonical map β in (5.12) is not bijective; hence, by Theorem 5.11 the categorified
orbifold theory AZ2 ∈ 2AQFT(Disk(S1)) for � = 0 is non-truncated.

The situation changes drastically in the quantum case where 0 �= � ∈ R is a non-
formal parameter. From the canonical commutation relations in (5.11), we deduce
that one can always find two generators ϕ1, ϕ2 ∈ C∞

c (I ) ⊆ V ⊆ A that satisfy
[ϕ1, ϕ2] = i� 1. Dividing by �, which is possible because we assumed thatR � � �= 0,
we can now prove that themapμ : V ⊗B V → B is bijective. For surjectivity, consider
an arbitrary b ∈ B and observe that

μ
(
b

1

i�
(ϕ1 ⊗B ϕ2 − ϕ2 ⊗B ϕ1)

)
= b

1

i�
[ϕ1, ϕ2] = b. (5.13)

For injectivity, consider
∑

j v j ⊗B v′
j ∈ V ⊗B V such that

∑
j v j v

′
j = 0 and observe

that

∑

j

v j ⊗B v′
j = 1

i�

∑

j

[ϕ1, ϕ2] v j ⊗B v′
j

= 1

i�
ϕ1 ⊗B ϕ2

∑

j

v j v
′
j − 1

i�
ϕ2 ⊗B ϕ1

∑

j

v j v
′
j = 0, (5.14)

where we also used that ϕ1 v j ∈ B and ϕ2 v j ∈ B. Theorem 5.11 then implies that

the categorified orbifold theory AZ2 ∈ 2AQFT(Disk(S1)) for � �= 0 is truncated.
Summing up, we have seen an example of a non-truncated classical orbifold field

theory that is quantized to a truncated orbifold quantum field theory. We would like
to emphasize that this result crucially relies on inverting the deformation parame-
ter 0 �= � ∈ R and hence it does not arise in formal deformation quantization.
(In fact, treating � in (5.11) as a formal parameter, the categorified orbifold theory
AZ2 ∈ 2AQFT(Disk(S1)) is non-truncated as in the classical case.) A similar inter-
play between quantization and orbifold singularities was observed before within a
different framework [13,14].

Remark 5.14 We would like to emphasize that the results of Example 5.13 hold true
in much greater generality. Let C be any orthogonal category and A ∈ AQFT(C)

any AQFT that assigns, to every c ∈ C, a CCR-algebra A(c) = CCR(L(c), σc) of a
symplectic vector space (L(c), σc), i.e., σc is non-degenerate. Using similar arguments
as in Example 5.13, one shows that the categorified orbifold theory corresponding to
the Z2-action ρ(±1) : (L(c), σc) → (L(c), σc) , ϕ �→ ±ϕ is truncated, provided that
R � � �= 0. The same holds true for AQFTs assigning canonical anticommutation
relation (CAR) algebras of non-degenerate inner product spaces.

6 Fredenhagen’s universal category

The goal of this section is to present a categorified version of Fredenhagen’s universal
algebra, which plays the role of a local-to-global construction in AQFT that is analo-
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gous to factorization homology in topological QFTs [2,7,8]. Let us briefly recall the
original 1-categorical construction for ordinary AQFTs from [23–25], see also [5,36]
for more details. Given a full orthogonal subcategory embedding J : C → D and any
ordinary AQFT A ∈ AQFT(C) on C, operadic left Kan extension along the induced
operadmorphism J : PC → PD determines a canonical extension J!(A) ∈ AQFT(D)

ofA to the larger orthogonal categoryD. The algebra J!(A)(d) ∈ AlgK that is assigned
by the extendedAQFT J!(A) to an object d ∈ D is usually referred to as Fredenhagen’s
universal algebra. This extension prescription is canonical in the sense that it is part
of an adjunction

J! : AQFT(C) AQFT(D) : J ∗ , (6.1)

where the right adjoint functor J ∗ is given by restriction of AQFTs along J . The
following two examples of full orthogonal subcategory embeddings J : C → D are
typically considered in applications to physics.

Example 6.1 Recall from Example 2.2 the orthogonal category Open(M) =
(Open(M),⊥M ) of non-empty open subsets of a manifold M . Consider the full sub-
category Disk(M) ⊆ Open(M) of all disks in M , i.e., all open subsets U ⊆ M such
that U ∼= R

m is diffeomorphic to a Cartesian space, and endow it with the restricted
orthogonality relation. This defines an orthogonal category Disk(M) together with a
full orthogonal subcategory embedding J : Disk(M) → Open(M). For the case of
the circle M = S

1, the corresponding extension functor J! : AQFT(Disk(S1)) →
AQFT(Open(S1)) is studied in the context of chiral conformal AQFT [23–25].

Example 6.2 Recall from Example 2.3 the orthogonal category Loc = (Loc,⊥Loc)

of oriented and time-oriented globally hyperbolic Lorentzian manifolds. Consider the
full subcategory Loc� ⊆ Loc of all objects M ∈ Loc whose underlying manifold
is diffeomorphic to a Cartesian space and endow it with the restricted orthogonality
relation. This defines an orthogonal category Loc� together with a full orthogonal
subcategory embedding J : Loc� → Loc. The corresponding extension functor
J! : AQFT(Loc�) → AQFT(Loc) is studied in the context of locally covariant
AQFT [5,36].

We will study a generalization of this extension construction to 2AQFTs, which is
based on the biadjunction

J! : 2AQFT(C) 2AQFT(D) : J ∗ , (6.2)

where the right adjoint 2-functor J ∗ is given by restriction of 2AQFTs along J . Hence,
the left adjoint pseudo-functor J! is a 2-categorical generalization of operadic left Kan
extension. (With a mild abuse of notation, we denote both the 1-categorical adjunction
(6.1) and the 2-categorical adjunction (6.2) by the same symbols. Below it will be
clear from the context, and from our different notations for ordinary AQFTs and
2AQFTs, whether J! � J ∗ refers to the 1- or 2-categorical adjunction.) Given any
A ∈ 2AQFT(C) on C, this determines a canonical extension J!(A) ∈ 2AQFT(D) to
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the larger orthogonal category D. Following AQFT terminology, we shall refer to the
locally presentableK-linear category J!(A)(d) ∈ PrK that is assigned by the extended
2AQFT J!(A) to an object d ∈ D as Fredenhagen’s universal category. In the context
of Example 6.1, we will provide examples of such categories for 2AQFTs on the circle
M = S

1.

6.1 Preliminaries

Our construction of the extension pseudo-functor J! : 2AQFT(C) → 2AQFT(D)

associated with a full orthogonal subcategory embedding J : C → D uses the
monoidal envelope P⊗

C
of the prefactorization operad PC from Definition 2.5. We

refer the reader to [21, Theorem 4.2] for details on monoidal envelopes for colored
operads. In our case of interest, P⊗

C
is given by the following symmetric monoidal

category:

Objects: (Possibly empty) tuples c = (c1, . . . , cn) ∈ Cn of objects in PC.
Morphisms: Pairs (α, f ) : c = (c1, . . . , cn) → t = (t1, . . . , tm) with α :

{1, . . . , n} → {1, . . . ,m} a map of sets and f = ( f
1
, . . . , f

m
) a tuple of opera-

tions f
j
= ( f j1, . . . , f jk j ) ∈ PC

( t j
cα, j

)
, for j = 1, . . . ,m, where cα, j denotes the

(possibly empty) sub-tuple of c containing only the ci ’s satisfying α(i) = j and
k j denotes the length of cα, j .

Identities and composition: The identity morphism for c = (c1, . . . , cn) ∈ P⊗
C

is
given by idc:=(id, (idc1 , . . . , idcn )) : c → c. The composition of two morphisms
(α, f ) : b → a and (β, g) : a → t in P⊗

C
is given by (β, g) ◦ (α, f ):=(βα, h) :

b → t , where βα is the usual composition of maps of sets and h:=(h1, . . . , h�)

is the tuple of operations hk :=g
k
f
β,k

∈ PC

( tk
bβα,k

)
determined by operadic com-

position, for k = 1, . . . , �, where f
β,k

is the sub-tuple of f = ( f
1
, . . . , f

m
)

containing only the f
j
’s satisfying β( j) = k.

Symmetric monoidal structure: The tensor product c ⊗ c′:=(c, c′) is defined by
concatenation of tuples, the monoidal unit is the empty tuple ∅ and the symmetric
braiding is given by the P⊗

C
-morphisms (αn,n′ , (idc1, . . . , idcn , idc′

1
, . . . , idc′

n′ )) :
c ⊗ c′ → c′ ⊗ c, where αn,n′ : {1, . . . , n + n′} → {1, . . . , n + n′} is defined by
αn,n′(i) = n′ + i , for i = 1, . . . , n, and αn,n′(n + i) = i , for i = 1, . . . , n′.
Applying the same construction to PD defines a symmetric monoidal category

P⊗
D
. Furthermore, the orthogonal functor J : C → D induces an operad morphism

J : PC → PD and hence a symmetric monoidal functor J⊗ : P⊗
C

→ P⊗
D

between
the monoidal envelopes. The latter reads explicitly as follows:

On objects: For c = (c1, . . . , cn) ∈ P⊗
C
, we set J⊗(c):=(J (c1), . . . , J (cn)) ∈ P⊗

D
.

On morphisms: For (α, f ) : c → t in P⊗
C
, we set J⊗(α, f ):=(α, J ( f )) : J⊗(c) →

J⊗(t) inP⊗
D
,where J ( f ):=((J ( f11), . . . , J ( f1k1)), . . . , (J ( fm1), . . . , J ( fmkm ))).

Symmetricmonoidal structure:Since J⊗(c)⊗J⊗(c′) = J⊗(c⊗c′) and∅ = J⊗(∅),
it is straightforward to equip J⊗ with a symmetric monoidal structure.
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Recall fromDefinition 3.3 that 2AQFTs onC are by definitionPC-algebras. Hence,
by the universal property of monoidal envelopes, we can associate with every A ∈
2AQFT(C) a symmetric monoidal pseudo-functor

A : P⊗
C

−→ PrK (6.3a)

from the monoidal envelope of PC. This pseudo-functor acts on objects c =
(c1, . . . , cn) ∈ P⊗

C
as the n-ary Kelly–Deligne tensor product

A(c) :=
n

�
i=1

A(ci ) (6.3b)

of the locally presentable K-linear categories A(ci ) ∈ PrK, cf. Remark 3.2. (By
convention, we set A(∅):=VecK to be the monoidal unit of PrK.) On morphisms
(α, f ) : c → t in P⊗

C
, this pseudo-functor acts as

A(α, f ) : A(c) =
n

�
i=1

A(ci )
�α

m

�
j=1

A(cα, j )
� j A( f

j
) m

�
j=1

A(t j ) = A(t) ,

(6.3c)

where �α is the equivalence in the symmetric monoidal 2-category PrK that is asso-
ciated with the displayed permutation determined by α. The coherence data for the
symmetric monoidal pseudo-functor A : P⊗

C
→ PrK are canonically given by the

coherence data forA ∈ 2AQFT(C) and the symmetric monoidal structure on PrK.

6.2 Extension

The extension pseudo-functor J! : 2AQFT(C) −→ 2AQFT(D) in the biadjunction
(6.2) is obtained canonically via operadic left pseudo-Kan extension along J : PC →
PD. Passing from colored operads to their monoidal envelopes, J! can be obtained via
(categorical) left pseudo-Kan extension along J⊗ : P⊗

C
→ P⊗

D
, cf. [30]. Furthermore,

the latter left pseudo-Kan extension can be computed in terms of suitable bicolimits
[35,38]. Using this approach, we can now describe the extension J!(A) ∈ 2AQFT(D)

of a 2AQFT A ∈ 2AQFT(C). For each d ∈ D, Fredenhagen’s universal category is
the locally presentable K-linear category

J!(A)(d) := bicolim

(
J⊗/(d)

forget P⊗
C

A
PrK

)
(6.4)

obtained as a bicolimit inPrK, where J⊗/(d) denotes the slice category for the functor
J⊗ : P⊗

C
→ P⊗

D
over the object (d) ∈ P⊗

D
. Recall also (6.3) for the construction

of the pseudo-functor A : P⊗
C

→ PrK. (To avoid confusion, let us stress that the
symbol (d) stands for the tuple of length one that is defined by the object d ∈ D, i.e.,
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(d) ∈ P⊗
D
is an object in the monoidal envelope.) This bicolimit always exists because

PrK is bicategorically cocomplete, see, e.g., [11, Lemma 2.5]. For each tuple g =
(g1, . . . , gn) ∈ PD

(s
d
)
of mutually orthogonal D-morphisms, we set the factorization

product

J!(A)(g) :
n∏

i=1

J!(A)(di ) −→ J!(A)(s) (6.5a)

to be the functor that is defined below, which is co-continuous and K-linear in each
entry: Consider the diagram

n∏

i=1
J⊗/(di )

∏
i forget

g∗

n∏

i=1
P⊗
C

∏
i A

⊗n

n∏

i=1
PrK

�n
(�)

J⊗/(s)
forget

P⊗
C A

PrK

(6.5b)

where g∗ : ∏n
i=1 J

⊗/(di ) → J⊗/(s) is the functor induced by post-composition
with g in the colored operad PD. By direct inspection, the left square commutes.
In the right square, instead, the clockwise and counter-clockwise paths give func-
tors that are related by the natural isomorphism (�) determined by the symmetric
monoidal structure on the pseudo-functor A. Passing to bicolimits and recalling that
the Kelly–Deligne tensor product� commutes with bicolim (in each entry) provides a
co-continuous K-linear functor �n

i=1 J!(A)(di ) → J!(A)(s). Pre-composition with
the canonical functor

∏n
i=1 J!(A)(di ) → �n

i=1 J!(A)(di ), which is co-continuous
and K-linear in each entry, completes the construction of (6.5a). For the empty tuple
d = ∅, the pointing J!(A)(∗s) ∈ J!(A)(s) of Fredenhagen’s universal category
J!(A)(s) is obtained in the same fashion from (6.5b). (Notice that empty products are
initial categories, while ⊗0 and �0 assign the respective monoidal units.) The coher-
ence data, cf. Remark 3.4, for the extended 2AQFT J!(A) ∈ 2AQFT(D) are obtained
canonically from the construction above and the symmetric monoidal pseudo-functor
A : P⊗

C
→ PrK.

For an arbitrary d ∈ D, we shall now describe Fredenhagen’s universal category
J!(A)(d) in fully explicit terms, using the prescription in [11, Lemma 2.5] to compute
the relevant bicolimit (6.4). This is a two-step procedure:

1. Every co-continuous K-linear functor between two locally presentable K-linear
categories admits a right adjoint by the special adjoint functor theorem, cf. [1,11].
Hence, from the pseudo-functorA : P⊗

C
→ PrK, we obtain a new pseudo-functor

AR : (P⊗
C

)op → Cat that acts on objects asA, i.e.,AR(c):=A(c) for all c ∈ P⊗
C
,

and that assigns to a morphism (α, f ) : c → t in P⊗
C

the right adjoint of the co-

continuous K-linear functor assigned byA, i.e.,A(α, f ) � AR(α, f ) : AR(t) →
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AR(c). (Note that AR is just a pseudo-functor to Cat and not necessarily to PrK
because the right adjoint functors AR(α, f ) may fail to be co-continuous.)

2. The category underlying the bicolimit (6.4) of A ◦ forget : J⊗/(d) → PrK can
be computed as a bilimit of the pseudo-functorAR ◦ forget : (J⊗/(d))op → Cat.
The outcome is a locally presentableK-linear category in a canonical way, cf. [11].

Using the explicit model [38,44] for computing bilimits of pseudo-functors toCat,
we obtain the following description of Fredenhagen’s universal category J!(A)(d) in
terms of explicit data and conditions:
Objects: An object

(V , ξV ) := ({Vh}, {ξV(α, f )}
) ∈ J!(A)(d) (6.6)

consists of the following data:

(1) For each object
(
h:=(∗, h) : c → (d)

) ∈ J⊗/(d), where ∗ : {1, . . . , n} → {1}
denotes the unique map of sets to the singleton {1}, an object

Vh ∈ A(c) =
n

�
i=1

A(ci ). (6.7a)

(2) For each morphism (α, f ) : h → h′ in J⊗/(d), an isomorphism

ξV(α, f ) : AR(α, f )
(
Vh′

) −→ Vh (6.7b)

in the category A(c).

These data have to satisfy the following cocycle conditions:

(i) For all objects
(
h : c → (d)

) ∈ J⊗/(d), the diagram

AR(idh)
(
Vh

)

AR 0
c ∼=

ξVidh
Vh

Vh

idVh

(6.8a)

inA(c) commutes, whereAR 0
c denotes the coherence isomorphisms for identi-

ties that are associated with the pseudo-functor AR.
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(ii) For all composable pairs of morphisms (α, f ) : h → h′ and (β, g) : h′ → h′′

in J⊗/(d), the diagram

AR(α, f )AR(β, g)
(
Vh′′

)

AR 2
((β,g),(α, f )) ∼=

AR(α, f )(ξV
(β,g))

AR(α, f )
(
Vh′

)

ξV
(α, f )

AR(
(β, g) ◦ (α, f )

)(
Vh′′

)

ξV
(β,g)◦(α, f )

Vh

(6.8b)

inA(c) commutes, whereAR 2
((β,g),(α, f )) denotes the coherence isomorphisms for

compositions that are associated with the pseudo-functor AR.

Morphisms: A morphism

� := {�h} : (V , ξV ) −→ (W , ξW ) (6.9)

in J!(A)(d) consists of a family of A(c)-morphisms

�h : Vh −→ Wh, (6.10a)

for all
(
h : c → (d)

) ∈ J⊗/(d), such that the diagrams

AR(α, f )
(
Vh′

)

ξV
(α, f )

AR(α, f )(�h′ )
AR(α, f )

(
Wh′

)

ξW
(α, f )

Vh
�h

Wh

(6.10b)

inA(c) commute, for all morphisms (α, f ) : h → h′ in J⊗/(d).

Identities and composition: Identities and composition are defined component-wise.

6.3 Examples onM = S
1

The aimof this subsection is to study examples of Fredenhagen’s universal category for
the full orthogonal subcategory embedding J : Disk(S1) → Open(S1) introduced in
Example 6.1. Given anyA ∈ 2AQFT(Disk(S1)), which is by definition only defined
onopen intervals inS

1,we are particularly interested in the locally presentableK-linear
category

J!(A)(S1) = bicolim

(
J⊗/(S1)

forget P⊗
Disk(S1)

A
PrK

)
(6.11)
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that is assigned to the whole circle S
1. The slice category J⊗/(S1) in the present

case admits the following simple description: An object is a tuple I = (I1, . . . , In) of
mutually disjoint open intervals Ii ⊂ S

1, i.e., Ii ∩ I j = ∅ for all i �= j . Amorphism α :
I = (I1, . . . , In) → J = (J1, . . . , Jm) is a map of sets α : {1, . . . , n} → {1, . . . ,m}
such that Ii ⊆ Jα(i), for all i = 1, . . . , n.

Example 6.3 Let us consider first the simplest casewhereA is truncated, i.e.,A = ι(A)

with A ∈ AQFT(Disk(S1)) an ordinary AQFT. We have the following square of
biadjunctions

AQFT(Disk(S1))

J!

ι

2AQFT(Disk(S1))

J!
π

AQFT(Open(S1))

J∗

ι

2AQFT(Open(S1))
π

J∗

(6.12)

where we recall that, with a mild abuse of notation, the extension-restriction adjunc-
tions for both ordinaryAQFTs (6.1) and 2AQFTs (6.2) are denoted by the same symbol
J! � J ∗. The horizontal biadjunctions in this diagramare the inclusion-truncation biad-
junctions fromTheorem 4.3. By direct inspection, one confirms that the square formed
by the right adjoint 2-functors commutes, i.e., π J ∗ = J ∗ π , hence the square formed
by the left adjoint pseudo-functors commutes up to an equivalence, i.e., ι J! � J! ι.
We would like to stress that this observation implies the (expected) result that the
extension of a truncated 2AQFT is truncated too. More concretely, we observe that
Fredenhagen’s universal category for a truncated 2AQFT

J!(ι(A))(S1) � ModJ!(A)(S1) (6.13)

is equivalent to the category of right modules over Fredenhagen’s universal algebra
J!(A)(S1) ∈ AlgK. The latter is given by the ordinary colimit

J!(A)(S1) = colim

(
J⊗/(S1)

forget P⊗
Disk(S1)

A
AlgK

)
, (6.14)

where A : P⊗
Disk(S1)

→ AlgK is the symmetric monoidal functor from the monoidal

envelope that is determined by A ∈ AQFT(Disk(S1)).
To obtain a better understanding of the objects and morphisms in our general pre-

sentation of Fredenhagen’s universal category J!(ι(A))(S1), we construct explicitly a
functor ModJ!(A)(S1) → J!(ι(A))(S1) that implements the equivalence (6.13). Let us
first describe this functor on objects. Given any right module V ∈ ModJ!(A)(S1) over
Fredenhagen’s universal algebra, we use the canonical AlgK-morphisms χI : A(I ) =
⊗n

i=1 A(Ii ) → J!(A)(S1) to the colimit (6.14) to define

VI := χ∗
I

(
V

) ∈ ModA(I ) (6.15)
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by restriction of modules, for each I ∈ J⊗/(S1). Given any morphism α : I → J
in J⊗/(S1), the functor ι(A)R(α) = A(α)∗ : ModA(J ) → ModA(I ) is given by
restriction of modules along the AlgK-morphism A(α) : A(I ) → A(J ). Because
{χI }I is a co-cone, we obtain

ι(A)R(α)
(
VJ

) = A(α)∗ χ∗
J

(
V

) = (
χJ A(α)

)∗(
V

) = χ∗
I

(
V

) = VI (6.16a)

and therefore we can set

ξVα := idVI
: ι(A)R(α)

(
VJ

) −→ VI (6.16b)

to be the identity morphism. One easily checks that the coherence conditions (6.8)
are satisfied; hence, we have defined an object (V , ξV ) ∈ J!(ι(A))(S1). Let us now
define the functorModJ!(A)(S1) → J!(ι(A))(S1) on morphisms. Given any morphism
L : V → W inModJ!(A)(S1), consider the restrictions

L I := χ∗
I

(
L
) : VI = χ∗

I

(
V

) −→ χ∗
I

(
W

) = WI , (6.17)

for all I ∈ J⊗/(S1). One easily checks that the coherence conditions (6.10) are sat-
isfied; hence, we have defined a morphism L : (V , ξV ) → (W , ξW ) in J!(ι(A))(S1).
Using the universal property of the colimit (6.14), one checks that the resulting functor
ModJ!(A)(S1) → J!(ι(A))(S1) implements the equivalence (6.13).

Summing up, we have found that, in the case of a truncated 2AQFTA = ι(A), the
objects of Fredenhagen’s universal category can be described as families of right mod-
ules (6.15) over the local algebrasA(I ) = ⊗n

i=1 A(Ii ) on disjoint unions of intervals,
whose restrictions along inclusions α : I → J coincide (6.16). Morphisms in Fre-
denhagen’s universal category can be described by locally defined module morphisms
(6.17), whose restrictions along inclusions α : I → J coincide.

Example 6.4 Let us consider the gaugingK
G ∈ 2AQFT(Disk(S1))of the trivialAQFT

K ∈ AQFT(Disk(S1)) with respect to the trivial action of a finite group G, which
is a non-truncated 2AQFT for every non-trivial group G �= {e}, see Example 5.7.
Because 2AQFTs are by definition prefactorization algebras with values in PrK (cf.
Definition 3.3) and K

G ∈ 2AQFT(Disk(S1)) is also locally constant, i.e., K
G(ιJI ) :

K
G(I ) → K

G(J ) is an equivalence inPrK for every interval inclusion ιJI : I → J , we
can compute Fredenhagen’s universal category J!(KG)(S1) for this particular example
by factorization homology [2]. Using in particular [2, Theorem 3.19], we obtain that

J!(KG)(S1) � HH•
(
RepK(G)

)
(6.18)

is equivalent to the Hochschild homology of the associative and unital algebra
(RepK(G),⊗, K) ∈ AlgAs(PrK) in PrK. (The latter is just the usual monoidal cate-
gory of K-linear representations of G, regarded internally in the symmetric monoidal
2-category PrK.) Hochschild homology can be computed as a bicolimit (in PrK)
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HH•
(
RepK(G)

) = bicolim

(
RepK(G) RepK(G)�2 RepK(G)�3 · · ·

)

(6.19)

of the simplicial diagram associated with (RepK(G),⊗, K) ∈ AlgAs(PrK), see, e.g.,
[9, Section 5.1]. (As usual, we suppress the degeneracy maps in (6.19).) Since we
are working in a 2-categorical context, this simplicial diagram may be truncated after
RepK(G)�3.

We will now compute the bicolimit (6.19) explicitly by using the techniques of
[11], see also the end of Sect. 6.2 for a short summary. A more conceptual explanation
of the obtained result is given in Remark 6.5. By [11, Lemma 2.5], we can compute
this bicolimit in terms of the bilimit (in the 2-category Cat of categories)

HH•
(
RepK(G)

) = bilim
(
RepK(G) RepK(G2) RepK(G3)

)
(6.20)

of the truncated cosimplicial diagram obtained by taking right adjoints of the face and
degeneracy maps in (6.19). In this expression, we have also used that RepK(G)�n �
RepK(Gn) is equivalent to the representation category of the product group Gn . The
coface and codegeneracymaps in (6.20) are givenby coinduced representation functors
φ∗ : RepK(G ′) → RepK(G ′′) for suitable group maps φ : G ′ → G ′′. Concretely, we
have that

δ0 = δ1 = �∗ : RepK(G) −→ RepK(G2) (6.21)

for the diagonal map � : G → G2 , g �→ (g, g), and that

δi = φi∗ : RepK(G2) −→ RepK(G3) (6.22a)

for

φi : G2 −→ G3 , (g1, g2) �−→

⎧
⎪⎨

⎪⎩

(g1, g1, g2) , for i = 0 ,

(g1, g2, g2) , for i = 1 ,

(g1, g2, g1) , for i = 2 .

(6.22b)

The codegeneracy map ε0 : RepK(G2) → RepK(G) is given by the coinduced
representation functor for G2 → G , (g1, g2) �→ g1.

We are now ready to describe the bilimit (6.20) and hence the category
HH•

(
RepK(G)

)
in more explicit terms:

• An object is a tuple (V , θV ), where V ∈ RepK(G) and θV : δ1(V ) → δ0(V ) is
an isomorphism in RepK(G2), such that ε0(θV ) = idV and δ0(θV ) ◦ δ2(θV ) =
δ1(θV ) in RepK(G3).

123



   35 Page 40 of 49 M. Benini et al.

• A morphism L : (V , θV ) → (W , θW ) is a morphism L : V → W in RepK(G),
such that the diagram

δ1(V )

θV

δ1(L)
δ1(W )

θW

δ0(V )
δ0(L)

δ0(W )

(6.23)

in RepK(G2) commutes.

We can simplify this description further by using explicit models for the coinduced
representation functors φ∗ : RepK(G ′) → RepK(G ′′) for group maps φ : G ′ → G ′′.
Since we consider only finite groups and a base field K of characteristic 0, there
exists a natural isomorphism between the coinduced and the induced representation
functors φ∗ ∼= φ! : RepK(G ′) → RepK(G ′′). The latter is easy to describe: For
V ∈ RepK(G ′), we set φ!(V ):=K[G ′′]⊗K[G ′]V ∈ RepK(G ′′) to be the relative tensor
product, where K[G ′] and K[G ′′] denote the group Hopf algebras associated with the
finite groups G ′ and G ′′. (Recall that RepK(G ′) = K[G ′]Mod is the category of left
K[G ′]-modules, and similar for G ′′.) Given any object (V , θV ) ∈ HH•

(
RepK(G)

)
,

we use this explicit description to deduce that θV : K[G2]⊗K[G]V → K[G2]⊗K[G]V
is completely determined by aK-linearmapϑV : V → K[G]⊗V via θV (1⊗1⊗v) =
1 ⊗ ϑV (v), which is G-equivariant with respect to the adjoint action on K[G] and
satisfies the axioms of a left K[G]-coaction. Moreover, we deduce that a morphism
in HH•

(
RepK(G)

)
is a G-equivariant map that preserves these K[G]-coactions. In

summary, we have obtained the following chain of equivalences

J!(KG)(S1) � HH•
(
RepK(G)

) � G-K[G]Mod � G-ModO(G), (6.24)

where in the last step we have used that K[G]-comodules are equivalent to modules
over the dual Hopf algebraO(G) of functions on G. (The G-action onO(G) is again
the adjoint action.)

Let us briefly explain the physical interpretation of this result. By Remark 5.6,
we can interpret K

G ∈ 2AQFT(Disk(S1)) as an orbifold σ -model that is defined on
intervals and whose target is the classifying stack BG = {∗}//G of G. Indeed, the
stack of fields on an interval I ⊂ S

1 is Fields(I ) = Map(I ,BG) � {∗}//G and its
category of quasi-coherent sheaves isQCoh(Fields(I )) � RepK(G), which coincides
with the category that the 2AQFT K

G assigns to intervals. On the whole circle S
1,

the stack of fields of this orbifold σ -model is given by the loop stack Fields(S1) =
Map(S1,BG) � BunG(S1), which is equivalent to the stack of principal G-bundles
on S

1. The non-trivial bundles can be interpreted physically as “twisted sectors” of
this orbifold σ -model, see, e.g., [18] and also [32]. The category of quasi-coherent
sheaves on this stack is given byQCoh(Fields(S1)) � G-ModO(G), which coincides
with our result for Fredenhagen’s universal category (6.24). Hence, Fredenhagen’s
universal category successfully detects all “twisted sectors” for this simple example
of an orbifold σ -model.
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Remark 6.5 The category (6.24) that we obtain for the circle is the representation
category of the groupoid of principalG-bundles over the circle, i.e., the representation
category of the loop groupoid G//G of G (the action groupoid of the action of G on
itself by conjugation). This category is also the Drinfeld center of RepK(G), i.e., the
Hochschild cohomology.As a consequence, theHochschild homology andHochschild
cohomology for RepK(G) are equivalent. More general conditions under which one
finds such an equivalence are given in [20, Corollary 3.1.5] within the framework
of finite tensor categories and in [9, Theorem 1.7] within the framework of derived
algebraic geometry.

Example 6.6 As a last example, we discuss briefly the gauging AG ∈ 2AQFT
(Disk(S1)) of an arbitraryG-equivariant AQFT (A, ρ) ∈ G-AQFT(Disk(S1)), which
includes Examples 6.3 and 6.4 as very special cases. Unfortunately, it seems to be
very hard to simplify our explicit description of Fredenhagen’s universal category
J!(AG)(S1) in this general case. (Note that computing this category as in Exam-
ple 6.4 by importing techniques from factorization homology is in general not possible,
because we are also interested in 2AQFTs that are not locally constant.) In order to
develop a better understanding of the category J!(AG)(S1), we shall specialize our
general description of Fredenhagen’s universal category from the end of Sect. 6.2 to
our example at hand. Concretely, an object (V , ξV ) ∈ J!(AG)(S1) consists of the
following data:

(1) For each tuple I = (I1, . . . , In) ∈ J⊗/(S1) of mutually disjoint intervals, a
Gn-equivariant module

VI ∈ Gn-ModA(I ) (6.25)

over the tensor product algebraA(I ) = ⊗n
i=1 A(Ii ). (TheGn-action on the tensor

product algebra is given by the component-wise G-actions.)
(2) For each morphism α : I = (I1, . . . , In) → J = (J1, . . . , Jm) in J⊗/(S1), a

Gn-ModA(I )-isomorphism

ξV
α : (AG)R(α)

(
VJ

) −→ VI . (6.26)

Here (AG)R(α) : Gm-ModA(J ) → Gn-ModA(I ) is the right adjoint of the functor

Gn-ModA(I )

�∗
α

AG (α)
Gm-ModA(J )

Gm-Mod�∗
α(A(I ))

A(α)!

(6.27)

where �α : Gm → Gn , (g1, . . . , gm) �→ (gα(1), . . . , gα(n)) is the group map
determined by α : {1, . . . , n} → {1, . . . ,m}, �∗

α : RepK(Gn) → RepK(Gm)

denotes the corresponding restricted representation functor and A(α)! is the
induced module functor for the Gm-equivariant algebra morphism A(α) :
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�∗
α(A(I )) → A(J ). Explicitly, one finds that (AG)R(α) is given by the com-

position

Gm-ModA(J )

A(α)∗

(AG )R(α)
Gn-ModA(I )

Gm-Mod�∗
α(A(I ))

�α∗
Gn-Mod�α∗�∗

α(A(I ))

η∗
A(I )

(6.28)

where η denotes the unit of the adjunction�∗
α : RepK(Gn) � RepK(Gm) : �α∗.

These data have to satisfy the coherence conditions (6.8).
Observe from (6.25) that VI is a module over the tensor product algebra A(I ) =⊗n
i=1 A(Ii ) associated with a tuple of mutually disjoint intervals together with a

separate G-action for each connected component. In other words, the group G is
allowed to act differently on different intervals, which is a characteristic feature of a
local gauge symmetry. To understand better the coherence maps (6.26), let us consider
the case where we include two intervals into a single bigger interval, i.e., α : I =
(I1, I2) → J . In this case �α = � : G → G2 is the diagonal map and (6.26) is given
by a G2-ModA(I )-isomorphism

ξV
α : η∗

A(I ) �∗ A(α)∗
(
VJ

) −→ VI . (6.29)

Using as in Example 6.4 that �∗ ∼= �! : RepK(G) → RepK(G2) is naturally
isomorphic to the induced representation functor, we obtain that ξVα is completely
determined by a K-linear map κV

α : VJ → VI via ξV
α (1 ⊗ 1 ⊗ v) = κV

α (v), for all
v ∈ VJ . ThisK-linear map has to satisfy the following conditions: 1.)G-equivariance:
κV
α (g v) = (g, g) κV

α (v), for all v ∈ VJ and g ∈ G. 2.) Preservation of the A(I )-
actions:

κV
α (v) · (a1 ⊗ a2) =

∑

(g1,g2)∈G2

(g−1
1 , g−1

2 ) κV
α

(
v ·

(
A(ιJI1)(g1 a1)A(ιJI2)(g2 a2)

))
,

(6.30)

for all a1 ⊗ a2 ∈ A(I1) ⊗ A(I2) and v ∈ VJ , where ιJIi
: Ii → J denote the interval

inclusions. (The sum over G2 comes from the unit η of the adjunction �∗ � �∗
when we use �! as a model for �∗.) Comparing (6.30) with the truncated case from
Example 6.3, we observe that there is a component-wise G2-action on the algebra
element a1 ⊗ a2 ∈ A(I1) ⊗ A(I2) on a pair of intervals before it acts on the module
element v ∈ VJ on the single bigger interval. From a superficial point of view, this
behavior resembles the twisted representations of G-equivariant AQFTs by Müger
[41]. Unfortunately, we do not understand at the moment if there exists a precise
relationship between Fredenhagen’s universal category J!(AG)(S1) for categorified
orbifold theories and the results in [41].
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A Basic theory of Cat-enriched colored operads

The aim of this appendix is to set up a suitable framework for Cat-enriched colored
operads (which one could also call 2-operads or 2-multicategories) that will be used in
this work. Our definitions of pseudo-morphisms, pseudo-transformations and modifi-
cations are a relatively straightforward generalization of the analogous concepts from
2-category theory (see, e.g., [35,37,43]) to the theory of colored operads (see, e.g.,
[5,49]). We would like to note that our approach is slightly more flexible than the
earlier one by Corner and Gurski [16], because we allow our pseudo-morphisms to
preserve permutation actions only up to coherent isomorphisms. This generalization
is necessary to capture the quantum field theoretical examples that we study in this
work. See also Remark A.3 for precise comment on the relationship to [16].

Definition A.1 A Cat-enriched colored operad O consists of the following data:

(1) A collection O0. Elements are called objects and are denoted by symbols like
a, b, c ∈ O.

(2) CategoriesO(t
c
)
, for each t ∈ O and each tuple c:=(c1, . . . , cn) ∈ On . Objects of

O(t
c
)
are called 1-operations and are denoted by symbols like φ,ψ . Morphisms of

O(t
c
)
are called 2-operations and are denoted by symbols like α, β. We write Id for

the identity 2-operations and α β for the (vertical) composition of 2-operations.
(3) Composition functors γ : O( t

a
) × ∏n

i=1O
(ai
bi

) → O(t
b
)
, for each t ∈ O,

a ∈ On and bi ∈ Oki , for i = 1, . . . , n, where b:=(b1, . . . , bn). We
write φ ψ :=γ (φ, (ψ1, . . . , ψn)) for the composition of 1-operations and α ∗
β:=γ (α, (β1, . . . , βn)) for the (horizontal) composition of 2-operations.
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(4) Functors 1 : 1 → O(
t
t

)
, for each t ∈ O, where 1 is the category with only one

object and its identity morphism. We also write 1 ∈ O(
t
t

)
for the corresponding

identity 1-operation.
(5) Permutation functors O(σ ) : O(t

c
) → O( t

cσ
)
, for each t ∈ O, c ∈ On and

permutation σ ∈ 
n , where cσ :=(cσ(1), . . . , cσ(n)). We write φ · σ :=O(σ )(φ)

and α · σ :=O(σ )(α) for the permutation action on 1- and 2-operations.

These data are required to satisfy the usual permutation action, associativity, unitality
and equivariance axioms, see, e.g., [49, Definition 11.2.1].

Definition A.2 Let O and P be Cat-enriched colored operads. A pseudo-morphism
F : O → P consists of the following data:

(1) A function F : O0 → P0.
(2) Functors F : O(t

c
) → P(Ft

Fc
)
, for each t ∈ O and c ∈ On , where

Fc:=(Fc1, . . . , Fcn).
(3) Natural isomorphisms

O( t
a
) ×

n∏

i=1
O(ai

bi

)

γO

F×∏
i F P(Ft

Fa
) ×

n∏

i=1
P(Fai

Fbi

)

γPF2

O(t
b
)

F
P(Ft

Fb
)

(A.1)

for each t ∈ O, a ∈ On and bi ∈ Oki , for i = 1, . . . , n.
(4) Natural isomorphisms

1

1O 1P

F0

O(
t
t

)
F

P(
Ft
Ft

)

(A.2)

for each t ∈ O.
(5) Natural isomorphisms

O(t
c
)

O(σ )

F P(Ft
Fc

)

P(σ )
Fσ

O( t
cσ

)
F

P( Ft
Fcσ

)

(A.3)

for each t ∈ O, c ∈ On and σ ∈ 
n .
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These data are required to satisfy the following axioms:

(Fφ) (Fψ) (Fρ)

Id∗∏
F2

F2∗∏
Id

F(φ ψ) (Fρ)

F2

(Fφ) F(ψ ρ)
F2

F(φ ψ ρ)

(A.4a)

1P (Fφ)

F0∗Id Id

(Fφ)
∏

1P

Id∗∏
F0 Id

(F1O) (Fφ)
F2

F(1O φ) (Fφ)
∏

F1O
F2

F(φ
∏

1O)

(A.4b)

((Fφ) · σ) · σ ′

Id

Fσ ·σ ′
(F(φ · σ)) · σ ′

Fσ ′

Fφ

Id
Id

(Fφ) · (σσ ′)
Fσσ ′ F(φ · (σσ ′)) (Fφ) · e

Fe
F(φ · e)

(A.4c)

((Fφ) (Fψ)) · σ 〈k1, . . . , kn〉

Id

F2·σ 〈k1,...,kn〉
(F(φ ψ)) · σ 〈k1, . . . , kn〉

Fσ 〈k1,...,kn 〉

((Fφ) · σ) (Fψσ)

Fσ ∗∏
Id

F
(
(φ ψ) · σ 〈k1, . . . , kn〉

)

Id

F(φ · σ) (Fψσ)
F2

F
(
(φ · σ) (ψσ)

)

(A.4d)

((Fφ) (Fψ)) · (σ1 ⊕ · · · ⊕ σn)

Id

F2·(σ1⊕···⊕σn)
(F(φ ψ)) · (σ1 ⊕ · · · ⊕ σn)

Fσ1⊕···⊕σn

(Fφ)
(
(Fψ) · (σ1 ⊕ · · · ⊕ σn)

)

Id∗∏
Fσi

F
(
(φ ψ) · (σ1 ⊕ · · · ⊕ σn)

)

Id

(Fφ)
(
F(ψ · (σ1 ⊕ · · · ⊕ σn))

)

F2
F

(
φ (ψ · (σ1 ⊕ · · · ⊕ σn))

)

(A.4e)

Remark A.3 In the case all coherences Fσ for permutation actions in (A.3) are identi-
ties, our concept of pseudo-morphisms specializes to [16,Definition 2.2].We, however,
require the more flexible Definition A.2 in the present paper, because our quantum
field theoretical examples of interest generically comewith non-trivial coherences Fσ .
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Definition A.4 Let O and P be Cat-enriched colored operads and F,G : O → P
pseudo-morphisms. A pseudo-transformation ζ : F ⇒ G consists of the following
data:

(1) Functors ζc : 1 → P(
Gc
Fc

)
, for each c ∈ O. We also write ζc ∈ P(

Gc
Fc

)
for the

corresponding 1-operation.
(2) Natural isomorphisms

O(t
c
) ×

n∏

i=1
1

∼=

G×∏
i ζci P(Gt

Gc
) ×

n∏

i=1
P(Gci

Fci

)

γPζ •
1 × O(t

c
)

ζt×F

P(
Gt
Ft

) × P(Ft
Fc

)

γP P(Gt
Fc

)

(A.5)

for each t ∈ O and c ∈ On .

These data are required to satisfy the following axioms:

(Gφ) (Gψ)
∏

ζbi j

G2∗∏
Id

Id∗∏
ζ •

(Gφ)
∏

ζai (Fψ)
ζ •∗∏

Id
ζt (Fφ) (Fψ)

Id∗F2

G(φ ψ)
∏

ζbi j ζ • ζt F(φ ψ)

(A.6a)

1P ζt

Id

G0∗Id
(G1O) ζt

ζ •

ζt 1
P

Id∗F0
ζt (F1O)

(A.6b)

((Gφ)
∏

ζci ) · σ

Id

ζ •·σ
(ζt (Fφ)) · σ

Id

((Gφ) · σ)
∏

ζcσ(i)

Gσ ∗∏
Id

ζt ((Fφ) · σ)

Id∗Fσ

G(φ · σ)
∏

ζcσ(i) ζ • ζt F(φ · σ)

(A.6c)
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Definition A.5 LetO andP beCat-enriched colored operads, F,G : O → P pseudo-
morphisms and ζ, κ : F ⇒ G pseudo-transformations. A modification � : ζ � κ

consists of the following data:

(1) Natural transformations

�c1

ζc

κc

P(
Gc
Fc

)
(A.7)

for each c ∈ O.

These data are required to satisfy the following axioms:

(Gφ)
∏

ζci

ζ •

Id∗∏
�ci

(Gφ)
∏

κci

κ•

ζt (Fφ)
�t∗Id κt (Fφ)

(A.8)

Remark A.6 Cat-enriched colored operads, pseudo-morphisms, pseudo-transformat-
ions and modifications assemble into a tricategory. The various compositions are
similar to the case of the tricategory of bicategories and hence will not be displayed
in full detail here. We refer the reader to [43, Appendix A.1] for a brief review of the
tricategory of bicategories and to [28] for the details.

Let us nevertheless fix the relevant notations that will appear in the bulk of this
paper. Given two Cat-enriched colored operads O and P , the tricategory structure
implies that there exists a Hom-2-category

AlgO(P) := [O,P] ∈ 2Cat, (A.9)

whose objects are pseudo-morphisms from O to P , 1-morphisms are pseudo-
transformations and 2-morphisms are modifications. Following the usual terminology
of operad theory, we shall callAlgO(P) the 2-category ofO-algebraswith values inP .
Given pseudo-morphisms F : O → O′ and G : P → P ′, there exist pseudo-functors

F∗ : [O′,P] −→ [O,P], G∗ : [O,P] −→ [O,P ′], (A.10)

which we call pullback and pushforward.
Let us note that in the case O and P are Set-valued colored operads, i.e., all

categories of operations in DefinitionA.1 are discrete, thenAlgO(P) = [O,P] ∈ Cat
is an ordinary category that coincideswith the usual category ofO-algebraswith values
in P , see, e.g., [5,49].
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