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Abstract
We consider stochastic differential equations driven by a general Lévy processes
(SDEs) with infinite activity and the related, via the Feynman–Kac formula, Dirichlet
problem for parabolic integro-differential equation (PIDE). We approximate the solu-
tion of PIDE using a numerical method for the SDEs. The method is based on three
ingredients: (1) we approximate small jumps by a diffusion; (2) we use restricted
jump-adaptive time-stepping; and (3) between the jumps we exploit a weak Euler
approximation. We prove weak convergence of the considered algorithm and present
an in-depth analysis of how its error and computational cost depend on the jump activ-
ity level. Results of some numerical experiments, including pricing of barrier basket
currency options, are presented.

Keywords SDEs driven by Lévy processes · Jump processes · Integro-differential
equations · Feynman–Kac formula · Weak approximation of stochastic differential
equations

Mathematics Subject Classification 65C30 · 60H10 · 35R09 · 60H35 · 60J75

1 Introduction

Stochastic differential equations driven by Lévy processes (SDEs) have become a
very important modelling tool in finance, physics, and biology (see e.g. [1,4,6,24]).
Successful use of SDEs relies on effective numerical methods. In this paper, we are
interested in weak-sense approximation of SDEs driven by general Lévy processes
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in which the noise has both the Wiener process and Poisson processes components
including the case of infinite jump activity.

Let G be a bounded domain in R
d , Q = [t0, T ) × G be a cylinder in R

d+1,

� = Q̄ \ Q be the part of the cylinder’s boundary consisting of the upper base and
lateral surface,Gc = R

d\Q be the complement ofG and Qc := (t0, T ]×Gc∪{T }×Ḡ.

Consider the Dirichlet problem for the parabolic integro-differential equation (PIDE):

∂u

∂t
+ Lu + c(t, x)u + g(t, x) = 0, (t, x) ∈ Q,

u(t, x) = ϕ(t, x), (t, x) ∈ Qc,

(1.1)

where the integro-differential operator L is of the form

Lu(t, x) := 1

2

d∑

i, j=1

ai j (t, x)
∂2u

∂xi ∂x j
(t, x) +

d∑

i=1

bi (t, x)
∂u

∂xi
(t, x)

+
∫

Rm

{
u
(
t, x + F(t, x)z

)− u(t, x) − 〈F(t, x)z, ∇u(t, x)〉I(|z| ≤ 1)
}
ν(dz);

(1.2)

a(t, x) = (
ai j (t, x)

)
is a d × d-matrix; b(t, x) = (b1(t, x), . . . , bd(t, x))� is a

d-dimensional vector; c(t, x), g(t, x), and ϕ(t, x) are scalar functions; F(t, x) =(
Fi j (t, x)

)
is a d×m-matrix; and ν(z), z ∈ R

m, is a Lévymeasure such that
∫

Rm (|z|2∧
1)ν(dz) < ∞.We allow ν to be of infinite intensity, i.e. wemay have ν

(
B(0, r)

) = ∞
for some r > 0, where as usual for x ∈ R

d and s > 0 we write B(x, s) for the open
ball of radius s centred at x .

The Feynman–Kac formula provides a probabilistic representations of the solution
u(t, x) to (1.1) in terms of a system of Lévy-driven SDEs (see Sect. 2), which can be
viewed as a system of characteristics for this PIDE. A weak-sense approximation of
the SDEs together with the Monte Carlo technique gives us a numerical approach to
evaluating u(t, x), which is especially effective in higher dimensions.

There has been a considerable amount of research on weak-sense numerical meth-
ods for Lévy-type SDEs of finite and infinite activity (see e.g. [10–12,14,15,17,20–23]
and references therein). Our approach is most closely related to [12]. As in [3,11,12],
we replace small jumpswith an appropriateBrownianmotion,whichmakes the numer-
ical solution of SDEs with infinite activity of the Lévy measure feasible in practice.
There are three main differences between our approach and that of [12]. First, we use
restricted jump-adapted time-stepping while in [12] jump-adapted time-stepping was
used. Here by jump-adapted we mean that time discretization points are located at
jump times τk and between the jumps the remaining diffusion process is effectively
approximated [11,12]. By restricted jump-adapted time-stepping, we understand the
following.We fix a time-discretization step h > 0. If the jump time increment δ for the
next time step is less than h, we set the time increment θ = δ, otherwise θ = h, i.e.,
our time steps are defined as θ = δ ∧ h. We note that this is a different time-stepping
strategy to commonly used ones in the literature including the finite-activity case (i.e.,
jump-diffusion). For example, in the finite activity case it is common [14,20,21] to
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simulate τk before the start of simulations and then superimpose those random times
on a grid with some constant or variable finite, small time-step h. Our time-stepping
approach is more natural for the problem under consideration than both commonly
used strategies; its benefits are discussed in Sect. 3, with the infinite activity case
considered in more detail in Sects. 3.5 and 4.2. Restricting δ by h is beneficial for
accuracy when jumps are rare (e.g. in the jump-diffusion case) and it is also beneficial
for convergence rates (measured in the average number of steps) in the case of α-stable
Lévy measure with α ∈ (1, 2) (see Sects. 3 and 4). Second, in comparison with [12]
we explicitly show (singular) dependence of the numerical integration error of our
algorithm on the parameter ε which is the cut-off for small jumps replaced by the
Brownian motion. Third, in comparison with the literature we consider the Dirichlet
problem for PIDEs, though we also comment on the Cauchy case in Sect. 3.4, which
is novel with respect to the use of restricted time-stepping and dependence of the
algorithm’s error on ε.

The paper is organised as follows. In Sect. 2, we write down a probabilistic repre-
sentation for the solution u(t, x) of (1.1), we state assumptions used throughout the
paper, and we consider the approximation uε(t, x) that solves an auxiliary Dirichlet
problem corresponding to the system of characteristics with jumps cut-off by ε. In
Sect. 3, we introduce the numerical algorithm which approximates uε(t, x). The algo-
rithm uses the restricted jump-adapted time-stepping and approximates the diffusion
by a weak Euler scheme. In this section we also obtain and discuss the weak-sense
error estimate for the algorithm. In Sect. 4, we illustrate our theoretical findings by
three numerical examples, including an application of our algorithm to pricing an FX
barrier basket option whose underlyings follow an exponential Lévy model.

2 Preliminaries

Let (�,F , {Ft }t0≤t≤T , P) be a filtered probability space satisfying the usual hypothe-
ses. The operator L defined in (1.2), on an appropriate domain, is the generator of the
d-dimensional process Xt0,x (t) given by

Xt0,x (t) = x +
∫ t

t0
b(s, X(s−))ds +

∫ t

t0
σ(s, X(s−))dw(s)

+
∫ t

t0

∫

Rd
F(s, X(s−))z N̂ (dz, ds), (2.1)

where the d ×d matrix σ(s, x) is defined through σ(s, x)σ�(s, x) = a(s, x); w(t) =
(w1(t), . . . , wd(t))� is a standard d-dimensional Wiener process; and N̂ is a Poisson
random measure on [0,∞) × R

m with intensity measure ν(dz) × ds,
∫

Rm (|z|2 ∧
1)ν(dz) < ∞, and compensated small jumps, i.e.,

N̂ ([0, t] × B) =
∫

[0,t]×B
N (dz, ds) − tν(B ∩ {|z| ≤ 1}), for all t ≥ 0 and B ∈ B(Rm).
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Remark 2.1 Often [2,22] a simpler model of the form

X(t) = x +
∫ t

t0
F(s, X(s−))dZ(s), (2.2)

where Z(t), t ≥ t0, is anm-dimensional Lévy processwith the characteristic exponent

ψ(ξ) = i(μ, ξ) − 1

2
(ξ, σξ) +

∫

|z|≤1

[
ei(ξ,z) − 1 − i(ξ, z)

]
ν(dz)

+
∫

|z|>1

[
ei(ξ,z) − 1

]
ν(dz),

is considered instead of the general SDEs (2.1). The Eq. (2.2) is obtained as a special
case of (2.1) by setting b(t, x) = μF(t, x) and σ(t, x) = σ F(t, x).

When the solutionu of (1.1) is regular enough, for exampleu ∈ C1,2
([t0, T ] × R

d
)
,

it can be shown that u has the following probabilistic representation

u(t, x) = E
[
ϕ
(
τt,x , Xt,x (τt,x )

)
Yt,x,1(τt,x ) + Zt,x,1,0(τt,x )

]
, (t, x) ∈ Q, (2.3)

where (Xt,x (s), Yt,x,y(s), Zt,x,y,z(s)) for s ≥ t , solves the system of SDEs consisting
of (2.1) and

dY = c(s, X(s−))Y ds, Yt,x,y(t) = y, (2.4)

d Z = g(s, X(s−))Y ds, Zt,x,y,z(t) = z, (2.5)

and τt,x = inf{s ≥ t : (s, Xt,x (s)) /∈ Q} is the fist exit-time of the space-time Lévy
process (s, Xt,x (s)) from the space-time cylinder Q. To see why this holds, one may
apply Ito’s lemma, see e.g. [2, Theorem 4.4.7], and the fact that u solves (1.1) to prove
that the process

u
(
t ∧ τt,x , Xt,x (t ∧ τt,x )

)
Yt,x,1(t ∧ τt,x ) + Zt,x,1,0(t ∧ τt,x ),

is a martingale. The claimed formula follows by letting t → ∞.
If one can simulate trajectories of {(s, Xt,x (s), Yt,x,1(s), Zt,x,1,0(s)); s ≥ 0} then

the solution of the Dirichlet problem for PIDE (1.1) can be estimated by applying the
MonteCarlo technique to (2.3). This approach however is not generally implementable
for Lévy measures of infinite intensity, that is when ν

(
B(0, r)

) = ∞ for some r >

0. The difficulty arises from the presence of an infinite number of small jumps in
any finite time interval, and can be overcome by replacing these small jumps by an
appropriate diffusion exploiting the idea of the method developed in [3,11], which we
apply here. Alternatively, the issue can be overcome if one can simulate directly from
the increments of Lévy process. We will not discuss this case in this paper as we only
assume that one has access to the Lévy measure.
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2.1 Approximation of small jumps by diffusion

We will now consider the approximation of (2.1) discussed above, where small jumps
are replaced by an appropriate diffusion. In the case of the whole space (the Cauchy
problem for a PIDE) such an approximationwas considered in [3,11], see also Sect. 3.4
here.

Let γε be an m-dimensional vector with the components

γ i
ε =

∫

ε≤|z|≤1
ziν(dz); (2.6)

and Bε is an m × m matrix with the components

Bi j
ε =

∫

|z|<ε

zi z jν(dz), (2.7)

while βε be obtained from the formula βεβ
�
ε = Bε . Note that |Bi j

ε | (and hence also
the elements of βε) are bounded by a constant independent of ε thanks to the Lévy
measure definition.

Remark 2.2 In many practical situations (see e.g. [6]), where the dependence among
the components of X(t) introduced through the structure of the SDEs is enough, we
can allow the components of the driving Poisson measure to be independent. This
amounts to saying that ν is concentrated on the axes, and as a result Bε will be a
diagonal matrix.

We shall consider the modified jump-diffusion X̃t0,x (t) = X̃ ε
t0,x (t) defined as

X̃t0,x (t) = x +
∫ t

t0

[
b(s, X̃(s−)) − F(s, X̃(s−))γε

]
ds +

∫ t

t0
σ(s, X̃(s−))dw(s)

+
∫ t

t0
F(s, X̃(s−))βεdW (s) +

∫ t

t0

∫

|z|≥ε

F(s, X̃(s−))zN (dz, ds), (2.8)

where W (t) is a standard m-dimensional Wiener process, independent of N and w.
We observe that, in comparison with (2.1), in (2.8) jumps less than ε in magnitude are
replaced by the additional diffusion part. In this way, the new Lévy measure has finite
activity allowing us to simulate its events exactly, i.e. in a practical way.

Consequently, we can approximate the solution of u(t, x) the PIDE (1.1) by

u(t, x)≈uε(t, x) :=E
[
ϕ
(
τ̃t,x , X̃t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x )+ Z̃t,x,1,0 (̃τt,x )

]
, (t, x) ∈ Q,

(2.9)

where τ̃t,x = inf{s ≥ t : (s, X̃t,x (s)) /∈ Q} is the fist exit time of the space-time
Lévy process (s, X̃t,x (s)) from the space-time cylinder Q and

(
X̃t,x (s), Ỹt,x,y(s),
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Z̃t,x,y,z(s)
)

s≥0 solves the system of SDEs consisting of (2.8) along with

dỸ = c(s, X̃(s−))Ỹ ds, Ỹt,x,y(t) = y, (2.10)

d Z̃ = g(s, X̃(s−))Ỹ ds, Z̃t,x,y,z(t) = z. (2.11)

Since the new Lévy measure has finite activity, we can derive a constructive weak
scheme for (2.8), (2.10)–(2.11) (see Sect. 3). By using this method together with the
Monte Carlo technique, we will arrive at an implementable approximation of uε(t, x)

and hence of u(t, x).

We will next show that indeed uε defined in (2.9) is a good approximation to the
solution of (1.1). Before proceeding, we need to formulate appropriate assumptions.

2.2 Assumptions

First, we make the following assumptions on the coefficients of the problem (1.1)
which will guarantee, see e.g. [2], that the SDEs (2.1), (2.4)–(2.5) and (2.8), (2.10)–
(2.11) have unique adapted, càdlàg solutions with finite moments.

Assumption 2.1 (Lipschitz condition) There exists a constant K > 0 such that for all
x1, x2 ∈ R

d and all t ∈ [t0, T ],
∣∣b(t, x1) − b(t, x2)

∣∣2 + ∥∥σ(t, x1) − σ(t, x2)
∥∥2

+ |c(t, x1) − c(t, x2)|2 + |g(t, x1) − g(t, x2)|2

+
∫

Rd
‖F(t, x1) − F(t, x2)‖2|z|2ν(dz) ≤ K |x1 − x2|2. (2.12)

Assumption 2.2 (Growth condition) There exists a constant K > 0 such that for all
x ∈ R

d and all t ∈ [t0, T ],
∣∣b(t, x)

∣∣2 + ∥∥σ(t, x)
∥∥2 + |g(t, x)|2 +

∫

Rd
‖F(t, x)‖2|z|2ν(dz) ≤ K (1 + |x |)2,

(2.13)

|c(t, x)| ≤ K . (2.14)

Remark 2.3 SinceG is bounded, in practice the above assumptions in the spacevariable
are only required in Ḡ. We chose to impose them in R

d to simplify the presentation
as it allows us to construct a global solution to the SDEs (2.8), rather than having to
deal with local solutions built up to the exit time from the domain. In practice the
assumption can be bypassed by multiplying the coefficients with a bump function that
vanishes outside G, without affecting the value of (2.3).

In order to streamline the presentation and avoid lengthy technical discussions (see
Remarks 2.4 and 2.5), we will make the following assumption regarding the regularity
of solutions to (1.1).
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Assumption 2.3 The Dirichlet problem (1.1) admits a classical solution u(·, ·) ∈
Cl,n([t0, T ] × R

d) with some l ≥ 1 and n ≥ 2.

In addition to the PIDE problem (1.1), we also consider the PIDE problem for uε

from (2.9):

∂uε

∂t
+ Lεuε + c(t, x)uε + g(t, x) = 0, (t, x) ∈ Q,

uε(t, x) = ϕ(t, x), (t, x) ∈ Qc, (2.15)

where

Lεv(t, x) := 1

2

d∑

i, j=1

[
ai j (t, x) +

(
F(t, x)Bε(t, x)F�(t, x)

)i j
]

∂2v

∂xi∂x j
(t, x)

+
d∑

i=1

(
bi (t, x) −

m∑

j=1

Fi j (t, x)γ j
ε

) ∂v

∂xi
(t, x)

+
∫

|z|≥ε

{
v
(
t, x + F(t, x)z

)− v(t, x)
}
ν(dz). (2.16)

Again, for simplicity (but see Remark 2.4), we impose the following conditions on
the solution uε of the above Dirichlet problem.

Assumption 2.4 The auxiliary Dirichlet problem (2.15) admits a classical solution
uε(·, ·) ∈ Cl,n([t0, T ] × R

d) with some l ≥ 1 and n ≥ 2.

Finally, we also require that uε and its derivatives do not grow faster than a poly-
nomial function at infinity.

Assumption 2.5 (Smoothness and growth) There exist constants K > 0 and q ≥ 1
such that for all x ∈ R

d , all t ∈ [t0, T ] and ε > 0, the solution uε of the PIDE problem
(2.15) and its derivatives satisfy

∣∣∣
∂ l+ j

∂t l∂xi1 · · · ∂xi j
uε(t, x)

∣∣∣ ≤ K (1 + |x |q), (2.17)

where 0 ≤ 2l + j ≤ 4,
∑ j

k=1 ik = j, and ik are integers from 0 to d.

Remark 2.4 Sufficient conditions guaranteeing Assumptions 2.3, 2.4 and 2.5 consist
in sufficient smoothness of the coefficients, the boundary ∂G, and the function ϕ and
in appropriate compatibility of ϕ and g and also of the integral operator (see e.g.
[8,9,16]).

Remark 2.5 The main goal of the paper is to present the numerical method and study
its convergence under ‘good’ conditions when its convergence rates are optimal (i.e.,
highest possible). As usual, in these circumstances, the conditions (here Assump-
tions 2.3, 2.4, and 2.5) are somewhat restrictive. See Theorem 3.3 in [8, p. 93], which
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indicates sufficient conditions for Assumption 2.3 to hold. If one drops the compat-
ibility condition (3.11) in Theorem 3.3 of [8, p. 93], then, as in the diffusion case,
the smoothness of the solution will be lost through the boundary of Q at the terminal
time T . This affects only the last step of the method and the proof can be modified
(see such a recipe in the case of the Neumann problem and diffusion in e.g. [13]), but
we do not include such complications here for transparency of the proofs. Further,
in the case of an α-stable Lévy process with α ∈ (1, 2) spatial derivatives of u(t, x)

may blow up near the boundary ∂G, the blow up is polynomial with the power depen-
dent on α if the integral operator does not satisfy some compatibility conditions (see
the discussion in [8, p. 96]). This situation requires further analysis of the proposed
method, which is beyond the scope of the present paper. At the same time, the method
can be successfully used when the assumptions stated in this section are not satisfied
as demonstrated in our numerical experiments (see Sect. 4.3).

2.3 Closeness of u�(t, x) and u(t, x)

We now state and prove the theorem on closeness of uε(t, x) and u(t, x). In what
follows we use the same letters K and C for various positive constants independent
of x, t, and ε.

Theorem 2.1 Let Assumptions 2.1, 2.2 and 2.3 hold, the latter with l = 1 and m = 3.
Then for 0 ≤ ε < 1

|uε(t, x) − u(t, x)| ≤ K
∫

|z|≤ε

|z|3ν(dz), (t, x) ∈ Q, (2.18)

where K > 0 does not depend on t, x, ε.

Proof We have
(
τ̃t,x , X̃t,x (̃τt,x )

) ∈ Qc and ϕ
(
τ̃t,x , X̃t,x (̃τt,x )

) = u
(
τ̃t,x , X̃t,x (̃τt,x )

)
,

and

uε(t, x) − u(t, x) = E
[
u
(
τ̃t,x , X̃t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃t,x,1,0(̃τt,x )

]− u(t, x).

(2.19)

By Ito’s formula, we get

u(s, X̃t,x (s))Ỹt,x,1(s) + Z̃t,x,1,0(s)

= u(t, x) +
∫ s

t
Ỹt,x,1(s

′)
[

∂

∂t
u(s′, X̃t,x (s

′−))

+ 1

2

d∑

i, j=1

ai j (s′, X̃t,x (s
′−))

∂2u

∂xi∂x j
(s′, X̃t,x (s

′−))

+ 〈b(s′, X̃t,x (s
′−)),∇u(s′, X̃t,x (s

′−))〉
− 〈F(s, X̃(s−))γε,∇u(s′, X̃t,x (s

′−))〉
+ c(s, X̃t,x (s

′−))u(s′, X̃t,x (s
′−))
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+ g(s′, X̃t,x (s
′−))

]
ds′ + 1

2

∫ s

t
Ỹt,x,1(s

′)
d∑

i, j=1
(

F(s′, X̃t,x (s
′−))Bε F�(s′, X̃t,x (s

′−))
)i j

∂2u

∂xi∂x j
(s′, X̃t,x (s

′−))ds′

+
∫ s

t
Ỹt,x,1(s

′)
[
σ(s′, X̃(s′−))∇u(s′, X̃(s′−))

]�
dw(s′)

+
∫ s

t
Ỹt,x,1(s

′)
[
F(s′, X̃(s′−))βε∇u(s′, X̃(s′−))

]�
dW (s′)

+
∫ s

t

∫

|z|≥ε

Ỹt,x,1(s
′)
[
u(s′, X̃(s−) + F(s′, X̃(s′−))z)

−u(s′, X̃(s′))
]

N (dz, ds′). (2.20)

Since u(t, x) solves (1.1) and recalling (2.6), we obtain from (2.20):

u
(
s, X̃t,x (s)

)
Ỹt,x,1(s) + Z̃t,x,1,0(s) − u(t, x)

= −
∫ s

t
Ỹt,x,1(s

′)[〈F(s, X̃(s−))γε,∇u(s′, X̃t,x (s
′−))〉

+
∫

Rm
{u(s′, X̃t,x (s

′−) + F(s′, X̃t,x (s
′−))z) − u(s′, X̃t,x (s

′−))

− 〈F(s′, X̃t,x (s
′−))z,∇u(s′, X̃t,x (s

′−))〉I(|z| ≤ 1)}ν(dz)]ds′

+ 1

2

∫ s

t
Ỹt,x,1(s

′)
d∑

i, j=1

(
F(s′, X̃t,x (s

′−))Bε F�(s′, X̃t,x (s
′−))

)i j

∂2u

∂xi∂x j
(s′, X̃t,x (s

′−))ds′

+
∫ s

t
Ỹt,x,y(s

′)
[
σ(s′, X̃(s′−))∇u(s′, X̃(s′−))

]�
dw(s′)

+
∫ s

t
Ỹt,x,y(s

′)
[
F(s′, X̃(s′−))βε∇u(s′, X̃(s′−))

]�
dW (s′)

+
∫ s

t

∫

|z|≥ε

Ỹt,x,1(s
′)[u(s′, X̃(s−) + F(s′, X̃(s′−))z) − u(s′, X̃(s′))]N (dz, ds′)

= 1

2

∫ s

t
Ỹt,x,1(s

′)
d∑

i, j=1

(
F(s′, X̃t,x (s

′−))Bε F�(s′, X̃t,x (s
′−))

)i j

∂2u

∂xi∂x j
(s′, X̃t,x (s

′−))ds′

−
∫ s

t

∫

|z|<ε

Ỹt,x,1(s
′)[u(s′, X̃t,x (s

′−) + F(s′, X̃t,x (s
′−))z) − u(s′, X̃t,x (s

′−))
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− 〈F(s′, X̃t,x (s
′−))z,∇u(′, X̃t,x (s

′−))〉]ν(dz)ds′

+
∫ s

t
Ỹt,x,1(s

′)
[
σ(s′, X̃(s′−))∇u(s′, X̃(s′−))

]�
dw(s′)

+
∫ s

t
Ỹt,x,1(s

′)
[
F(s′, X̃(s′−))βε∇u(s′, X̃(s′−))

]�
dW (s′)

+
∫ s

t

∫

|z|≥ε

Ỹt,x,1(s
′)
[
u(s′, X̃(s−) + F(s′, X̃(s′−))z) − u(s′, X̃(s′))

]

× (N (dz, ds′) − ν(dz)ds′). (2.21)

Replacing s with the stopping time τ̃t,x in (2.21) (cf. (2.19)), taking expectations
of the resulting left- and right-hand sides of (2.21) and using the martingale property
and (2.7), we arrive at

E
[
u
(
τ̃t,x , X̃t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃t,x,1,0(̃τt,x )

]− u(t, x)

= E

[ ∫ τ̃t,x

t
Ỹt,x,1(s)

[ ∫

|z|<ε

1

2

d∑

i, j=1

(
F(s, X̃t,x (s−))z)i (F(s, X̃t,x (s−))z

) j ∂2u

∂xi∂x j
(s, X̃t,x (s−))ν(dz)

−
∫

|z|<ε

(
u(s, X̃t,x (s−) + F(s, X̃t,x (s−))z) − u(s, X̃t,x (s−))

− 〈F(s, X̃t,x (s−))z,∇u(s, X̃t,x (s−))〉
)
ν(dz)

]
ds

]
. (2.22)

By Taylor’s expansion, we get for some θ ∈ [0, 1] which may depend on the random-
ness,

∣∣∣∣u(s, X̃t,x (s−) + F(s, X̃t,x (s−))z) − u(s, X̃t,x (s−))

− 〈F(s, X̃t,x (s−))z,∇u(s, X̃t,x (s−))〉

− 1

2

d∑

i, j=1

(
F(s, X̃t,x (s−))z)i (F(s, X̃t,x (s−))z

) j ∂2u

∂xi∂x j
(s, X̃t,x (s−))

∣∣∣∣

=
∣∣∣∣
1

6

d∑

i, j,k=1

(
F(s, X̃t,x (s−))z)i (F(s, X̃t,x (s−))z

) j
(F(s, X̃t,x (s−))z)k
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× ∂3u

∂xi∂x j∂xk
(s, X̃t,x (s−) + θ F(s, X̃t,x (s−))z)

∣∣∣∣ (2.23)

≤ K |z|3, (2.24)

where to obtain inequality (2.24) we used the fact that by definition of τ̃t,x , X̃t,x (s−) ∈
G for s ≤ τ̃t,x , and thereforewehave for some K > 0 that does not dependon ε, t, x, s,

∣∣F(s, X̃t,x (s−))
∣∣ ≤ max

t0≤s≤T , x∈Ḡ
|F(s, x)| ≤ K ,

∣∣X̃t,x (s−) + θ F(s, X̃t,x (s−))z
∣∣ ≤ max

x∈Ḡ
|x | + ε max

t0≤s≤T , x∈Ḡ
|F(s, x)| ≤ K ,

(2.25)

after noting that |z| < ε. Using Assumption 2.3 and combining (2.22)–(2.24) and
since Ỹt,x,1(·) ≥ 0, we arrive at

∣∣E
[
u
(
τ̃t,x , X̃t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃t,x,1,0(̃τt,x )

]− u(s, x)
∣∣

≤ K
∫ T

t0
E
[
Ỹt,x,1(s)I(̃τt,x > s)

]
ds ·

∫

|z|<ε

|z|3ν(dz). (2.26)

Since c
(
s, X̃t,x (s)

)
is bounded on the set {̃τt,x > s}, E

[
Ỹt,x,1(s)I(̃τt,x > s)

]
is

bounded which together with (2.26) implies (2.18). ��
Example 2.1 (Tempered α-stable Process) For α ∈ (0, 2) and m = 1, consider an
α-stable process with Lévy measure given by ν(dz) = |z|−1−αdz. Then

∫

|z|≤ε

|z|3ν(dz) = 2
ε3−α

3 − α
.

Similarly, for a tempered stable distribution which has Lévy measure given by

ν(dz) =
(C+e−λ+z

z1+α
I(z > 0) + C−e−λ−|z|

|z|1+α
I(z < 0)

)
dz,

for α ∈ (0, 2) and C+, C−, λ+, λ− > 0 we find that the error from approximating
the small jumps by diffusion as in Theorem 2.1 is of the order O(ε3−α).

3 Weak approximation of jump-diffusions in bounded domains

In this sectionwepropose and study a numerical algorithmwhichweakly approximates
the solutions of the jump-diffusion (2.8), (2.10)–(2.11) with finite intensity of jumps
in a bounded domain, i.e., approximates uε(t, x) from (2.9). In Sect. 3.1 we formulate
the algorithm based on a simplest random walk. We analyse the one-step error of the
algorithm in Sect. 3.2 and the global error in Sect. 3.3. In Sect. 3.4 we comment on
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how the global error can be estimated in the Cauchy case. In Sect. 3.5 we combine the
convergence result of Sect. 3.3 with Theorem 2.1 to get error estimates in the case of
infinite activity of jumps.

3.1 Algorithm

In what follows we also require the following to hold.

Assumption 3.1 (Lévy measure) There exists a constant K > 0

∫

Rm
|z|pν(dz) ≤ K

for up to a sufficiently large p ≥ 2.

This is a natural assumption since Lévy measures of practical interest (see e.g. [6]
and also examples here of Example 2.1 and Sect. 4) have this property.

Let us describe an algorithm for simulating a Markov chain that approximates a
trajectory of (2.8), (2.10)–(2.11). In what follows we assume that we can exactly
sample the intervals δ between consecutive jump times with the intensity

λε :=
∫

|z|>ε

ν(dz) (3.1)

and jump sizes Jε distributed according to the density

ρε(z) := ν(z)I(|z| > ε)

λε

. (3.2)

Remark 3.1 There are known methods for simulating jump times and sizes for many
standard distributions. In general, if there exists an explicit expression for the jump
size density, one can construct a rejection method to sample jump sizes. An overview
with regard to simulation of jump times and sizes can be found in [6,7].

Thanks to Assumption 3.1, we have

E
[|Jε |p] ≡ 1

λε

∫

|z|>ε

|z|pν(dz) ≤ K

λε

(3.3)

with K > 0 being independent of ε and p ≥ 2. We also note that

|γε |2
λε

≤ K , (3.4)

where K > 0 is a constant independent of ε, since by the Cauchy-Schwarz inequality

|γε |2
λε

≤
(∫

ε<|z|<1

|z|√
λε

ν(dz)

)2

≤
∫

ε<|z|<1

|z|2
λε

ν(dz) × λε ≤
∫

0<|z|<1
|z|2ν(dz) < ∞
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thanks to the Lévy measure definition.
We now describe the algorithm. Fix a time-discretization step h > 0 and suppose

the current position of the chain is (t, x, y, z). If the jump time increment δ < h, we
set θ = δ, otherwise θ = h, i.e. θ = δ ∧ h.

In the case θ = h, we apply theweak explicit Euler approximationwith the simplest
simulation of noise to the system (2.8), (2.10)–(2.11) with no jumps:

X̃t,x (t + θ) ≈ X = x + θ · (b(t, x) − F(t, x)γε) + √
θ · (σ (t, x) ξ

+F(t, x)βε η) , (3.5)

Ỹt,x,y(t + θ) ≈ Y = y + θ · c(t, x) y , (3.6)

Z̃t,x,y,z(t + θ) ≈ Z = z + θ · g(t, x) y , (3.7)

where ξ = (ξ1, . . . , ξd)ᵀ, η = (η1, . . . , ηm)ᵀ, with ξ1, . . . , ξd and η1, . . . , ηm mutu-
ally independent random variables, taking the values±1 with equal probability. In the
case of θ < h, we replace (3.5) by the following explicit Euler approximation

X̃t,x (t + θ) ≈ X = x + θ · (b(t, x) − F(t, x)γε) + √
θ · (σ (t, x) ξ

+F(t, x)βε η) + F(t, x)Jε . (3.8)

Let (t0, x0) ∈ Q. We aim to find the value uε(t0, x0), where uε(t, x) solves the
problem (2.15). Introduce a discretization of the interval [t0, T ], for example the
equidistant one:

h := (T − t0)/L.

To approximate the solution of the system (2.8), we construct a Markov chain
(ϑk, Xk, Yk, Zk) which stops at a random step κ when (ϑk, Xk) exits the domain Q.

The algorithm is formulated as Algorithm 1 below.

Remark 3.2 If λε is large so that 1 − e−λεh is close to 1, then Ik = 1 (i.e., jump
happens) is almost on every time step. In this situation it is computationally beneficial
tomodifyAlgorithm1 in the followingway: instead of sampling both Ik and θk , sample
δk according to the exponential distribution with parameter λε and set θk = δk ∧h and
Ik = 1 if θk < h, else Ik = 0.

Remark 3.3 We note [18,19] that in the diffusion case (i.e., when there is no jump
component in the noise which drives SDEs) solving Dirichlet problems for parabolic
or elliptic PDEs requires to complement a random walk inside the domain G with
a special approximation near the boundary ∂G. In contrast, in the case of Dirichlet
problems for PIDEs we do not need a special construction near the boundary since
the boundary condition is defined on the whole complement Gc.Here, when the chain
Xk exits G, we know the exact value of the solution uε(ϑ̄κ, Xκ) = ϕ(ϑ̄κ, Xκ) at
the exit point (ϑ̄κ, Xκ), while in the diffusion case when a chain exits G, we do not
know the exact value of the solution at the exit point and need an approximation. Due
to this fact, Algorithm 1 is somewhat simpler than algorithms for Dirichlet problems
for parabolic or elliptic PDEs (cf. [18,19] and references therein).
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Algorithm 1 Algorithm for (2.8), (2.10)–(2.11).
Output: ϑ̄κ , Xκ , Yκ , Zκ

1: Initialize: ϑ0 = t0, X0 = x0, Y0 = 1, Z0 = 0, k = 0.
2: while ϑk < T or Xk ∈ G do
3: Simulate: ξk and ηk with i.i.d. components taking values±1 with probability 1/2 and independently

Ik ∼ Bernoulli
(
1 − e−λεh).

4: if Ik = 0, then
5: Set: θk = h
6: Evaluate: Xk+1, Yk+1, Zk+1 according to (3.5)–(3.7) with t = ϑk , θ = θk , ξ = ξk , η = ηk ,

x = Xk , y = Yk , z = Zk .
7: else

8: Sample: θk according to the density
λεe−λε x

1 − e−λεh
with finite support [0, h].

9: Sample: jump size Jε,k according to the density (3.2).
10: Evaluate: Xk+1, Yk+1 and Zk+1 according to (3.8), (3.6), (3.7) with t = ϑk , θ = θk , ξ = ξk ,

η = ηk , Jε = Jε,k , x = Xk , y = Yk , z = Zk .
11: end if
12: Set: ϑk+1 = ϑk + θk and k = k + 1.
13: end while
14: Set: Xκ = Xk , Yκ = Yk , Zκ = Zk , κ = k, ϑκ = ϑk .
15: if ϑκ < T then Set: ϑ̄κ = ϑκ

16: else Set: ϑ̄κ = T
17: end if

3.2 One-step error

In this section we consider the one-step error of Algorithm 1. The one step of this
algorithm takes the form for (t, x) ∈ Q:

X = x + θ (b(t, x) − F(t, x)γε) + √
θ (σ (t, x)ξ + F(t, x)βεη)

+ I(θ < h)F(t, x)Jε, (3.9)

Y = y + θc(t, x)y, (3.10)

Z = z + θg(t, x)y. (3.11)

Before we state and prove an error estimate for the one-step of Algorithm 1, we
need to introduce some additional notation. For brevity let us write b = b(t, x),
σ = σ(t, x), F = F(t, x), g = g(t, x), c = c(t, x), J = Jε . Let us define the
intermediate points Qi and their differences �i , for i = 1, . . . , 4:

�1 = θ1/2 [σξ + Fβεη] ,

�2 = θ
[
b − Fγε

]
,

�3 = I(θ < h)F J ,

Q1 = x + �1 + �2 + �3 = X ,

Q2 = x + �2 + �3,

Q3 = x + �3,

Q4 = x, (3.12)
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where x ∈ G. Note that Qi , i = 1, . . . , 3, can be outside G.

Lemma 3.1 (Moments of intermediate points Qi ) Under Assumptions 2.1 and 3.1,
there is K > 0 independent of ε and h such that for p ≥ 1:

E

[
|Qi |2p

∣∣θ, t, x
]

≤ K (1 + θ2p|γε |2p), i = 1, 2, (3.13)

E

[
|Qi |2p

∣∣θ, t, x
]

≤ K , i = 3, 4, (3.14)

where Qi are defined in (3.12).

Proof It is not difficult to see that the points Qi , i = 1, 2, are of the following form

Qi = x + c1θ
1/2 [σξ + F(t, x)βεη] + θ

[
b(t, x) − F(t, x)γε

]+ I(θ < h)F(t, x)Jε,

where c1 is either 0 or 1. It is obvious that ξ and η and their moments are all bounded.
The functions b(t, x), σ (t, x) and F(t, x) are bounded as (t, x) ∈ Q, and for x ∈ G,
|x |2p is also bounded. Recall that sufficiently high moments of Jε are bounded as in
(3.3). Then, using the Cauchy-Schwarz inequality, we can show that

E

[
|Qi |2p

∣∣θ, t, x
]

≤ |x |2p + K θ p + K θ2p
[
1 + |γε |2p

]

+K I(θ < h)E
[
|Jε |2p

]
≤ K (1 + θ2p|γε |2p).

Hence, we obtained (3.13). The bound (3.14) is shown analogously. ��
We will need the following technical lemma.

Lemma 3.2 (Moments of θ ) For integer p ≥ 2, we have

E
[
θ p] ≤ K

1 − e−λεh(1 + λεh)

λ
p
ε

, (3.15)

where K > 0 depends on p but is independent of λε and h.

Proof The proof is by induction. By straightforward calculations, we get

E
[
θ2
] = 2

1 − e−λεh(1 + λεh)

λ2ε
.

Then assuming that (3.15) is true for all integer p ≥ 2, we obtain

E

[
θ p+1

]
= λε

∫ h

0
t p+1e−λε t dt + h p+1λε

∫ ∞

h
e−λε t dt

= (p+1)
∫ h

0
t pe−λε t dt ≤ p + 1

λε

[
λε

∫ h

0
t pe−λε t dt + h pλε

∫ ∞

h
e−λε t dt

]
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= p + 1

λε

E
[
θ p]≤ K (p + 1)

1 − e−λεh(1+λεh)

λ
p+1
ε

.

��
Now we prove an estimate for the one-step error.

Theorem 3.1 (One–step error of Algorithm 1) Under Assumption 2.4 with l = 2,
n = 4 and Assumptions 2.1, 2.5 and 3.1 the one–step error of Algorithm 1 given by

R(t, x, y, z) := uε(t + θ, X)Y + Z − uε(t, x)y − z

satisfies the bound

∣∣E[R(t, x, y, z)]∣∣ ≤ K (1 + |γε |2)1 − e−λεh(1 + λεh)

λ2ε
y, (3.16)

where K > 0 is a constant independent of h and ε.

Proof For any smooth function v(t, x), we write Dlvn = (Dlv)(t, Qn) for the l-th
time derivative and (Dk

l v)(t, x)[ f1, . . . , fk] for the l-th time derivative of the k-th
spatial derivative evaluated in the directions f j . For example, if k = 2 and l = 1,

D2
1v[ f1, f2] =

d∑

i=1

d∑

j=1

f1,i f2, j
∂3v

∂t∂xi∂x j
.

We will also use the following short notation

Dk
l vi [ f1, . . . , fk] := (Dk

l v)(t, Qi )[ f1, . . . , fk].

The final aim of this theorem is to achieve an error estimate explicitly capturing the
(singular) dependence of the one-step error on ε. To this end, we split the error into
several parts according to the intermediate points Qi defined in (3.12).

Using (3.9) and (3.12), we have

uε(t + θ, X) = uε(t + θ, Q1)

= uε
(

t + θ, x + I(θ < h)F J + θ(b − Fγε) + θ1/2(σξ + Fβεη)
)

= uε
(

t + θ, x + �1 + �2 + �3

)
.

To precisely account for the factor γε and powers of θ in the analysis of the one-step
error, we use multiple Taylor expansions of uε(t + θ, X). We obtain

uε(t + θ, X) = uε(t, Q1) + θ D1uε
1 + R11

= uε(t, Q2) + D1uε
2[�1] + 1

2
D2uε

2[�1,�1]
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+ 1

6
D3uε

2[�1,�1,�1] + θ D1uε
2 + θ D1

1uε
2[�1]

+ R11 + R12 + R13

= uε(t, Q3) + D1uε
3[�2] + D1uε

2[�1]
+ 1

2
D2uε

3[�1,�1] + 1

6
D3uε

2[�1,�1,�1]
+ θ D1uε

3 + θ D1
1uε

2[�1] + R11 + R12 + R13 + R14 + R15 + R16

= uε(t, Q3) + D1uε
4[�2] + D1uε

2[�1] + 1

2
D2uε

4[�1,�1]

+ 1

6
D3uε

2[�1,�1,�1] + θ D1uε
4 + θ D1

1uε
2[�1] + R1, (3.17)

where the remainders are as follows

R11 = 1

2
θ2
∫ 1

0
s D2uε

(
t + (1 − s)θ, Q1

)
ds,

R12 = 1

24

∫ 1

0
s3D4uε(t, s Q2 + (1 − s)Q1)[�1,�1,�1,�1]ds,

R13 = 1

2
θ

∫ 1

0
s2D2

1uε(t, s Q2 + (1 − s)Q1)[�1,�1]ds,

R14 = 1

2

∫ 1

0
s D2uε(t, s(Q3 + (1 − s)Q2)[�2,�2]ds,

R15 = 1

2

∫ 1

0
s2D3uε(t, s(Q3) + (1 − s)Q2)[�1,�1,�2]ds,

R16 = θ

∫ 1

0
s D1

1uε(t, s(Q3) + (1 − s)Q2)[�2]ds,

R17 =
∫ 1

0
s D2uε(t, s(Q4) + (1 − s)Q3)[�2,�3]ds,

R18 = 1

2

∫ 1

0
s D3uε(t, s(Q4) + (1 − s)Q3)[�1,�1,�3]ds,

R19 = θ

∫ 1

0
s D1

1uε(t, s(Q4) + (1 − s)Q3)[�3]ds,

R1 = R11 + R12 + R13 + R14 + R15 + R16 + R17 + R18 + R19.

Using (3.17), (3.10)–(3.11), and the fact that ξ and η have mean zero and that com-
ponents of ξ, η, θ, J are mutually independent, we obtain

E[uε(t + θ, X)Y + Z ]
= E

[(
uε(t, Q3) + D1uε

4[�2] + 1

2
D2uε

4[�1,�1] + θ D1uε
4

)
(y + θcy)

+ z + θgy + y(1 + θc)R1

]
. (3.18)
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The following elementary formulas are needed for future calculations:

E

[
D2uε[�1,�1]|θ

]

= θ

d∑

i, j=1

[
ai j (t, x) +

(
F(t, x)Bε(t, x)F�(t, x)

)i j
]

∂2uε

∂xi∂x j

=: θ(a + F Bε FT ) : ∇∇uε,

uε(t, Q3) − uε(t, x) = uε(t, x + I(θ < h)F J ) − uε(t, x)

= I(θ < h)[uε(t, x + F J ) − uε(t, x)],
E[θ ] = 1 − e−λεh

λε

,

E[θ2] = 2
1 − e−λεh(1 + λεh)

λ2ε
,

E[I(θ < h)] = 1 − e−λεh,

E[I(θ < h)θ ] = 1 − e−λεh(1 + λεh)

λε

. (3.19)

Also, Ev(J ) for some v(z) will mean

E[v(J )] = E[v(Jε)] = 1

λε

∫

|s|>ε

v(s)ν(ds).

Noting that uε
4 = uε(t, x) = uε and using ( 3.18), (3.12), (3.19) and (2.15), we obtain

E [R] := E
[
uε(t + θ, X)Y + Z − uε y − z

]

= E[θ
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε

)
(y + θcy) + θgy

+ uε(t, x + I(θ < h)F J )(y + θcy) − uε y
]+ yE[(1 + θc)R1]

= E[θ
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε + cuε + g

)
y

+ [uε(t, x + I(θ < h)F J ) − uε)]y

+ θ2
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε

)
cy

+ θ
[
uε(t, x + I(θ < h)F J ) − uε

]
cy
]

+ yE[(1 + θc)R1]

= E[θ
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε + cuε + g

)
y

+ I(θ < h)[uε(t, x + F J ) − uε)]y

+ θ2
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε

)
cy

+ θI(θ < h)[uε(t, x + F J ) − uε]cy] + yE[(1 + θc)R1]
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= E[θ
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε + cuε + g

)
y]

+ E
[
I(θ < h)[uε(t, x + F J ) − uε(t, x)]y

]+ yE[R1(1 + θc) + R2]

= 1 − e−λεh

λε

(
D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) :

∇∇uε + cuε(t, x) + g
)

y

+
(
1 − e−λεh

)
E
[
uε(t, x + F J ) − uε(t, x)

]
y + yE[R0]

= 1 − e−λεh

λε

(
D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) :

∇∇uε + cuε(t, x) + g
)

y

+ 1 − e−λεh

λε

∫

|s|≥ε

{uε(t, x + Fs) − uε(t, x)}ν(ds)y + yE[R0]

= yE[R0],

where

R0 = R1(1 + θc) + R2,

R2 = R21 + R22,

and

R21 = θ2
(

D1uε + D1uε[b − Fγε] + 1

2
(a + F Bε FT ) : ∇∇uε

)
c,

R22 = θI(θ < h)[uε(t, x + F J ) − uε(t, x)]c.

It is clear that many of the terms in R are only non–zero in the case θ < h, i.e.
when a jump occurs. We rearrange the terms in R0 according to their degree in θ :

R0 = R17 + R18 + R19 + R22︸ ︷︷ ︸
I(θ<h)θ-terms

+ R11 + R12 + R13 + R14 + R15 + R16 + R21︸ ︷︷ ︸
θ2−terms

+ θc(R17 + R18 + R19)︸ ︷︷ ︸
(I(θ<h)θ2-terms

+ θc(R11 + R12 + R13 + R14 + R15 + R16)︸ ︷︷ ︸
θ3−terms

Now to estimate the terms in the error R0, we observe that (i)
∫
|s|>ε

sν(ds) =
γε + ∫

|s|>1 sν(ds) with the latter integral bounded and, in particular, |E[J ]| ≤ K (1+
|γε |)/λε; (ii) E

[|J |2p
]
, p ≥ 1, are bounded by K/λε (see (3.3)); (iii) the terms R17,

R18, R19, R21 and R22 contain derivatives of uε evaluated at or between the points Q3
and Q4 and in their estimation Assumption 2.5 and (3.14) from Lemma 3.1 are used;
(iv) the terms R11, R12 , R13, R14, R15 and R16 contain derivatives of uε evaluated at
or between the points Q1 and Q2 and in their estimation Assumption 2.5, (3.13) from
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Lemma 3.1, and Lemma 3.2 are used; (v) γ 2
ε /λε is bounded by a constant independent

of ε. As a result, we obtain

∣∣∣E
[
R17 + R18 + R19 + R22

]∣∣∣ ≤ K1
(1 + |γε |2)

λε

E [I(θ < h)θ ] ,

∣∣∣E
[
θ(R17 + R18 + R19)

]∣∣∣ ≤ K2
(1 + |γε |2)

λε

E

[
I(θ < h)θ2

]

≤ K3
(1 + |γε |2)

λε

E [I(θ < h)θ ] ,
∣∣∣E
[
(R11 + R12 + R13 + R14 + R15 + R16 + R21)

]∣∣∣

≤ K4(1 + |γε |2)(E
[
θ2
]

+ |γε |qE

[
θq+2

]
))

≤ K5(1 + |γε |2)1 − e−λεh(1 + λεh)

λ2ε
,

and
∣∣∣E
[
θ(R11 + R12 + R13 + R14 + R15 + R16)

]∣∣∣

≤ K6(1 + |γε |2)(E
[
θ3
]

+ |γε |qE

[
θq+3

]
))

≤ K7(1 + |γε |2)1 − e−λεh(1 + λεh)

λ3ε
≤ K8(1 + |γε |2)1 − e−λεh(1 + λεh)

λ2ε
,

where all constants Ki > 0 are independent of h and ε and q ≥ 1.
Overall we obtain

∣∣∣E[R]
∣∣∣ ≤ (K1 + K3)

(1 + |γε |2)
λε

yE [I(θ < h)θ ]

+ (K5 + K8)(1 + |γε |2)y
1 − e−λεh(1 + λεh)

λ2ε

≤ K

{
1

λε

E [I(θ < h)θ ] + 1 − e−λεh(1 + λεh)

λ2ε

}
(1 + |γε |2)y

= 2K (1 + |γε |2)1 − e−λεh(1 + λεh)

λ2ε
y.

��
Remark 3.4 We note the following two asymptotic regimes for the one-step error
(3.16). For λεh < 1 (in practice, this occurs only when λε is small or moderate
like it is in jump-diffusions), we can expand the exponent in (3.16) and obtain that the
one-step error is of order O(h2) :

∣∣E[R(t, x, y, z)]∣∣ ≤ K (1 + |γε |2)h2y.
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When λε is very large (e.g., for small ε in the infinite activity case) then the term
with e−λεh can be neglected and we get

∣∣E[R(t, x, y, z)]∣∣ ≤ K
1 + |γε |2

λ2ε
y.

The usefulness of amore precise estimate (3.16) is that it includes situations in between
these two asymptotic regimes and also allows to consider an interplay between h and
ε (see Sect. 3.5).

3.3 Global error

In this section we obtain an estimate for the global weak-sense error of Algorithm 1.
We first estimate average number of steps E [κ] of Algorithm 1.

Lemma 3.3 (Number of steps) The average number of steps κ for the chain Xk from
Algorithm 1 satisfies the following bound

E [κ] ≤ (T − t0)λε

1 − e−λεh
+ 1.

Proof It is obvious that if we replace the bounded domain G in Algorithm 1 with
the whole space R

d (i.e., replace the Dirichlet problem by the Cauchy one), then
the corresponding number of steps κ

′ of Algorithm 1 is not less than κ. Hence it is
sufficient to get an estimate for E

[
κ

′] . Let δ1, δ2, . . . be the interarrival times of the

jumps, θi = δi ∧ h for i ≥ 0, and Sk = ∑k−1
i=0 θi for k ≥ 0. Then

κ ≤ κ
′ := inf{l : Sl ≥ T − t0}.

Introduce the martingale: S̃0 = 0 and S̃k := Sk − kE [θ ] for k ≥ 1. Since θi ≤ h we
have that S̃κ′−1 ≤ Sκ′−1 < T − t0 almost surely and thus by the optional stopping
theorem we obtain

E
[
S̃κ′−1

] = E
[
S̃0
] = 0.

Therefore

E
[
Sκ′−1

] = E[κ′ − 1] · E[θ ]

and we conclude

E [κ] ≤ E
[
κ

′] = E[κ′ − 1] + 1

= E
[
Sκ′−1

]

E [θ ]
+ 1 ≤ (T − t0)λε

1 − e−λεh
+ 1.

��
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We also need the following auxiliary lemma.

Lemma 3.4 (Boundedness of Yk in Algorithm 1) The chain Yk defined in (3.6) is
uniformly bounded by a deterministic constant:

Yk ≤ ec̄(T −t0+h),

where c̄ = max(t,x)∈Q̄ c(t, x).

Proof From (3.6), we can express Yk via previous Yk−1 and get the required estimate
as follows:

Yk = Yk−1(1 + θkc(tk−1, xk−1) ≤ Yk−1(1 + θk c̄)

≤ Yk−1ec̄θk ≤ Yk−2ec̄(θk+θk−1) ≤ Y0ec̄(ϑk−t0) ≤ ec̄(T −t0+h).

��
Now we prove the convergence theorem for Algorithm 1.

Theorem 3.2 (Global error of Algorithm 1) Under Assumption 2.4 with l = 2, m = 4
and Assumptions 2.1, 2.5 and 3.1, the global error of Algorithm 1 satisfies the following
bound

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − uε(t0, x0)
∣∣

≤ K (1 + |γε |2)
(

1

λε

− h
e−λεh

1 − e−λεh

)
+ K

1 − e−λεh

λε

, (3.20)

where K > 0 is a constant independent of h and ε.

Proof Recall (see (2.9)):

uε(t, x) = E
[
ϕ
(
τ̃t,x , X̃t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃t,x,1,0(̃τt,x )

]
.

The global error

R := ∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − uε(t0, x0)
∣∣

can be written as

R = ∣∣E[I(ϑκ ≥ T )
(
ϕ(ϑ̄κ, Xκ)Yκ

−uε(ϑκ, Xκ)Yκ

)+ uε(ϑκ, Xκ)Yκ + Zκ − uε(t0, x0)]
∣∣

≤ ∣∣E[I(ϑκ ≥ T )
(
ϕ(ϑ̄κ, Xκ)Yκ − uε(ϑκ, Xκ)Yκ

)]∣∣+ ∣∣E[uε(ϑκ, Xκ)Yκ

+ Zκ − uε(t0, x0)]
∣∣. (3.21)
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Using Lemma 3.4, Assumption 2.5 and Lemmas 3.1 and 3.2 as well as that ϑ̄κ −ϑκ ≤
θκ , we have for the first term in (3.21):

E[I(ϑκ ≥ T )
(
ϕ(ϑ̄κ, Xκ)Yκ − uε(ϑκ, Xκ)Yκ

)] ≤ K E
[
θκ(1 + |γε |qθq

κ
)
]

≤ K
1 − e−λεh

λε

, (3.22)

where K > 0 does not depend on h or ε.

For the second term in (3.21), we exploit ideas from [19] to re-express the global
error. We get using Theorem 3.1 and Lemmas 3.4 and 3.3:

∣∣E[uε(ϑκ, Xκ)Yκ + Zκ − uε(t0, x0)]
∣∣

=
∣∣∣∣∣E
[

κ−1∑

k=0

E

[
uε(ϑk+1, Xk+1)Yk+1+Zk+1 − uε(ϑk, Xk)Yk −Zk

∣∣∣ϑk, Xk, Yk, Zk

]]∣∣∣∣∣

=
∣∣∣∣∣E
[

κ−1∑

k=0

E

[
R(ϑk, Xk, Yk, Zk)

∣∣∣ϑk, Xk, Yk, Zk

]]∣∣∣∣∣

≤ E

[
κ−1∑

k=0

1 − e−λεh(1 + λεh)

λ2ε
K (1 + |γε |2)Yk

]

≤ K
1 + |γε |2

λ2ε

(
1 − e−λεh(1 + λεh)

)
E [κ]

≤ K (1 + |γε |2)
(

1

λε(1 − e−λεh)
− h

e−λεh

1 − e−λεh

)
(T − t0)

≤ K (1 + |γε |2)
(

1

λε

− h
e−λεh

1 − e−λεh

)
, (3.23)

where, as usual constants K > 0 are changing from line to line. Combining ( 3.21)–
(3.23), we arrive at (3.20). ��
Remark 3.5 (Error estimate and convergence) Note that the error estimate in Theo-
rem 3.2 gives us the expected results in the limiting cases (see also Remark 3.4). If
λεh < 1, we obtain:

R ≤ K (1 + |γε |2)h,

which is expected for weak convergence in the jump-diffusion case.
If λε is large (meaning that almost always θ < h), the error is tending to

R ≤ K (1 + |γε |2) 1

λε

,

as expected (cf. [11]).
We also remark that for any fixed λε , we have first order convergence when h → 0.
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Remark 3.6 In the case of symmetric measure ν(z) we have γε = 0 and hence the
global error (3.20) becomes

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − uε(t0, x0)
∣∣

≤ K

(
1

λε

− h
e−λεh

1 − e−λεh

)
+ K

1 − e−λεh

λε

. (3.24)

3.4 Remark on the Cauchy problem

Let us set G = R
d in (2.15) and hence consider the Cauchy problem for the PIDE:

∂uε

∂t
+ Lεuε + c(t, x)uε + g(t, x) = 0, (t, x) ∈ Q,

uε(T , x) = ϕ(x), x ∈ R
d . (3.25)

In this case Algorithm 1 stops only when ϑκ ≥ T as there is no spatial boundary
(and hence we write uε(T , x) = ϕ(x) instead of uε(T , x) = ϕ(T , x)). Theorem 3.1
remains valid for the Cauchy problem, although in this case one should replace the
constant K in the right-hand side of the bound (3.16) with a function K (x) > 0
satisfying

K (x) ≤ K̃ (1 + |x |2q)

with some constants K̃ > 0 and q ≥ 1. Consequently, to prove an analogue of the

global convergenceTheorem3.2,weneed to prove boundedness ofmomentsE

[
X2p

k

]
.

Let

Xk ≡ Xκ for all k ≥ κ. (3.26)

Lemma 3.5 Under Assumptions 2.1, 2.2, and 3.1, we have for Xk from Algorithm 1:

E

[
|Xk |2p

]
≤ K (1 + |x |2p) (3.27)

with some constants K > 0 and p ≥ 1.

Proof As usual, in this proof K > 0 is a constant independent of ε and h which can
change from line to line in derivations. We first prove the lemma for an integer p ≥ 1.

Noting (3.26), we have

|Xk+1|2p = |(Xk+1 − Xk) + Xk |2p = |(Xk+1 − Xk)I(κ > k) + Xk |2p

=
(
|Xk |2 + 2I(κ > k)(Xk, Xk+1 − Xk) + I(κ > k)|Xk+1 − Xk |2

)p

≤ |Xk |2p + I(κ > k)2p |Xk |2p−2 (Xk, Xk+1 − Xk)

123



Randomwalk algorithm for the Dirichlet problem for…

+ K
2p∑

l=2

I(κ > k) |Xk |2p−l |Xk+1 − Xk |l . (3.28)

For κ > k:

Xk+1 − Xk = θk+1 (b(ϑk, Xk) − F(ϑk, Xk)γε) +√
θk+1 (σ (ϑk, Xk)ξk

+F(ϑk, Xk)βεη) + I(θk+1 < h)F(ϑk, Xk)Jε,k+1.

Then

E
[
Xk+1 − Xk |ϑk , Xk

] = E
[
I(κ > k)

(
Xk+1 − Xk

) |ϑk , Xk
]

= I(κ > k) (b(ϑk , Xk) − F(ϑk , Xk)γε) E
[
θk+1

]

+ I(κ > k)F(ϑk , Xk)E
[
I(θk+1 < h)Jε,k+1

]

= I(κ > k)
1 − e−λεh

λε

[
b(ϑk , Xk) + F(ϑk , Xk)

∫

|s|>1
sν(ds)

]
,

where we used

− γεE
[
θk+1

]+ E
[
I(θk+1 < h)Jε,k+1

]

= −γε

1 − e−λεh

λε

+
(
1 − e−λεh

) [γε

λε

+ 1

λε

∫

|s|>1
sν(ds)

]

= 1 − e−λεh

λε

∫

|s|>1
sν(ds).

Then, by the linear growth Assumption 2.2, we get

∣∣∣E
[
|Xk |2p−2 (Xk, Xk+1 − Xk)

]∣∣∣

≤ K
1 − e−λεh

λε

(
E

[
I(κ > k)|Xk |2p−2

]
+ E

[
I(κ > k)|Xk |2p

])

≤ K
1 − e−λεh

λε

(
1 + E

[
I(κ > k)|Xk |2p

])
(3.29)

using thatE
[
I(κ > k)|Xk |2p−2

] ≤ K
(
1 + E

[
I(κ > k)|Xk |2p

])
byYoung’s inequal-

ity.
For the last term in (3.28), using the linear growth Assumptions 2.2 and 3.1, we get

for l = 2, . . . , 2p:

E

[
|Xk+1 − Xk |l |ϑk, Xk

]
≤ K I(κ > k)

(
1 + |Xk |l

)
E

[
θ

l/2
k+1

]

+K I(κ > k)
(
1 + |Xk |l

)
(1 + |γε |l)E

[
θ l

k+1

]
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+K I(κ > k)
(
1 + |Xk |l

)
E

[
|Jε,k+1|l

]
E
[
I(θk+1 < h)

]

≤ K I(κ > k)
(
1 + |Xk |l

) 1 − e−λεh

λε

,

where to obtain the last line we used that θ l/2
k+1 for odd l is estimated by K (θ

(l−1)/2
k+1 +

θ
(l+1)/2
k+1 ) and exploited Lemma 3.2, boundedness of

|γε |l
λ

l/2
ε

and (3.3). Then

E

[
|Xk |2p−l |Xk+1 − Xk |l

]

≤ K
1 − e−λεh

λε

(
1 + E

[
(I(κ > k)|Xk |)2p

])

and

2p∑

l=2

E

[
|Xk |2p−l |Xk+1 − Xk |l

]

≤ K
1 − e−λεh

λε

(
1 + E

[
(I(κ > k)|Xk |)2p

])
. (3.30)

Combining (3.28)–(3.30), we get

E

[
|Xk+1|2p

]
≤ E

[
|Xk |2p

]
+ K

1 − e−λεh

λε

(
1 + E

[
(I(κ > k)|Xk |)2p

])

= E

[
|Xk |2p

]
+ KE

[
�k+1I(κ > k)|Xk |2p

]
+ KE

[
�k+1

]
,

whence

E

[
|Xκ |2p

]
≤ |x0|2p + KE

κ−1∑

k=0

�k+1|Xk |2p + K (T + h − t0). (3.31)

Introduce a continuous time piece-wise constant process

Ũ (t) = |Xk |2p for t ∈ [ϑk, ϑk+1), k = 0, . . . , κ − 1,

and

Ũ (t) = |Xκ |2p for t ≥ ϑκ .

Then we can write (3.31) as

E
[
Ũ (ϑκ)

] = E
[
Ũ (T + h)

] ≤ |x0|2p + K (T + h − t0) + KE

[∫ ϑκ

t0
Ũ (t)ds

]
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≤ |x0|2p + K (T + h − t0) + K
∫ T +h

t0
E
[
Ũ (t)

]
ds.

By Gronwall’s inequality, we get

E
[
Ũ (ϑκ)

] ≤ eK (T +h−t0)(K (T + h − t0) + |x0|2p),

implies (3.27) for integer p ≥ 1. Then, by Jensen’s inequality, (3.27) holds for non-
integer p ≥ 1 as well. ��

Based on the discussion before Lemma 3.5 and on the moments estimate (3.27)
of Lemma 3.5, it is not difficult to show that the global error estimate (3.20) for
Algorithm 1 also holds in the Cauchy problem case.

3.5 The case of infinite intensity of jumps

In this section we combine the previous results, Theorem 2.1 and 3.2, to obtain an
overall error estimate for solving the problem (1.1) in the case of infinite intensity of
jumps by Algorithm 1. We obtain

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − u(t0, x0)
∣∣

≤ K (1 + |γε |2)
(

1

λε

− h
e−λεh

1 − e−λεh

)
+ K

1 − e−λεh

λε

+ K
∫

|z|≤ε

|z|3ν(dz),

(3.32)

where K > 0 is independent of h and ε.

Let us consider an α-stable process in which the Lévy measure has the following
singular behaviour near zero

ν(dz) ∼ |z|−m−αdz, α ∈ (0, 2), (3.33)

i.e., we are focusing our attention here on the singularity near zero only and the sign
∼ means that the limit of the ratio of both sides equals to some positive constant.
Consequently, all calculations are done in this section up to positive constant factors
independent of ε and h. The behaviour (3.33) is typical for m-dimensional Lévy
measures near zero (see e.g. [2, p. 37] and also the one-dimensional Example 2.1).
Then

λε =
∫

|z|≥ε

ν(dz) ∼ ε−α,

γ 2
ε =

m∑

i=1

[∫

ε≤|z|≤1
ziν(dz)

]2
∼ ε2−2α for α �= 1

and γ 2
ε ∼ |ln|2 for = 1,

123



G. Deligiannidis et al.

∫

|z|≤ε

|z|3ν(dy) ∼ ε3−α.

Hence

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − u(t0, x0)
∣∣

≤ K

[
(1 + γ 2

ε )

(
εα − h

e−ε−αh

1 − e−ε−αh

)
+ εα

(
1 − e−ε−αh

)
+ ε3−α

]
. (3.34)

Let us measure the computational cost of Algorithm 1 in terms of the average number
of steps (see Lemma 3.3). Since

E [κ] ≤ (T − t0)λε

1 − e−λεh
≤ K

ε−α

1 − e−ε−αh
,

we choose to use the cost associated with the average number of steps as

C := ε−α

1 − e−ε−αh
.

We fix a tolerance level ρtol and require ε and h to be so that

ρtol = ρ(ε, h) := (1 + γ 2
ε )

(
εα − he−ε−αh

1 − e−ε−αh

)
+ εα

(
1 − e−ε−αh

)
+ ε3−α.

Note that since we are using the Euler scheme for SDEs’ approximation, the decrease
of ρtol in terms of cost cannot be faster than linear. We now consider three cases of α.

The case α ∈ (0, 1) We have

ρ(ε, h) ≤ ε2−α + 2εα + ε3−α = O(εα)

and, by choosing sufficiently small ε, we can reach the required ρtol . It is optimal to
take h = ∞ (in practice, taking h = T − t0) and the cost is then C = 1/εα. Hence
ρtol is inversely proportional to C, and convergence is linear in cost (to reduce ρtol

twice, we need to double C).

The case α = 1 We have

ρ(ε, h) = (1 + |ln|2)
(

ε − he−ε−1h

1 − e−ε−1h

)
+ ε

(
1 − e−ε−1h

)
+ ε2 = O(ε|ln|2),

i.e. convergence is almost linear in cost.
The case α ∈ (1, 2) If we take h = ∞, then ρ(ε, h) = O(ε2−α) and the convergence
order in terms of cost is 2/α − 1, which is very slow (e.g., for α = 3/2, the order is
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1/3 and for α = 1.9, the order is ≈ 0.05). Let us now take h = ε� with � ≥ α. Then

ρ(ε, h) = ρ(ε, ε�) = (1 + ε2−2α)

(
εα − ε�e−ε�−α

1 − e−ε�−α

)
+ εα

(
1 − e−ε�−α

)
+ ε3−α

≤ (1 + ε2−2α)ε� + ε� + ε3−α = ε2−2α+� + 2ε� + ε3−α

and C ≈ 1/h = ε−�. The optimal � = 1 + α, for which ρ(ε, h) = O(ε3−α) and the
convergence order in terms of cost is (3− α)/(1+ α), which is much better (e.g., for
α = 3/2, the order is 3/5 and it cannot be smaller than 1/3 for any α ∈ (1, 2)). Note
that in the case of symmetric measure ν(z) (see Remark 3.6), convergence is linear in
cost for α ∈ (1, 2).

To conclude, for α ∈ (0, 1) we have first order convergence and there is no benefit
of restricting jump adapted steps by h (see a similar result in the case of the Cauchy
problem and not restricted jump-adapted steps in [12]). However, in the case of α ∈
(1, 2), it is beneficial to use restricted jump-adapted steps to get the order of (3 −
α)/(1+α). We also recall that restricted jump-adapted steps should typically be used
for jump-diffusions (the finite activity case when there is no singularity of λε and
γε) because jump time increments δ typically take too large values and to control the
error at every step we should truncate those times at a sufficiently small h > 0 for a
satisfactory accuracy.

4 Numerical experiments

In this section we illustrate the theoretical results of Sect. 3. In particular, we display
the behaviour in the case of infinite intensity of jumps for different regimes of α. We
showcase numerical tests of Algorithm 1 in four different examples: (i) a non-singular
Lévy measure (Example 4.1), (ii) a singular Lévy measure which is similar to that of
Example 2.1 (seeExample 4.2), and (iii) pricing a foreign-exchange (FX)barrier basket
option where the underlying model is of exponential Lévy-type (Example 4.3) and (iv)
pricing a FX barrier option showing that the convergence orders hold (Example 4.4).

As it is usual for weak approximation (see e.g. [19]), in simulations we complement
Algorithm 1 by the Monte Carlo techniques and evaluate u(t0, x) or uε(t0, x) as

ū(t0, x) := E
[
ϕ(ϑ̄κ, Xκ)Yκ + Zκ

] � û = 1

M

M∑

m=1

[
ϕ(ϑ̄(m)

κ
, X (m)

κ
)Y (m)

κ
+ Z (m)

κ

]
,

(4.1)

where (ϑ̄
(m)
κ , X (m)

κ , Y (m)
κ , Z (m)

κ ) are independent realisations of (ϑ̄κ, Xκ, Yκ, Zκ).
The Monte Carlo error of (4.1) is

√
DM := (Var

[
ϕ(ϑ̄κ, Xκ)Yκ + Zκ

]
)1/2

M1/2 �
√

D̄M ,
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where

D̄M = 1

M

⎡

⎣ 1

M

M∑

m=1

[
�(m)

]2 −
(

1

M

M∑

m=1

�(m)

)2⎤

⎦ ,

and �(m) = ϕ
(
ϑ̄

(m)
κ , X (m)

κ

)
Y (m)

κ + Z (m)
κ . Then ū(t0, x) falls in the corresponding

confidence interval û ± 2
√

D̄M with probability 0.95.

4.1 Example with a non-singular Lévymeasure

In this subsection, we illustrate Algorithm 1 in the case of a simple non-singular Lévy
measure (i.e., the jump-diffusion case), where there is no need to replace small jumps
and hence we directly approximate u(t0, x) rather than uε(t0, x). Consequently, the
numerical integration error does not depend on ε. We recall (see Theorem 3.2) that
Algorithm 1 has first order of convergence in h.

Example 4.1 (Non-singular Lévy measure) To construct this and the next example,
we use the same recipe as in [18,19]: we choose the coefficients of the problem (1.1)
so that we can write down its solution explicitly. Having the exact solution is very
useful for numerical tests.

Consider the problem (1.1) with d = 3, G = U1 which is the open unit ball centred
at the origin in R

3, and with the coefficients

a11(t, x) = 1.21 − x22 − x23 , a22 = 1, a33 = 1, ai j = 0, i �= j, b = 0, (4.2)

F(t, x) = ( f , f , f )T , f ∈ R, (4.3)

g(t, x) := 1

2
et−T (1.21 − x41 − x42 ) + 6(1 − 1

2
et−T )

[
x21 (1.21 − x22 − x23 ) + x22

]

+(1 − 1

2
et−T )

[
(C+ − C−)

4 f

μ2 (x31 + x32 ) + (C+ + C−)
12 f 2

μ3 (x21 + x22 )

+(C+ − C−)
24 f 3

μ4 (x1 + x2) + (C+ + C−)
48 f 4

μ5

]
, (4.4)

with the boundary condition

ϕ(t, x) = (1 − 1
2e

t−T )(1.21 − x41 − x42 ) (4.5)

and with the Lévy measure density

ν(dz) =
{

C−e−μ|z|dz, if z < 0,

C+e−μ|z|dz, if z > 0,

whereC− andC+ are some positive constants. Note that, keeping inmind Remark 2.3,
the coefficients from (4.2)–(4.4) satisfy Assumptions 2.1–2.2.
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It is not difficult to verify that this problem has the solution

u(t, x) = (1 − 1
2e

t−T )(1.21 − x41 − x42 ).

and we also find

λ =
∫

|z|>0
ν(dz) =

∫

R

ν(dz) = C+ + C−
μ

,

ρ(z) = C−e−μ|z|I(z < 0) + C+e−μ|z|I(z > 0)

λ
.

We simulated jump sizes by analytically inverting the cumulative distribution function
corresponding to the density ρ(z) and making use of uniform random numbers in the
standard manner.

Here the absolute error e is given by

e = |û − u|, (4.6)

where the true solution for the point (0, 0) is u = u(0, 0) ≈ 0.987433. The expected
convergence order O(h) can be clearly seen in Fig. 1 and Table 1.

Fig. 1 Non-singular Lévy measure example: dependence of the error e on h, the error bars show the Monte
Carlo error. The parameters used are T = 1, C+ = 30, C− = 1.0, μ = 3.0, f = 0.1, M = 40,000,000
and û is evaluated at the point (0, 0)
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Table 1 Non-singular Lévy
measure example h û 2

√
D̂M e κ̂

0.1 0.9367 0.0004 0.0507 7.72 ± 0.0037

0.05 0.9612 0.0004 0.0262 11.04 ± 0.0056

0.025 0.9742 0.0004 0.0133 17.85 ± 0.0096

0.01 0.9821 0.0003 0.0054 37.85 ± 0.0217

0.005 0.9850 0.0003 0.0024 70.90 ± 0.0416

The parameters are the same as in Fig. 1. The column κ̂ gives the
sample average of the number of steps together with its Monte Carlo
error

4.2 Example with a singular Lévymeasure

In this subsection, we confirm dependence of the error of Algorithm 1 on the cut-off
parameter ε for jump sizes and on the parameter α of the Lévy measure as well as
associated computational costs which were derived in Sect. 3.5.

Example 4.2 (Singular Lévy measure) Consider the problem (1.1) with d = 3, G =
U1 which is the open unit ball centred at the origin in R

3, and with the coefficients as
in (4.2), (4.3), and

g(t, x) := 1

2
et−T (1.21 − x41 − x42 ) + 6(1 − 1

2
et−T )

[
x21 (1.21 − x22 − x23 ) + x22

]

+ (1 − 1

2
et−T )

[
(C+ − C−) f

(
4

μ
+ 4

μ2

)
(x31 + x32)

+ (C+ + C−) f 2
(

6

2 − α
+ 6

μ
+ 12

μ2 + 12

μ3

)
(x21 + x22 )

+ (C+ − C−) f 3
(

4

3 − α
+ 4

μ
+ 12

μ2 + 24

μ3 + 24

μ4

)
(x1 + x2)

+ (C+ + C−) f 4
(

2

4 − α
+ 2

μ
+ 8

μ2 + 24

μ3 + 48

μ4 + 48

μ5

)]
, (4.7)

with the boundary condition (4.5), and with the Lévy measure density

ν(dz) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C−e−μ(|z|−1)dz, if z < −1,

C−|z|−(α+1)dz, if − 1 ≤ z < 0,

C+|z|−(α+1)dz, if 0 < z ≤ 1,

C+e−μ(|z|−1)dz, if z > 1,

(4.8)

where C−, C+, and μ are some positive constants and α ∈ (0, 2).
We observe thatC− �= C+ gives an asymmetric jumpmeasure and the Lévy process

has infinite activity and, if α ∈ [1, 2), infinite variation. Note that, keeping in mind
Remark 2.3, the coefficients from (4.2), ( 4.3), (4.7) satisfy Assumptions 2.1–2.2.
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Fig. 2 Singular Lévymeasure example, the case α = 0.5: dependence of the error e on ε, the error bars show
the Monte Carlo error. The parameters used are T = 1, C+ = 0.1, C− = 1.0, μ = 3.0, f = 0.2, M =
40,000,000 and û is evaluated at the point (0, 0)

It is not difficult to verify that this problem has the following solution

u(t, x) = (1 − 1
2e

t−T )(1.21 − x41 − x42 ).

Other quantities needed for the algorithm take the form

γε = (C+ − C−)
1 − ε1−α

1 − α
, α �= 1,

Bε = (C+ + C−)
ε2−α

2 − α
,

βε = √
Bε =

√

(C+ + C−)
ε2−α

2 − α
,

λε =
∫

|z|>ε

ν(dz) = (C+ + C−)

(
1

μ
+ ε−α − 1

α

)
,

ρε(z) = 1

λε

[C−e−μ(|z|−1)I(z < −1) + C−|z|−(α+1)I(−1 ≤ z < −ε)

+ C+|z|−(α+1)I(ε < z ≤ 1) + C+e−μ(|z|−1)I(z > 1)],
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Table 2 Singular Lévy measure example for α = 0.5 and h = 1

ε û 2
√

D̂M e λε γε κ̂

0.0025 0.9610 0.0004 0.0265 42.2 − 1.71 17.10 ± 0.0096

0.001 0.9713 0.0004 0.0162 67.7 − 1.74 25.78 ± 0.0149

0.0005 0.9761 0.0004 0.0113 96.6 − 1.76 35.45 ± 0.0208

0.00025 0.9795 0.0003 0.0080 137.3 − 1.77 48.96 ± 0.0290

0.0001 0.9822 0.0003 0.0052 218.2 − 1.78 75.53 ± 0.0452

0.00005 0.9841 0.0003 0.0033 309.3 − 1.79 105.32 ± 0.0633

0.000025 0.9850 0.0003 0.0024 438.2 − 1.79 147.07 ± 0.0888

0.00001 0.9858 0.0003 0.0016 693.9 − 1.79 229.51 ± 0.1393

The parameters are the same as in Fig. 2. The column κ̂ gives the sample average of the number of steps
together with its Monte Carlo error

In this example, the absolute error e is given by

e = |ûε − u|. (4.9)

For the case of α = 0.5, we can clearly see in Fig. 2 and Table 2 that the error
is of order O(εα) = O(ε0.5) as expected. We also observe linear convergence in
computational cost (measured in average number of steps). In addition we note that
choosing a smaller time step, e.g. h = 0.1, does not change the behaviour in this case
which is in accordance with our prediction of Sect. 3.5 (Fig. 3).

Numerical results for the case α = 1.5 are given in Figs. 4 and 5 and Tables 3
and 4. As is shown in Sect. 3.5, convergence (in terms of computational costs) can be
improved in the case of α ∈ (1, 2) by choosing h = ε1+α . In Fig. 5, for all ε it can be
seen that choosing a smaller (but optimally chosen) step parameter h results in quicker
convergence (i.e., for the same cost, we can achieve a better result if h is chosen in an
optimal way) and naturally in a smaller error.

We recall that if the jump measure is symmetric, i.e. C− = C+ in the considered
example, then γε = 0 and the numerical integration error of Algorithm 1 is no longer
singular (see Theorem 3.2 and Remark 3.6). Consequently (see Sect. 3.5), in this case
the computational cost depends linearly on ε even for α = 1.5, which is confirmed
on Fig. 6.

4.3 FX option pricing under a Lévy-type currency exchangemodel

In this subsection, we demonstrate the use of Algorithm 1 for pricing financial deriva-
tives where underliers follow a Lévy process. We apply the algorithm to estimate the
price of a foreign exchange (FX) barrier basket option. A barrier basket option gives
the holder the right to buy or sell a certain basket of assets (here foreign currencies) at
a specific price K at maturity T in the case when a certain barrier event has occurred.
The most used barrier-type options are knock-in and knock-out options. This type of
option becomes active (or inactive) in the case of the underlying price S(t) reaching
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Fig. 3 Singular Lévy measure example, the case α = 0.5: dependence of the error e on the average number
of steps (computational costs). The parameters are the same as in Fig. 2

Fig. 4 Singular Lévy measure example, the case α = 1.5: dependence of the error e on ε, the error bars
show the Monte Carlo error. The parameters used are T = 1, C+ = 1.0, C− = 25.0, μ = 3.0, f =
1.0, M = 100,000,000 and û is evaluated at the point (0, 0)
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Fig. 5 Singular Lévy measure example, the case α = 1.5: dependence of the error e on the average number
of steps (computational costs), the error bars show the Monte Carlo error. The parameters are the same as
in Fig. 4

Table 3 Singular Lévy measure example for α = 1.5 and h = 1

ε û 2
√

D̂M e λε γε κ̂

0.05 1.0862 0.0011 0.0988 1541.7 − 166.7 15.473 ± 0.002

0.04 1.0814 0.0011 0.0939 2158.0 − 192.0 20.381 ± 0.003

0.03 1.0683 0.0010 0.0809 3327.1 − 229.1 29.531 ± 0.005

0.02 1.0499 0.0010 0.0625 6119.6 − 291.4 51.020 ± 0.008

0.01 1.0216 0.0010 0.0342 17324.7 − 432.0 135.633 ± 0.022

0.009 1.0187 0.0010 0.0313 20292.4 − 458.0 157.883 ± 0.026

0.008 1.0158 0.0010 0.0284 24215.4 − 488.7 187.252 ± 0.030

The parameters are the same as in Figs. 4 and 5. The column κ̂ gives the sample average of the number of
steps together with its Monte Carlo error

a certain threshold (the barrier) B before reaching its maturity. In most cases barrier
option prices cannot be given explicitly and therefore have to be approximated. We
illustrate that the algorithm successfully works in the multidimensional case in Exam-
ple 4.3 and also experimentally demonstrate the convergence orders in Example 4.4,
where Assumptions 2.3–2.5 do not hold.
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Table 4 Singular Lévy measure example for α = 1.5 and adjusted h = ε1+α

ε h û 2
√

D̂M e λε γε κ̂

0.1 0.0031623 1.0872 0.0011 0.0998 539.5 − 103.8 7.677 ± 0.001

0.09 0.00243 1.0829 0.0011 0.0955 633.3 − 112.0 8.972 ± 0.001

0.08 0.0018102 1.0769 0.0011 0.0895 757.4 − 121.7 10.619 ± 0.002

0.075 0.0015405 1.0739 0.0011 0.0864 835.2 − 127.3 11.688 ± 0.002

0.07 0.0012964 1.0680 0.0011 0.0806 927.2 − 133.4 13.001 ± 0.002

0.06 0.00088182 1.0530 0.0011 0.0655 1170.7 − 148.0 16.916 ± 0.003

0.055 0.00070943 1.0453 0.0011 0.0579 1335.1 − 156.7 19.704 ± 0.003

0.05 0.00055902 1.0380 0.0011 0.0506 1541.7 − 166.7 23.499 ± 0.004

0.04 0.00032 1.0236 0.0010 0.0362 2158.0 − 192.0 36.188 ± 0.006

0.03 0.00015588 1.0099 0.0010 0.0225 3327.1 − 229.1 65.664 ± 0.011

0.02 5.6569e−05 0.9987 0.0010 0.0112 6119.6 − 291.4 160.570 ± 0.026

0.01 1e−05 0.9906 0.0010 0.0032 17324.7 − 432.0 812.350 ± 0.132

The parameters are the same as in Figs. 4 and 5

Fig. 6 Dependency of ε on error plot for a simulation example with symmetric singular Lévy measure for
α = 1.5. The parameters used are T = 1, C+ = 0.5, C− = 0.5, μ = 3.0, f = 1.0, M = 100,000,000
and û is evaluated at the point (0, 0)
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Example 4.3 (Barrier basket option pricing) Let us consider the case with five curren-
cies: GBP, USD, EUR, JPY and CHF, and let us assume that the domestic currency is
GBP. We denote the corresponding spot exchange rates as

S1(t) = SU SDG B P (t), S2(t) = SEU RG B P (t), S3(t) = SJ PY G B P (t), S4(t) = SC H FG B P (t),

where SF O R DO M (t)describes the amount of domestic currencyDOMonepays/receives
for one unit of foreign currency FOR (for more details see [5,25]). We assume that
under a risk-neutral measureQ the dynamics for the spot exchange rates can be written
as

Si (t) = Si (t0) exp((rG B P − ri )(t − t0) + Xi (t)), i = 1, 2, 3, 4,

where ri are the corresponding short rates of USD, EUR, JPY, CHF and rG B P is the
short rate for GBP, which are for simplicity assumed to be constant; and X(t) is a
4-dimensional Lévy process similar to (2.1) with a single jump noise:

X(t) =
t∫

t0

b(t, X(s−))ds +
t∫

t0

σ(s, X(s−))dw(s) +
t∫

t0

∫

R

F(s, S(s−))z N̂ (dz, ds).

(4.10)

Here w(t) = (w1(t), w2(t), w3(t), w4(t))� is a 4-dimensional standard Wiener pro-
cess. As ν(z), we choose the Lévy measure with density (4.8) as in Example 4.2 and
we take F(t, x) = ( f1, f2, f3, f4)�. We also assume that σ(s, x) is a constant 4 × 4
matrix.

The risky asset for a domestic GBP business are the foreign currencies Yi (t) =
Bi (t) · Si (t), where Bi (t) denotes the foreign currency (account). Under the measure
Q all the discounted assets Ỹi (t) = e(ri −rG B P )(t−t0)Si (t) = Si (t0) exp(Xi (t)) have to
be martingales on the domestic market (therefore discounted by the domestic interest
rate) to avoid arbitrage. Using the Ito formula for Lévy processes, we can derive the
SDEs for Ỹi (see e.g. [2, p. 288]):

dỸi

Ỹi
=
⎡

⎢⎣bi (t, X(s−)) + 1

2

4∑

j=1

σ 2
i j +

∫

|z|<1

(
e fi z − 1 − fi z

)
ν(dz)

⎤

⎥⎦ dt

+
4∑

j=1

σi j dw j (s) +
∫

R

(
e fi z − 1

)
N̂ (dz, ds). (4.11)

Hence, for all Ỹi to be martingales, the drift component bi has to be so that

bi = −1

2

4∑

j=1

σ 2
i j −

∫

R

(
e fi z − 1 − fi zI|z|<1

)
ν(dz)
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Table 5 Market data for 4 currency pairs

Market data Correlation data ρi j

Currency pair i Si (0) ri σi USDGBP EURGBP JPYGBP

USDGBP 0.81 0.02 0.095

EURGBP 0.88 0.00 0.089 0.87

JPYGBP 0.0075 − 0.011 0.071 0.94 0.77

CHFGBP 0.90 0.075 0.110 0.86 0.93 0.96

rG B P 0.01

Here σi are volatilities for the corresponding pairs and ρi j are the correlation coefficients for the corre-
sponding two pairs

= −1

2

4∑

j=1

σ 2
i j − C−

μ + fi
e− fi − C+

μ − fi
e fi − C+ − C−

μ
− Ii (α, C+, C−),

(4.12)

where

Ii (α, C+, C−) =
∞∑

n=2

(C+ + C−(−1)n) f n
i

n!(n − α)
.

We also note that
∫

|z|>1
e fi zν(dz) < ∞

is satisfied by (4.8) if fi < μ.
Let us consider a down-and-out (DAO) put option, which can be written as

Pt0 (T , K ) = exp−rG B P (T −t0) E

⎡

⎣I
(

min
t0≤t≤T

S(t) > B

)
max

⎛

⎝K −
4∑

i=1

wi Si (T ), 0

⎞

⎠

⎤

⎦ ,

(4.13)

where I
(

min
t0≤t≤T

S(t) > B

)
= 1 if for any of the underlying exchange rates Si (t) >

Bi , t0 ≤ t ≤ T , otherwise it is zero.
We use Algorithm 1 (the algorithm is applied to X from (4.10) and then S is com-

puted as exp(X) to achieve higher accuracy) together with the Monte Carlo technique
to evaluate this barrier basket option price (4.13). In Table 5, market data for the 4
currency pairs are given, and in Table 6 the option and model parameters are provided,
which are used in simulations here.

To find the matrix σ = {σi j } used in the model (4.10), we form the matrix a using
the volatility σi and correlation coefficient data from Table 5 in the usual way, i.e.,
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Table 6 Option and model parameters for Example 4.3

Option parameter Model parameter

Currency pair Barrier Bi wi Jump factor fi α 1.5

USDGBP 0.50 0.20 t0 0.0 0.10 C+ 0.3

EURGBP 0.60 0.25 T 1.0 0.15 C− 1.2

JYNGBP 0.0045 0.45 K 0.5 0.05 μ 3.0

CHFGBP 0.55 0.10 0.12 M 106

Fig. 7 Dependence of the approximate price of the FX barrier basket option on ε for different choices of
h. The error bars show the Monte Carlo error

aii = σ 2
i and ai j = σiσ jρi j for i �= j . Then the matrix σ is the solution of σσ� = a

obtained by the Cholesky decomposition.
The results of the simulations are presented in Fig. 7 for different choices of ε

and different choices of h. In Fig. 8, it can be seen that (similar to Example 4.2) by
choosing the step size h optimally results in a better approximation for the same cost.

In this example we demonstrated that Algorithm 1 can be successfully used to
price a FX barrier basket option involving 4 currency pairs following an exponential
Lévy model despite the considered problem not satisfying Assumptions 2.3–2.5 of
Sect. 2.2. In particular, we note that the algorithm is easy to implement and it gives
sufficient accuracywith relatively small computational costs.Moreover, application of
Algorithm1canbe easily extended to othermulti-dimensional barrier option (andother
types of options and not only on FX markets), while other approximation techniques
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Fig. 8 Dependence of the approximate price of the FX barrier basket option on average number of steps
(computational costs) for different choices of h. The error bars show the Monte Carlo error

such as finite difference methods or Fourier transform methods typically cannot cope
with higher dimensions.

Example 4.4 (Barrier option pricing: one currency pair) In this example, we demon-
strate that the convergence orders and computational costs discussed in Sect. 3.5
appear to hold, despite the considered problem not satisfying Assumptions 2.3–2.5 of
Sect. 2.2.

Let us consider the case with two currencies: GBP and USD. As before, we assume
that the domestic currency is GBP. The corresponding spot exchange rate is

S(t) = SU SDG B P (t).

We assume the same dynamics under a risk-neutral measure Q for the spot exchange
rates as in Example 4.3. Moreover, X(t) is a 1-dimensional Lévy process as defined
in (4.10) but for one dimension only. Following the same fashion as in Example 4.3,
the risky asset for a domestic GBP business is the foreign currency Y (t) = B(t) · S(t),
where B(t) denotes the foreign currency (account) and under the measure Q the
discounted asset Ỹ (t) has to be a martingale on the domestic market to avoid arbitrage.
Using the Ito formula for Lévy processes, we can derive the SDE for Ỹ as we did in
(4.11)–(4.12). We compute the value for a DAO put option (cf. (4.13)):

Pt0(T , K ) = exp−rG B P (T −t0) E

[
I
(

min
t0≤t≤T

S(t) > B

)
max (K − S(T ), 0)

]
. (4.14)
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Table 7 Market data for the
currency pair

Market data
Currency pair S(0) rU SD σ

USDGBP 0.81 0.02 0.095

rG B P 0.01

Here σ is the volatility

Table 8 Option and model parameters for Example 4.4

Option parameter Model parameter
Currency pair Barrier B t0 T K Jump factor f α C+ C− μ M

USDGBP 0.50 0.0 1.0 0.5 0.10 0.5 0.3 1.2 3.0 108

0.10 1.5 0.3 1.2 3.0 108

Table 9 Reference solution P̂re f for singular Lévy measure example for α = 0.5

M ε h û 2
√

D̂M λε γε κ̂

108 5 × 10−5 1 × 10−5 0.28951 8.7 × 10−6 421.8 −1.7873 98223.5 ± 5.7

The approximate solution P̂ = P̂t0(T , K ) is obtained by applying Algorithm 1
directly to the SDE for S(t). To study the dependence of the error of Algorithm 1 on
the cut-off parameter ε for jump sizes and on the parameter α of the Lévy measure
as well as associated computational costs, we need to compare the approximation P̂
with the true price Pt0(T , K ). However, in this example, we do not have the exact
price, and therefore need to accurately simulate a reference solution. To this end, as in
Example 4.3, we apply Algorithm 1 to X(t) and use a sufficiently small ε and h and
also a large number of Monte Carlo simulations M (see Tables 9 and 13). We denote
this reference solution as P̂re f = P̂re f

t0 (T , K ). In this example the absolute error ere f

of Algorithm 1 is evaluated as

ere f = |P̂ − P̂re f |.

In Table 7, market data for the currency pair are given, and in Table 8 the option
and model parameters are provided, which are used in simulations here (Table 9).

The results of the simulations for α = 0.5 are presented in Figs. 9 and 10 and in
Tables 10 and 11 for different choices of ε and fixed h = 1.0 and h = 0.1. We can
clearly see that the error is of order O(εα) = O(ε0.5) as expected. We also observe
linear convergence in computational cost (measured in average number of steps).
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Fig. 9 FX barrier option example, the case α = 0.5: dependence of the error on ε for different choices of
h. The error bars show the Monte Carlo error

Fig. 10 FX barrier option example, the case α = 0.5: dependence of the error e on the average number of
steps
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Table 10 FX barrier option example for α = 0.5 and h = 1

ε û 2
√

D̂M ere f λε γε κ̂

0.002 0.29053 2.7 × 10−5 0.00102 64.6 − 1.72 65.389 ± 0.002

0.0015 0.29040 2.7 × 10−5 0.00089 75.0 − 1.73 75.579 ± 0.002

0.001 0.29027 2.7 × 10−5 0.00076 92.4 − 1.74 92.672 ± 0.002

0.0009 0.29024 2.7 × 10−5 0.00073 97.5 − 1.75 97.714 ± 0.002

0.0008 0.29021 2.7 × 10−5 0.00070 103.6 − 1.75 103.667 ± 0.002

0.0007 0.29015 2.7 × 10−5 0.00064 110.9 − 1.75 110.856 ± 0.003

0.0006 0.29012 2.7 × 10−5 0.00061 120.0 − 1.76 119.777 ± 0.001

0.0005 0.29006 2.8 × 10−5 0.00055 131.7 − 1.76 131.253 ± 0.001

Table 11 FX barrier option example for α = 0.5 and h = 0.1

ε û 2
√

D̂M ere f λε γε κ̂

0.002 0.29054 2.7 × 10−5 0.00103 64.6 − 1.72 65.480 ± 0.002

0.0015 0.29043 2.7 × 10−5 0.00092 75.0 − 1.73 75.617 ± 0.002

0.001 0.29027 2.7 × 10−5 0.00076 92.4 − 1.74 92.681 ± 0.002

0.0008 0.29020 2.7 × 10−5 0.00069 103.6 − 1.75 103.670 ± 0.002

0.0007 0.29015 2.7 × 10−5 0.00064 110.9 − 1.75 110.857 ± 0.003

0.0006 0.29011 2.7 × 10−5 0.00060 120.0 − 1.76 119.778 ± 0.003

0.0005 0.29005 2.7 × 10−5 0.00054 131.7 − 1.76 131.256 ± 0.003

Table 12 Reference solution P̂re f for singular Lévy measure example for α = 1.5

M ε h û 2
√

D̂M λε γε κ̂

108 0.001 1 × 10−5 0.24301 1.0 × 10−5 31622.3 − 55.1 110969.3 ± 2.5
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Fig. 11 FX barrier option example, the case α = 1.5: dependence of the error e on ε, the error bars show
the Monte Carlo error

Fig. 12 FX barrier option example, the case α = 1.5: dependence of the error e on the average number of
steps
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Table 13 FX barrier option example for α = 1.5 and h = 1

ε û 2
√

D̂M ere f λε γε κ̂

0.1 0.24842 3.2 × 10−5 0.00541 31.1 − 3.9 31.778 ± 0.001

0.08 0.24793 3.2 × 10−5 0.00492 43.7 − 4.6 43.834 ± 0.001

0.07 0.24758 3.2 × 10−5 0.00451 53.5 − 5.0 53.228 ± 0.003

0.06 0.24721 3.2 × 10−5 0.00420 67.5 − 5.5 66.691 ± 0.002

0.05 0.24674 3.2 × 10−5 0.00372 88.9 − 6.2 87.196 ± 0.003

0.04 0.24621 3.2 × 10−5 0.00320 124.5 − 7.2 121.261 ± 0.003

Table 14 FX barrier option example for α = 1.5 and adapting step size h = ε1+α

ε h û 2
√

D̂M ere f λε γε κ̂

0.4 0.10119 0.24634 3.3 × 10−5 0.00333 3.5 − 1.0 12.6884 ± 0.0003

0.35 0.072472 0.24678 3.3 × 10−5 0.00377 4.3 − 1.2 16.8552 ± 0.0004

0.3 0.049295 0.24682 3.3 × 10−5 0.00381 5.6 − 1.5 23.6483 ± 0.0006

0.25 0.03125 0.24636 3.3 × 10−5 0.00335 7.5 − 1.8 35.7223 ± 0.0009

0.2 0.017889 0.24549 3.3 × 10−5 0.00248 10.7 − 2.2 59.9885 ± 0.0015

0.15 0.0087142 0.24468 3.3 × 10−5 0.00167 16.7 − 2.8 118.8114 ± 0.0031

Numerical results for the case α = 1.5 are given in Figs. 11 and 12 and in Tables 12,
13 and 14. We observe the expected orders of convergence as given in Sect. 3.5.

In this example, we experimentally demonstrated that convergence orders and com-
putational cost for Algorithm 1 are consistent with predictions of Sect. 3.5 despite the
considered problem not satisfying assumptions of Sect. 2.2.
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