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Abstract

We generalize the Homm and Breitung (2012) CUSUM-based procedure for the real-
time detection of explosive autoregressive episodes in financial price data to allow
for time-varying volatility. Such behavior can heavily inflate the false positive rate
(FPR) of the CUSUM-based procedure to spuriously signal the presence of an explo-
sive episode. Our modified procedure involves replacing the standard variance
estimate in the CUSUM statistics with a nonparametric kernel-based spot variance
estimate. We show that the sequence of modified CUSUM statistics has a joint limit-
ing null distribution which is invariant to any time-varying volatility present in the
innovations and that this delivers a real-time monitoring procedure whose theoretic-
al FPR is controlled. Simulations show that the modification is effective in control-
ling the empirical FPR of the procedure, yet sacrifices only a small amount of power
to detect explosive episodes, relative to the standard procedure, when the shocks
are homoskedastic. An empirical illustration using Bitcoin price data is provided.
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The presence of historical asset price bubbles, in which asset prices rise well above their

fundamental value at a particular point in time, is widely documented. Well-known exam-

ples include the South Sea bubble of 1720, the Dot-Com bubble that originated in the mid-

1990s, and the U.S. housing market bubble of the late 1990s and early 2000s, while the

Bitcoin price has been argued to constitute a more recent example. In all instances, asset

prices, having risen to unsustainable levels, were subject to large crashes, causing significant

economic damage. Given the damage caused by their collapse, it is of vital importance for

policy makers to be able to identify asset price bubbles as they occur to attempt to limit

their economic damage.

Accordingly, a large literature has developed in the last decade or so around testing for

the presence of historical explosive rational asset bubbles in price series. An early contribu-

tion is Diba and Grossman (1988) who applied orthodox left-tailed unit root tests (i.e., tests

against stationary autoregressive alternatives) to the price and dividend series in levels and

first-differenced forms to investigate the presence of asset bubbles in stock price data. They

adopt this approach based on the observation that if the bubble component of the stock

price evolves as an explosive autoregressive process then, as an explosive autoregressive

process cannot be differenced to stationarity, a finding of non-stationarity for the price and

dividend series when the series are in levels, but stationarity when the series are in first dif-

ferences, is indicative that an explosive rational bubble does not exist. However, Evans

(1991) argues that the tests adopted in Diba and Grossman (1988) will have little, if any,

power to detect periodically collapsing bubbles. Consequently, the recent focus in the litera-

ture has been on the use of right-tailed unit root tests, that is, tests against explosive autore-

gressive alternatives, applied to the levels of a series. The first such contribution was made

by Phillips, Wu, and Yu (2011), who developed a test of the null of no explosive behavior

against the alternative of explosivity based on a sequence of forward recursive right-tailed

augmented Dickey–Fuller (DF) statistics. Further contributions using sub-sample testing

methods have been developed in Homm and Breitung (2012), Harvey, Leybourne, and

Sollis (2015), Harvey et al. (2016), Harvey, Leybourne, and Zu (2019, 2020), Phillips, Shi,

and Yu (2015), Astill et al. (2017), Phillips and Shi (2018), among others. Applications of

these methods have uncovered evidence of historical asset price bubbles in stock prices,

commodities futures prices, real estate prices, exchange rates, and many other price series;

see Homm and Breitung (2012) for a detailed review.

A feature of the procedures outlined above, however, is that they are designed to detect

speculative bubbles within a fixed historical dataset. In practice, it would seem to be of

much greater practical relevance to sequentially monitor for the emergence of an asset price

bubble as new data points are obtained using a real-time monitoring procedure. While se-

quential application of the tests of Phillips, Shi, and Yu (2015) or Astill et al. (2017), both

of which are designed to detect an end-of-sample explosive autoregressive episode, could be

used to do this, one could not use the critical values appropriate for their use as one-shot

tests in such a monitoring exercise as these would not be size controlled. In particular, the

overall false-positive rate (FPR) of such a procedure would be unknown and, as discussed

in the context of a generic monitoring exercise in Chu, Stinchcombe, and White (1996) and

also for the specific case of monitoring for the emergence of an explosive episode in Homm

and Breitung (2012) and Astill et al. (2018), would increase monotonically as the monitor-

ing horizon grows. Here, we define the FPR as the probability of at least one test in the

monitoring sequence rejecting when the null was true and, hence, no explosive episode was
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present. Homm and Breitung (2012) and Astill et al. (2018) develop real-time monitoring

procedures for explosive episodes which are such that the theoretical FPR can be controlled

by the practitioner. Astill et al. (2018) develop a real-time monitoring procedure based on

sequential application of the end of sample test of Astill et al. (2017). Their preferred pro-

cedure signals the presence of an explosive episode if any statistic in the monitoring period

exceeds the largest value of the statistic calculated over a training period of data. Homm

and Breitung (2012) propose two real-time monitoring procedures, one based on standard

cumulative sum (CUSUM) statistics and the other on (unaugmented) DF unit root statistics.

Adopting the methodology of Chu, Stinchcombe, and White (1996), the CUSUM and DF

statistics are calculated sequentially across a given monitoring period with a decision rule

designed to control the theoretical FPR of the procedure.

A key assumption underlying the large sample validity of the real-time monitoring pro-

cedures of Homm and Breitung (2012) is that the shocks driving the series being monitored

are unconditionally homoskedastic. This assumption is not innocuous and indeed is likely

to be infeasible for many financial price series which display clear patterns of time-varying

volatility. In particular, many applied studies have found strong evidence of structural

breaks in the unconditional variance of asset returns, often linked to major financial and

macroeconomic crises such as the 1970s oil price shocks, the East Asian currency crisis in

the late-1990s, the dot-com crash in 2001, and the recent global financial crisis in 2007–

2009. In a number of these studies very large structural breaks have been detected; for ex-

ample, Rapach, Strauss, and Wohar (2008) and McMillan and Wohar (2011) detect breaks

in the unconditional variance of the returns of some major stock market indices and sector-

al stock price indices, finding that the unconditional variance in some sub-samples can be

larger than that in other sub-samples by a factor of about 10. For commodity returns, both

Calvo-Gonzalez, Shankar, and Trezzi (2010) and Vivian and Wohar (2012) find statistical-

ly significant evidence of structural breaks in unconditional volatility. Volatility changes in

innovations to price series processes could be induced by the presence of a speculative bub-

ble, but equally it could be the case that changes in volatility occur without an explosive

bubble period being present. It is therefore important to develop reliable methods for

detecting an emerging explosive period in a series that is robust to the presence of time-

varying volatility.

Using Monte Carlo simulation, Astill et al. (2018) show that the empirical FPR of the

CUSUM-based procedure of Homm and Breitung (2012) cannot be adequately controlled

in the presence of time-varying volatility and can differ quite drastically from the theoretical

FPR which obtains under homoskedasticity. In contrast they show that the empirical FPR

of their maximum-based procedure is robust to a wide range of time-varying patterns of

volatility. However, as we show in the simulation results in this paper, in the case where

the innovations are homoskedastic, such that its FPR is controlled, the CUSUM-based pro-

cedure displays a very clear advantage over the procedure of Astill et al. (2018) in terms of

its empirical true positive rate (TPR) to detect an emergent explosive episode, where the

TPR is defined as the probability of at least one test in the monitoring sequence rejecting

when an explosive period is present. Given that our aim is to develop real-time monitoring

procedures which have both a controlled FPR and strong power to detect an emerging ex-

plosive episode, it therefore seems worthwhile developing a heteroskedasticity-robust ver-

sion of the CUSUM-based procedure. To that end, we propose a modification to the

CUSUM-based procedure which replaces the standard full sample first-difference-based
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variance estimate used by Homm and Breitung (2012) in calculating the CUSUM statistics

with a nonparametric kernel-based spot variance estimate, designed to model the unknown

variance path of the underlying innovations.

Under quite general conditions we show that the resulting sequence of modified

CUSUM statistics has a joint limiting null distribution which is invariant to any time-vary-

ing volatility present in the innovations and that, as a result, this delivers a real-time moni-

toring procedure whose theoretical FPR is controlled. Indeed, these quantities are shown to

coincide with those which obtain for the standard CUSUM procedure in the case of homo-

skedastic innovations. Monte Carlo methods are used to examine the empirical FPR and

TPR of our proposed monitoring procedure. These results show that the empirical FPR of

the modified procedure is well controlled in practice. Moreover, the efficacy of the modi-

fied procedure to detect an explosive episode, as measured by the empirical TPR, is shown

to be little altered in the homoskedastic case, so that the cost (in terms of ability to detect

an emerging explosive episode) of this additional robustness to time-varying volatility

appears relatively small. We also show here that the presence of an explosive episode prior

to the start of the monitoring period has little impact on the properties of our modified

CUSUM procedure but can very substantially lower the empirical TPR of both the

CUSUM-based procedure and the procedure of Astill et al. (2018).

The remainder of the paper is organized as follows. Section 1 outlines the autoregressive

data generating process (DGP) we work with and outlines the assumptions under which

our analysis will be conducted. In Section 2, we briefly review the CUSUM-based procedure

of Homm and Breitung (2012) and demonstrate that it does not, in general, have a con-

trolled FPR when time-varying volatility is present in the innovations. We then outline our

modified CUSUM procedure and establish the large sample validity of this procedure.

Issues concerning its practical implementation, including the selection of the bandwidth

and kernel used in the context of the nonparametric spot variance estimator, are also dis-

cussed in this section. Our Monte Carlo study is reported in Section 3. An empirical illustra-

tion of our modified CUSUM monitoring procedure, using Bitcoin price data, is provided

in Section 4. Section 5 concludes.

1 The Model and Assumptions

We consider the time series process fytg generated according to the following autoregres-

sive DGP:

yt ¼ lþ ut; t ¼ 1; . . . ; kT (1)

ut ¼

ut�1 þ et; t ¼ 1; . . . ;T;

ut�1 þ et; t ¼ T þ 1; . . . ; bs1Tc;
ð1þ dÞut�1 þ et; t ¼ bs1Tc þ 1; . . . ; bs2Tc;
ut�1 þ et; t ¼ bs2Tc þ 1; . . . ; bkTc

8>>>><
>>>>:

(2)

where 1 � s1 < s2 � k and k > 1. Here, b:c is used to denote the integer part of its argu-

ment, u0 is taken to be an Opð1Þ variate, and et is a possibly heteroskedastic error process

whose properties are discussed in detail below.

The specification of the DGP in (1) and (2) defines the series yt separately over two sub-

sample periods: the period t ¼ 1; . . . ;T which will later form the training period in our
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analysis, and the period t ¼ T þ 1; . . . ; bkTc which will form the monitoring period for our

procedure. Our model is such that yt follows a unit root process over the training period

t ¼ 1; . . . ;T, while over the monitoring period, yt again follows a unit root process over the

sub-periods t ¼ T þ 1; . . . ; bs1Tc and t ¼ bs2Tc þ 1; . . . ; bkTc, but crucially is subject to

potentially explosive behavior in the period t ¼ bs1Tc þ 1; . . . ; bs2Tc when d > 0. In total

there are bkTc observations with k > 1 a fixed constant. When d > 0, if s1 ¼ 1 then the ex-

plosive regime will begin at the start of the monitoring period, while if s2 ¼ k, the explosive

regime will still be on-going at the end of the monitoring period. In the context of monitor-

ing for explosive autoregressive behavior during the monitoring period, our null hypothesis

is given by H0 : d ¼ 0, with the corresponding alternative hypothesis being H1 : d > 0.

Remark 1. The model considered in (1) and (2) does not allow for a collapse following the

termination of the explosive regime. The model could easily be extended to allow for either

an instantaneous collapse (as in, e.g., Phillips, Wu, and Yu, 2011), or a stationary collapse

regime (as in, e.g., Harvey et al., 2016). However, when monitoring for an emerging explo-

sive regime in real time, the nature of any post-explosive collapse has no bearing on the de-

tection properties of the monitoring procedures. While some differences will arise when

monitoring beyond the point at which an explosive regime terminates, this is a secondary

consideration for the purposes of this paper and, as a consequence, we focus on the case of

a non-collapsing explosive period for simplicity. Simulation results for models with collapse

regimes in the monitoring period are available on request.

With respect to the error, et, we allow for the possibility of non-constancy in its uncon-

ditional volatility by setting et ¼ rtet, such that r2
t is the unconditional (spot) variance of et

and where et is a homoskedastic innovation sequence. Precisely, we make the following

assumptions regarding et and rt, respectively:

Assumption 1. et is a martingale difference sequence with respect to the natural filtration

generated by the sequence of et; fF tg, such that VarðetjF t�1Þ ¼ 1 and Eðe4
t Þ < 1.

Assumption 2. For t ¼ 1; . . . ;T; . . . ; bkTc; rt is non-stochastic and satisfies rt :¼ rðt=TÞ.
The function rð:Þ has support ½0; k� and is strictly positive, continuously differentiable and

uniformly bounded by a constant M. Furthermore, the derivative of rð:Þ is Lipschitz con-

tinuous over ð0; kÞ.

Remark 2. Assumption 1 imposes conditional homoskedasticity on the innovation se-

quence et. This assumption is standard in the time-varying volatility literature; see, for ex-

ample, Hansen (1995), Phillips and Xu (2006), Xu and Phillips (2008), Harris and Kew

(2017), Boswijk and Zu (2018), Harvey, Leybourne, and Zu (2020), Harris, Kew, and

Taylor (2020), and Boswijk and Zu (2021). The moment condition, Eðe4
t Þ < 1, imposed

by Assumption 1 is weaker than is usually made in the literature, where an assumption of

the existence of the 8th moment is standard; an exception is Beare (2018) who makes a

comparable finite 4þ d; d > 0, moment assumption in connection with the unit root tests

he develops for cases where the errors display time-varying volatility.

Remark 3. Assumption 2 allows for time-varying behavior in the unconditional volatility

of et including, among other things, smooth transition single or multiple level shifts and

trending volatility which may also be subject to smooth breaks in the trend coefficient. The
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case of constant volatility, where rt ¼ r, for all t, also satisfies Assumption 2 because here

rðsÞ ¼ r for all s. Discrete jumps in volatility are formally ruled out under Assumption 2

which imposes continuity on the volatility path rð�Þ. This smoothness requirement on the

volatility function is needed to obtain the uniform consistency results for our nonparamet-

ric kernel-based volatility estimator, which is in turn needed for our main result given in

Theorem 1 to hold. The smoothness assumption is not restrictive in practice, because one

can always approximate discontinuities in rð�Þ arbitrarily well using smooth transition

functions. The conditions imposed on the errors, et, by Assumptions 1 and 2 are therefore

considerably weaker than those of Homm and Breitung (2012) who assume that et is inde-

pendent and identically distributed (IID) with mean zero and constant variance, r2.

2 Real-Time Explosive Episode Detection Procedures

In this section, we briefly review the CUSUM monitoring procedure of Homm and Breitung

(2012) and propose a modification to this procedure to allow for the possibility of time-

varying volatility in the innovations. As mentioned in the introduction, Homm and

Breitung (2012) also propose a second monitoring procedure, which they label FLUC,

based on sequential DF statistics; see Equations (27) and (31) of Homm and Breitung

(2012). We will not consider this DF-based procedure any further in this paper for the fol-

lowing reason. Where no detrending is undertaken, one could use the approach taken in

Beare (2018) to develop a heteroskedasticity-robust version of the DF statistic used by

Homm and Breitung (2012), based on the same estimator of rt used to modify the CUSUM

statistic in Section 2.2. The resulting FLUC procedure would then share the same large sam-

ple properties as attained by the standard FLUC procedure under homoskedasticity.

However, this approach does not seem extendable to the case where detrending is used as

in Remark 10. In particular, Beare (2018) demonstrates that the limiting null distribution

of his modified DF statistic in that case still depends on the volatility path, rð�Þ. It would

then appear infeasible to standardize this statistic in the way done in the homoskedastic

case by Homm and Breitung (2012, p. 212) to ensure the boundary function jt used in

Equation (31) of Homm and Breitung (2012) is positive when detrending is undertaken.

2.1 The Homm–Breitung CUSUM-Based Procedure

Under the additional assumption that et is an IID process with mean zero and variance r2,

and assuming a training period of t ¼ 1; . . . ;T as in (1) and (2), Homm and Breitung

(2012) propose testing for explosive behavior in the monitoring period using the following

CUSUM statistic:

St
T :¼ 1

~rt

Xt

j¼Tþ1

Dyj (3)

where t>T is the monitoring observation, and where ~r2
t is a consistent estimate of r2; in

their numerical work, Homm and Breitung (2012) use the first-difference estimator,

~r2
t :¼ ðt � 1Þ�1 Pt

j¼2

Dy2
j . Homm and Breitung (2012) show that if the CUSUM statistic, St

T ,

is computed sequentially at dates t ¼ T þ 1; . . . ; bkTc, then under the null hypothesis, H0,

of no explosive behavior, then for any k > 1
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T�1=2S
bTrc
T )WðrÞ �Wð1Þ; 1 < r � k (4)

and, hence, from Theorem 3.4 of Chu, Stinchcombe, and White (1996) that

lim
T!1

PrðjSt
T j > ct

ffiffi
t
p

for some t 2 fT þ 1; . . . ; bkTcgÞ � exp ð�ba=2Þ; (5)

where ct :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ba þ logðt=TÞ

p
. The CUSUM monitoring procedure proposed in Homm and

Breitung (2012) then rejects H0 if St
T > ct

ffiffi
t
p

for some t>T, with an explosive episode sig-

naled at the first time point t in the monitoring period for which such an exceedance occurs.

For such a (one-sided upper tail) test at the a ¼ 0:05 significance level, the appropriate

asymptotic setting for ba used to compute ct is ba ¼ 4:6. Henceforth, we will refer to a

monitoring procedure based on the St
T statistic as the (standard) CUSUM monitoring

procedure.

2.2 A Time Varying Volatility-Robust CUSUM Procedure

A major drawback with this CUSUM monitoring procedure in practice is that the variance

estimator, ~r2
t , is only appropriate for the homoskedastic case. More specifically, under het-

eroskedasticity of the form given in Assumption 2, the result in Equation (4) no longer

holds. In particular, under H0, as shown in Cavaliere (2004, Lemma 1)

T�1=2S
bTrc
T )

Ð r
1 rðsÞdWðsÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ r
0 r2ðsÞds

q
; 1 < r � k. This limiting process clearly depends

on the time-varying volatility process, rð�Þ, reducing to the result in Equation (4) only in the

case where rð�Þ is constant. As a consequence, Theorem 3.4 of Chu, Stinchcombe, and

White (1996) can no longer be applied to give the result in Equation (5). Monte Carlo simu-

lation evidence provided in Astill et al. (2018) confirms this asymptotic prediction with the

empirical FPR of the CUSUM procedure shown to be severely impacted under various pat-

terns of time-varying volatility. The simulation results we report in Section 3 provide fur-

ther confirmation of this.

In order to address this problem, we propose robustifying the standard CUSUM proced-

ure to time-varying volatility by modifying the CUSUM statistic in Equation (3) such that

each observation on Dyj in Equation (3) is standardized by a Nadaraya–Watson-type ker-

nel-based nonparametric spot variance estimator as is done in, among others, Hansen

(1995), Xu and Phillips (2008), and Beare (2018). Specifically, we consider the following

heteroskedasticity-robust version of the CUSUM statistic

SVt
T :¼

Xt

j¼Tþ1

Dyj

r̂ j;N
; t > T; (6)

where r̂2
j;N is a kernel smoothing estimator for the spot variance r2

j :¼ r2ðj=TÞ. The kernel

smoothing estimator is defined as follows for j P N þ 1:

r̂2
j;N :¼

XN
s¼0

wsDy2
j�s; with ws :¼

K s
N

� �
PN
s¼0

K s
N

� � ; (7)

where Kð:Þ is a kernel function and where N denotes the bandwidth (such that the number

of observations used in the kernel smoothing is Nþ1). For completeness, we define r̂2
j;N ¼
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r̂2
Nþ1 for j 6 N, although in practical situations such definitions are not generally required

as the point where monitoring begins (t ¼ T þ 1) is typically (much) larger than the band-

width parameter N. Henceforth, we will refer to a monitoring procedure based on the

modified CUSUM statistic, SVt
T , as the CUSUMV monitoring procedure.

We will make the following technical assumptions on the kernel function used in

Equation (7):

Assumption 3. Kð:Þ is continuously differentiable over the interval (0, 1), with K(x) ¼ 0

for x � 0 and x � 1. Also,
Ð 1
0 KðxÞdx > 0;

Ð 1
0 jKðxÞjdx < 1;

Ð 1
0 jKðxÞxjdx < 1 and the

characteristic function /ðtÞ ¼
Ð1
�1 exp ðitxÞKðxÞdx of K satisfies

Ð1
�1 j/ðtÞjdt < 1. K0ð:Þ,

the derivative of the Kð:Þ function, also has a characteristic function that is absolutely

integrable.

Remark 4. Our assumption of a one-sided kernel function Kð:Þ which is positive on the unit

interval, (0, 1), implies that we are using a rolling window type filter to estimate the spot

variance r2
j . This one-sided kernel assumption should not be viewed as a restriction, how-

ever, because in our real-time monitoring context we would obviously not have access to

future data. Allowing for a kernel which is positive on ð0;1Þ is technically possible, but we

prefer to work with a rolling window using recent lagged data as this has computational

advantages in our monitoring context, especially at long monitoring horizons. Notice that

our conditions on the kernel function impose that Kð0Þ ¼ 0 and Kð1Þ ¼ 0, which implies

that the current observation is left out when estimating the volatility. These restrictions are

necessary for proving our crucial intermediate result in Lemma 2. Examples of kernels

which satisfy Assumption 3 include the rectangular, Epanechnikov, Bartlett, and truncated

Gaussian kernels (with their boundary values adjusted to 0 in each case).

Before deriving our main result in Theorem 1, in Lemmas 1 and 2 we first provide two

important intermediate results relating to the large sample properties of the nonparametric

variance estimator, r̂2
j .

Lemma 1. Let yt be generated according to Equations (1) and (2) under H0 : d ¼ 0 and let

Assumptions 1–3 hold. Then, if T;N !1 such that N=T ! 0 and N2=T !1, then

max
Tþ1 6 j 6 bkTc

jr̂2
j;N � r2

j j ¼ opð1Þ:

Lemma 2. Let yt be generated according to Equations (1) and (2) under H0 : d ¼ 0 and let

Assumptions 1–3 hold. Then if T;N !1 such that N=T ! 0 and N3=2=T !1, then

max
Tþ1 6 j 6 bkTc

jðr̂2
j�1;N � r2

j�1Þ � ðr̂2
j;N � r2

j Þj ¼ opðT�1Þ:

Remark 5. Lemma 1 establishes the necessary rate condition on the bandwidth, N, such

that our nonparametric variance estimator, r̂2
j;N of Equation (7), is uniformly consistent.

Lemma 2 establishes a similar result for the numerical derivative of the nonparametric vari-

ance estimator, showing that a stronger rate condition is needed on the bandwidth than

was needed for the consistency result in Lemma 1.
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Theorem 1. Let the conditions of Lemma 2 hold. Then,

T�1=2SV
bTrc
T )WðrÞ �Wð1Þ; 1 < r � k:

Remark 6. The result in Theorem 1 demonstrates that for any pattern of time-varying volatil-

ity satisfying Assumption 2, the joint limiting null distribution of the sequence of modified

CUSUM statistics in Equation (6) coincides with that which obtains for the standard

CUSUM statistics in Equation (3) when et is homoskedastic. An immediate consequence of

this, given in Corollary 1 below, is that we can therefore apply Theorem 3.4 of Chu,

Stinchcombe, and White (1996) to obtain a result corresponding to Equation (5) with the im-

plication that our modified CUSUM monitoring procedure will have a controlled theoretical

FPR even in the presence of time-varying volatility of the form specified by Assumption 2.

Remark 7. The proof strategy used to establish the result in Theorem 1 extends the ap-

proach used in Beare (2018), which is based on a uniform consistency result for the non-

parametric variance estimator and its derivative (cf., Lemma 4.1 and Lemma 4.2 of Beare,

2018). By construction, our nonparametric variance estimator r̂2
bsTc;N is not differentiable

with respect to s and, hence, the proof strategy used in Beare (2018) is not directly applic-

able. We therefore extend the proof strategy used in Beare (2018) and build our proof upon

a corresponding result for the numerical derivative of r̂2
bsTc;N, as given in Lemma 2.

By Theorem 3.4 of Chu, Stinchcombe, and White (1996), Theorem 1 implies the follow-

ing result for SVt
T .

Corollary 1. Under the same conditions as Theorem 1

lim
T!1

PrðjSVt
T j > ct

ffiffi
t
p

for some t 2 fT þ 1; . . . ; bkTcgÞ � expð�ba=2Þ:

Remark 8. The result given in Corollary 1 has two main implications. First, in the case

where the innovations are homoskedastic, using the nonparametric spot volatility estimator

r̂j leads to the same limiting null distribution and crossing probabilities for both the

CUSUM and CUSUMV procedures. Second, and more importantly, when the innovations

display time-varying volatility of the form outlined in Assumption 2, both the limiting null

distribution and crossing probability for the CUSUMV procedure are unchanged relative to

those which obtain in the homoskedastic case. This stands in contrast to the CUSUM pro-

cedure which requires homoskedasticity for Equation (4), and therefore Equation (5), to

hold. The CUSUMV procedure therefore offers robustness to time varying volatility in a

way that the standard CUSUM procedure does not.

Remark 9. It is interesting to note the asymptotic results given in Theorem 1 and Corollary

1 remain valid in the case where a finite number of level breaks are present in the DGP for

yt in Equation (1). This holds by virtue of the fact that SVt
T is calculated using the first dif-

ferences of yt. Consequently, any level breaks present in the levels data, yt, are transformed

to one-period outliers in the first differenced data which therefore have no impact on the

large sample properties of SVt
T .

Remark 10. The model in Equations (1) and (2) allows for a non-zero mean in yt through

the presence of l in Equation (1). In most applications of tests for explosive episodes,
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allowing for a non-zero mean in yt is considered sufficient. However, in some circumstances

it may be desirable to allow for the possibility that the expected value of yt follows a linear

trend. In this case, we would replace l in Equation (1) by lþ bt. As discussed in Homm

and Breitung (2012, p. 212), the CUSUM-type procedures discussed in Section 2.1 can be

modified to allow for the presence of a linear trend in Equation (1) by replacing Dyj in the

CUSUM statistic in Equation (3) with the standardized recursive residuals
ffiffiffiffiffiffi
j�1

j

q
ðDyj � l̂j�1Þ

and redefining the variance estimator as ~r2
t :¼ ðt � 2Þ�1 Pt

j¼2

ðDyj � l̂tÞ2 where, for any

k � 1; l̂k :¼ ðk� 1Þ�1 Pk
l¼2

Dyl. The large sample properties of the resulting sequence of

CUSUM statistics are unchanged from that given in Section 2.1. The heteroskedasticity-ro-

bust CUSUM statistic defined in Equation (6) can be similarly modified to allow for a linear

trend by again replacing Dyj in the numerator of Equation (6) by
ffiffiffiffiffiffi
j�1

j

q
ðDyj � l̂j�1Þ and

replacing Dy2
j�s in Equation (7) by ðDyj�s � l̂jÞ2, and similarly in Equations (8) and (9) in

Section 2.3; again this will not affect the large sample results stated in Section 2.2. We

repeated all of the simulation experiments reported in Section 3 (which only allow for a

non-zero mean) with this correction for a linear trend implemented and found these results

to be almost identical to those reported. These results are available on request.

Remark 11. Thus far et in Equation (2) has been assumed serially uncorrelated. This can be

weakened to allow for the case where et admits a finite-order autoregression of the form

/ðLÞet ¼ rtet with /ðzÞ :¼ 1�
Pp
j¼1

/jz
j, such that /ðzÞ 6¼ 0 for all jzj � 1, and where et and

rt continue to satisfy Assumptions 1 and 2, respectively. The CUSUM-type procedures dis-

cussed in Sections 2.1 and 2.2 can be modified to allow for such serial correlation by using

pre-whitening. This is done by replacing Dyj in Equations (3) and (6) by

~ej :¼ Dyj � /̂1;jDyj�1 � � � � � /̂p;jDyj�p, where /̂ i;j; i ¼ 1; . . . ;p, are the OLS autoregressive

lag estimates from the prewhitening regression of Dys on fDys�igp
i¼1, over the sample data

s ¼ pþ 2; . . . ; j. Similarly, redefine the variance estimator used in connection with

Equation (3) as ~r2
t :¼ ðt � 2p� 1Þ�1 Pt

j¼pþ2

ðDyj � /̂1;tDyj�1 � � � � � /̂p;tDyj�pÞ2. With regard

to the kernel-based estimator in Equation (7) we need to replace Dy2
j�s by

ðDyj�s � /̂1;jDyj�s�1 � � � � � /̂p;jDyj�s�pÞ2; s ¼ 0; . . . ;N, and similarly in the associated

cross-validation criteria in Equations (8) and (9) in Section 2.3.1 If the lag order, p, is

known, then the estimates of the autoregressive lag coefficients defined above are

consistent at rate T1=2 under H0; see Phillips and Xu (2006). As a result, we conjecture that

the limiting results given previously will continue to hold under this modification. In most

1 In fact, provided et is b-mixing with exponentially decaying coefficients, then the kernel-based vari-

ance estimators discussed in this section, which are based on smoothing squared differences of

data, remain consistent without the need for pre-whitening. According to the discussion in Fan and

Yao (2003, p. 69), the AR(p) case discussed here satisfies this mixing condition provided et is an IID

sequence of continuously distributed random variables.
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practical applications a very low autoregressive order, either p¼0 or p¼1, is typically

assumed. In practice, p could in principle be determined using any consistent model selec-

tion criterion, an obvious example being the Bayesian information criterion (BIC) of

Schwarz (1978).2

The next theorem establishes the large sample behavior of SVt
T under the alternative

hypothesis:

Theorem 2. Under the same conditions as Theorem 1, but under H1 : d > 0,

lim
T!1

PrðjSVt
T j > ct

ffiffi
t
p
; for some t 2 fT þ 1; . . . ; bkTcgÞ ¼ 1:

The result in Theorem 2 demonstrates that our modified CUSUM monitoring procedure

is consistent under H1, rejecting the false null of no explosivity with probability one in the

limit.

2.3 Implementation Issues: Bandwidth and Kernel Selection

The practical implementation of SVt
T requires choices to be made for both the kernel and

bandwidth used in constructing the nonparametric estimator r̂2
j;N. We will now discuss

these two choices, providing recommendations for each.

In general, the choice of kernel tends to be much less crucial for the finite sample per-

formance of nonparametric kernel-based estimators than is the bandwidth, and we found

this general rule to hold true for our particular nonparametric estimator, r̂2
j;N. We con-

ducted finite sample simulations using a number of kernels (in particular the boundary

value adjusted truncated Gaussian, rectangular, Epanechnikov, and Bartlett kernels), and

found little difference between the empirical FPR and TPR profiles of our proposed moni-

toring procedure across these different choices. Throughout the remainder of the paper,

results are reported for the truncated Gaussian kernel; results for the other kernels men-

tioned above are available on request.

In practice, it is the choice of bandwidth that is crucial to the performance of nonpara-

metric estimators such as r̂2
j;N. Other things being equal, adopting too large a bandwidth

results in oversmoothing which leads to increased bias in the volatility estimator, while

using too small a bandwidth results in undersmoothing which leads to an increased vari-

ance in the resulting volatility estimator, both of which will have a detrimental impact on

the empirical FPR and TPR of the resulting procedure. As is commonly done in the litera-

ture, we adopt a data-driven method for selecting the bandwidth in order to automate the

decision on how to trade off the bias and variance of the estimator. To this end, we propose

selecting the bandwidth according to a standard cross-validation procedure. Specifically,

for a given time period in the monitoring period t ¼ T þ 1; . . . ; bkTc, first define the cross

validation criterion

2 A linear trend can also be allowed for as described in Remark 10, by analogous demeaning of the

prewhitened residuals. Here, an intercept also needs to be included in the pre-whitening

regression.
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CVtðNÞ :¼ 1

t � T

Xt

j¼Tþ1

ðr̂2
j;N � Dy2

j Þ
2: (8)

The CVtðNÞ criterion is essentially an estimate of the mean integrated squared error

(MISE) of the variance estimator for a given bandwidth N. The automated bandwidth,

denoted Ncv
t , is then chosen to be the bandwidth that minimizes the (estimated) MISE and

is therefore defined as Ncv
t :¼ argminNCVtðNÞ. Following Härdle, Hall, and Marron

(1988), Ncv
t ¼ OðT4=5Þ, and so this choice of bandwidth easily satisfies the rate restriction

placed on the bandwidth in Theorem 1.

The MISE-minimizing cross-validation procedure discussed above can be interpreted as

a “global” procedure in that it attempts to minimize the error we make in estimating the

spot variance from time j ¼ T þ 1 to the current period j¼ t. In the context of monitoring,

however, minimizing CVtðNÞ across the full range of r̂2
j;N ; j ¼ T þ 1; . . . ; t, may not be ap-

propriate. What is important is not how well we estimate the spot variance using the entire

monitoring period, but how well this variance is estimated in the immediate neighborhood

of the monitoring time period t. As such, we may also consider a “local” cross-validation

procedure where CVtðNÞ is instead defined as

CV�t ðNÞ :¼ 1

H

Xt

j¼t�Hþ1

ðr̂2
j;N � Dy2

j Þ
2 (9)

and we select the bandwidth, denoted Ncv
t , according to Ncv�

t :¼ argminN2½1;H�CV�t ðNÞ so

that the bandwidth is instead selected to minimize the estimation error of the spot variance

over the most recent H observations; cf., Hall and Schucany (1989). We recommend the

use of the automated bandwidth Ncv�
t in practice and will use this choice in both our numer-

ical simulations and empirical exercise. Implementation of Ncv�
t requires the user to make a

choice for the tuning parameter, H; this will be further explored in Section 3.

3 Finite-Sample Simulations

In this section, we compare the finite sample performance of our proposed CUSUMV moni-

toring procedure with the standard CUSUM monitoring procedure of Homm and Breitung

(2012) and also with the MAXm monitoring procedure of Astill et al. (2018); the latter is,

like CUSUMV, robust to the presence of time-varying volatility in the errors.

The MAXm monitoring procedure of Astill et al. (2018) is based on the sequential appli-

cation of the statistic

St;m :¼

Pt
j¼t�mþ1

ðj� t þmÞDyjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
j¼t�mþ1

fðj� t þmÞDyjg2

s ; t > T;

where m is a user chosen window width. The MAXm procedure then signals the presence of

an explosive episode if at any point t, T < t � bTkc, during the monitoring period the

statistic St;m exceeds the maximum value across the corresponding sequence of statistics

Sj;m; j ¼ mþ 1; . . . ;T �mþ 1, calculated over the training period; that is, H0 : d ¼ 0 is
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rejected if maxt2½Tþ1;bkTc�St;m > maxt2½mþ1;T�mþ1�St;m. Astill et al. (2018) demonstrate that

an approximation to the FPR of this procedure is given by

a :¼ bkTc � T

bkTc � 2mþ 1
: (10)

The FPR of the MAXm monitoring procedure at any point t, T < t � bTkc, in the

monitoring period can be computed using Equation (10) by replacing bkTc with t. Observe

that this FPR is a function of the length of the training period, T and the window width, m,

used in the St;m statistics.

In our simulations, data were generated according to the DGP Equations (1) and (2)

with et � NIIDð0;1Þ, setting l¼ 0 without loss of generality, and with the DGP initialized

at u0 ¼ 100 so that generated data remain positive and thereby any explosive episodes will

typically appear as having upward trajectories, thus mimicking what is observed in an asset

price bubble. We assume that monitoring begins at time t ¼ 220 and set the training period

sample size to T¼ 219. We set kT ¼ 255, such that we have a (maximum) monitoring

period of 36 observations. For the MAXm procedure, we use a single window width of

m¼10 as recommended by Astill et al. (2018). By assuming a common monitoring start

date for all procedures of T¼220, we treat the sample t ¼ 1; . . . ;T as the training period

for the CUSUM and CUSUMV procedures, while the training period for the MAX10 proced-

ure is given by the sample t ¼ 1; . . . ;T �mþ 1. Homm and Breitung (2012) show that the

asymptotic critical values for the CUSUM procedures implied by Equation (5) are very con-

servative in practice, being based on an assumption of a monitoring period of infinite

length. As such, and to aid comparison with the MAX10 procedure, finite sample critical

values for the CUSUM and CUSUMV monitoring procedures were obtained by choosing a

value of ba such that for a homoskedastic DGP (rt ¼ 1), the empirical FPR of these proce-

dures is equal to the FPR of the MAX10 procedure, determined by Equation (10), when the

latter has a FPR of 0.10. Therefore, in the simulations that follow the CUSUM and

CUSUMV monitoring procedures were performed using ba ¼ 0:147 and ba ¼ 0:177, re-

spectively. All simulations were conducted in Gauss 9.0 using 10,000 replications.

The bandwidth used in connection with the kernel-based spot variance estimator used

in the CUSUMV procedure was selected at each point in the monitoring period using the

local cross validation procedure in Equation (9). We experimented with the tuning param-

eter H and found the robustness of the empirical FPR of the CUSUMV procedure to time-

varying volatility to be decreasing in the choice of H, whereas the empirical TPR of the pro-

cedure was found to be increasing in H. Our experiments suggested that setting H¼ 20

delivered a procedure with the best trade-off between these two considerations and we will

use this choice in all of the numerical and empirical work that follows. As discussed in

Section 2.3, the reported results are for a truncated Gaussian kernel.

3.1 Empirical FPRs under H0 : d ¼ 0

We first simulate the FPRs of the CUSUM, CUSUMV, and MAX10 procedures under the

null hypothesis H0 : d ¼ 0 for cases where: (i) the errors et are homoskedastic (rt ¼ 1) and

(ii) where the errors exhibit time-varying volatility. In the latter case, we first consider

smooth shifts in volatility of the form
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rt :¼ 1þ a½1þ expð�hðt � TbÞÞ��1 (11)

that is, a logistic smooth transition in volatility from 1 to 1þ a when h > 0, and from 1þ a

to 1 when h < 0. In each case, the transition speed and timing of the transition are gov-

erned by jhj and Tb, respectively.

Figure 1 reports the empirical FPRs of the three procedures when a smooth shift in vola-

tility occurs, with jhj ¼ 0:25 with Tb ¼ T so that the transition is centered around the start-

ing date of the monitoring period. For each time point e, T þ 1 � e � bTkc, the

corresponding point on the curves in the figure represents the empirical FPR of the particu-

lar procedure run from time t ¼ T þ 1 until time t¼ e. We consider the cases

a ¼ f0;
ffiffiffi
2
p
� 1;

ffiffiffi
3
p
� 1;

ffiffiffi
4
p
� 1g; here, a¼ 0 represents the benchmark case of homoske-

dasticity (in which case the value of h is irrelevant), while for a 6¼ 0, the variance changes

(increases) from 1 to 2, 3, or 4 when h ¼ 0:25, and (decreases) from 2, 3, or 4 to 1 when

h ¼ �0:25. The red vertical dashed line on each graph represents the time at which the

FPRs of the CUSUM, CUSUMV, and MAX10 procedures are equal to 0.10 for the case of a

homoskedastic DGP.

Figure 1(a) reports the homoskedastic case (a¼0) and here all three procedures have

very similar FPR profiles across the range of end-of-monitoring dates e,

T þ 1 � e � bTkc. Figure 1(b)–(d) reports the FPR of the procedures when an upward

shift in volatility occurs with h ¼ 0:25. The FPR of the CUSUM procedure is seen to be

inflated to a large degree relative to the homoskedastic case; for the largest value of a con-

sidered this FPR exceeds 0.33 at time e¼241, this being the point at which the procedure is

calibrated to have an FPR of 0.10 under homoskedasticity. The FPR of the CUSUMV pro-

cedure is inflated to some extent relative to the case where the errors are homoskedastic,

but to nowhere near the extent of the CUSUM procedure. For the largest value of a consid-

ered, the FPR of the CUSUMV procedure at time e¼241 is about 0.13. The FPR of the

MAX10 procedure is barely impacted by any shifts in volatility. Figure 1(e)–(g) reports the

FPR of the procedures for the smooth downward shift in volatility cases with h ¼ �0:25.

The FPR of the CUSUM procedure is severely deflated relative to the homoskedastic case,

with this feature again most apparent for larger values of a. For the largest a considered,

the FPR of the CUSUM procedure does not exceed 0.05 even by the very end of the moni-

toring period. The FPR of the CUSUMV procedure is slightly deflated relative to the homo-

skedastic case, but again this is modest in comparison with the CUSUM procedure. As with

upward volatility shifts, the FPR of the MAX10 procedure is little affected.

We next consider cases where the volatility shift is centered around a date before or after

the monitoring period commences. Figure 2 reports the FPR of the three procedures when

Tb ¼ T þ 10 so that the mid-point of the volatility shift occurs shortly after the start of

monitoring. Figure 2(a) is a repeat of Figure 1(a) for reference purposes, while Figure 2(b)–

(d) reports the FPRs when the volatility shift is upward. The relative FPR inflation exhibited

by the test procedures is broadly similar to the case where the smooth volatility shift is cen-

tered around the start of the monitoring period, with the CUSUM procedure displaying the

largest degree of FPR inflation and the CUSUMV procedure again displaying only a modest

degree of FPR inflation relative to the homoskedastic case. The FPR of the MAX10 proced-

ure is again almost unchanged from the homoskedastic case. Figure 2(e)–(g) reports the

FPRs for the cases of downward shifts in volatility. Again we see broad similarity with the

corresponding panels of Figure 1. Finally, Figure 3 reports results for Tb ¼ T � 10 so that
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a = 0

θ = 0.25, a =
√

2 −

(a)

(b) 1 (c) θ = 0.25, a =
√

3 − 1

(d) θ = 0.25, a =
√

4 − 1 (e) θ = −0.25, a =
√

2 − 1

(f) θ = −0.25, a =
√

3 − 1 (g) θ = −0.25, a =
√

4 − 1

MAX10:——, CUSUM:—— , CUSUMV :——

Figure 1. FPR—smooth volatility shift (Tb ¼ T ). (a) a ¼ 0. (b) h ¼ 0:25; a ¼
ffiffiffi
2
p
� 1. (c)

h ¼ 0:25; a ¼
ffiffiffi
3
p
� 1. (d) h ¼ 0:25; a ¼

ffiffiffi
4
p
� 1. (e) h ¼ �0:25; a ¼

ffiffiffi
2
p
� 1. (f) h ¼ �0:25; a ¼

ffiffiffi
3
p
� 1. (g)

h ¼ �0:25; a ¼
ffiffiffi
4
p
� 1.
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a = 0

θ = 0.25, a =
√

2 − 1 θ = 0.25, a =
√

3 − 1

θ = 0.25, a =
√

4 − 1 θ = −0.25, a =
√

2 − 1

θ = −0.25, a =
√

3 − 1 θ = −0.25, a =
√

4 − 1

MAX10:——, CUSUM:—— , CUSUMV :——

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 2. FPR—smooth volatility shift (Tb ¼ T þ 10). (a) a ¼ 0. (b) h ¼ 0:25; a ¼
ffiffiffi
2
p
� 1. (c)

h ¼ 0:25; a ¼
ffiffiffi
3
p
� 1. (d) h ¼ 0:25; a ¼

ffiffiffi
4
p
� 1. (e) h ¼ �0:25; a ¼

ffiffiffi
2
p
� 1. (f) h ¼ �0:25; a ¼

ffiffiffi
3
p
� 1. (g)

h ¼ �0:25; a ¼
ffiffiffi
4
p
� 1.
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a = 0

θ = 0.25, a =
√

2 − 1 θ = 0.25, a =
√

3 − 1

θ = 0.25, a =
√

4 − 1 θ = −0.25, a =
√

2 − 1

θ = −0.25, a =
√

3 − 1 θ = −0.25, a =
√

4 − 1

MAX10:——, CUSUM:—— , CUSUMV :——

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3. FPR—smooth volatility shift (Tb ¼ T � 10). (a) a ¼ 0. (b) h ¼ 0:25; a ¼
ffiffiffi
2
p
� 1. (c)

h ¼ 0:25; a ¼
ffiffiffi
3
p
� 1. (d) h ¼ 0:25; a ¼

ffiffiffi
4
p
� 1. (e) h ¼ �0:25; a ¼

ffiffiffi
2
p
� 1. (f) h ¼ �0:25; a ¼

ffiffiffi
3
p
� 1. (g)

h ¼ �0:25; a ¼
ffiffiffi
4
p
� 1.
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the volatility shift mid-point occurs shortly before the commencement of monitoring. Once

again, the FPR of the CUSUM procedure is severely impacted, with a large degree of FPR

inflation or deflation exhibited for h ¼ 0:25 and h ¼ �0:25, respectively. The FPR of the

CUSUMV procedure is less impacted by a smooth shift in volatility centered at this point in

time than for shifts centered at dates where monitoring has already commenced, with this

result explained by the fact that volatility shifts that occur before the commencement of

monitoring allow greater time for the spot variance estimate in Equation (7) to adapt to the

transitioning volatility path. Again, the FPR of the MAX10 procedure is very similar to the

homoskedastic case.

3.2 Empirical TPRs under H1 : d>0

We now turn to an examination of the empirical TPRs of the CUSUM, CUSUMV, and

MAX10 procedures to detect an emergent explosive episode in the monitoring period. We

initially concentrate on the homoskedastic case a¼ 0. We will consider two possible start-

ing dates for the explosive regime in Equations (1) and (2), namely bs1Tc ¼ f220; 230g and

generate explosive regimes of length 25 observations, so that bs2Tc ¼ bs1Tc þ 25. We also

vary the magnitude of the offset to the autoregressive parameter driving the explosive re-

gime by considering the settings d ¼ f0:004; 0:006; 0:008; 0:010g. The results are reported

in Figure 4. Henceforth, the time periods over which an explosive regime is present are

identified by gray shaded areas in each figure. As would be expected, the best overall TPR

profile is displayed by the CUSUM procedure, as this procedure is specifically calibrated for

data generated from the homoskedastic case. The TPR of the CUSUMV procedure is, en-

couragingly, very close to that of the CUSUM procedure, so it appears that the FPR robust-

ness of the CUSUMV procedure to time-varying volatility in the errors does not come at the

expense of significantly reduced power to detect an explosive regime. The TPR profile of

the CUSUMV procedure is far superior overall than that of the MAX10 procedure, with the

TPR of MAX10 only marginally higher than that of the CUSUM-based procedures for a

small number of observations at the beginning of the explosive episode, at which point all

of the TPRs are still very close to the corresponding FPRs.

We next consider the TPRs of the three procedures when a smooth volatility shift is pre-

sent in the data. Figure 5 reports the TPRs when the volatility shift is upward and centered

at the commencement of the explosive episode; this timing ensures that the start of the

explosive episode coincides with the middle of the volatility transition, a situation that

is arguably of substantial empirical relevance given that periods of explosivity are

often accompanied by large changes in volatility. Specifically, we set

bs1Tc ¼ f220; 230g; bs2Tc ¼ bs1Tc þ 25; h ¼ 0:25, and Tb ¼ bs1Tc, focusing on the case

d ¼ 0:007 (the average of the set of d values considered in Figure 4). Results are reported

for the same set of values of a as considered in Figures 1–3 (including the homoskedastic

case of a¼ 0). When a smooth upward volatility shift occurs the TPR of the CUSUM pro-

cedure is much higher than the other two procedures, but this result is of course purely an

artifact of the significant FPR inflation exhibited by the CUSUM procedure when such a

volatility shift is present in the data. Of the two procedures which offer broad FPR robust-

ness to an upward volatility shift, namely CUSUMV and MAX10, it is the CUSUMV proced-

ure which exhibits by far the superior TPR profile.
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�τ1T � = 220, δ = 0.004 �τ1T � = 220, δ = 0.006

�τ1T � = 220, δ = 0.008 �τ1T � = 220, δ = 0.010

�τ1T � = 230, δ = 0.004 �τ1T � = 230, δ = 0.006

�τ1T � = 230, δ = 0.008 �τ1T � = 230, δ = 0.010

MAX10:——, CUSUM:—— , CUSUMV :——

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Figure 4. TPR—a¼ 0. (a) bs1T c ¼ 220; d ¼ 0:004. (b) bs1T c ¼ 220; d ¼ 0:006. (c) bs1T c ¼ 220; d ¼ 0:008.

(d) bs1T c ¼ 220; d ¼ 0:010. (e) bs1T c ¼ 230; d ¼ 0:004. (f) bs1T c ¼ 230; d ¼ 0:006. (g) bs1T c ¼ 230;

d ¼ 0:008. (h)bs1T c ¼ 230; d ¼ 0:010.
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�τ1T � = 220, a = 0 �τ1T � = 220, a =
√

2 − 1

�τ1T � = 220, a =
√

3 − 1 �τ1T � = 220, a =
√

4 − 1

�τ1T � = 230, a = 0 �τ1T � = 230, a =
√

2 − 1

�τ1T � = 230, a =
√

3 − 1 �τ1T � = 230, a =
√

4 − 1

MAX10:——, CUSUM:—— , CUSUMV :——

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Figure 5. TPR—smooth upward volatility shift. (a) bs1T c ¼ 220, a ¼ 0. (b) bs1T c ¼ 220; a ¼
ffiffiffi
2
p
� 1. (c)

bs1T c ¼ 220; a ¼
ffiffiffi
3
p
� 1. (d) bs1T c ¼ 220; a ¼

ffiffiffi
4
p
� 1. (e) bs1T c ¼ 230, a ¼ 0. (f) bs1T c ¼ 230;

a ¼
ffiffiffi
2
p
� 1. (g) bs1T c ¼ 230; a ¼

ffiffiffi
3
p
� 1. (h) bs1T c ¼ 230; a ¼

ffiffiffi
4
p
� 1.
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Figure 6 reports the TPRs for the case of a smooth downward shift in volatility, using

the same settings as for Figure 5 but with h ¼ �0:25. Here, we observe that the TPR of the

CUSUM procedure is severely impacted, which is again a consequence of its corresponding

FPR deflation in the case of a downward volatility shift, with this impact being more pro-

nounced the larger is the value of a. The best overall TPR profile is arguably displayed by

the CUSUMV procedure, although as a increases the region where the MAX10 procedure

offers TPR advantages over CUSUMV for observations early in the explosive regime be-

come somewhat more pronounced; this feature is in line with the modest FPR deflation

exhibited by the CUSUMV procedure in the presence of a downward volatility shift.

3.3 The Impact of an Explosive Episode in the Training Period

We next assess the impact that a single collapsed explosive episode in the training period

has on both the empirical FPR and empirical TPR of the CUSUM, CUSUMV, and MAX10

detection procedures. To that end, data were generated according to yt ¼ ut with

ut ¼

ut�1 þ et; t ¼ 1; . . . ; bs1;pTc;
ð1þ dpÞut�1 þ et; t ¼ bs1;pTc þ 1; . . . ; bs2;pTc;
ubs1;pTc þ et t ¼ bs2;pTc þ 1;

ut�1 þ et; t ¼ bs2;pTc þ 2; . . . ;T;

ut�1 þ et; t ¼ T þ 1; . . . ; bs1Tc;
ð1þ dÞut�1 þ et; t ¼ bs1Tc þ 1; . . . ; bs2Tc;
ut�1 þ et; t ¼ bs2Tc þ 1; . . . ; bkTc

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(12)

and et ¼ et � NIIDð0; 1Þ, thereby focusing on the homoskedastic case (cf., a¼0 in the pre-

vious subsections). The series yt therefore admits a single collapsed explosive episode in the

training period of length bs2;pTc � bs1;pTc :¼ lp driven by an explosive offset of dp. A fur-

ther explosive episode will occur in the monitoring period if d > 0.

Figure 7 reports the empirical FPRs of the procedures in the case where bs1;pTc ¼ 95 for

two possible lengths, lp ¼ f10; 15g and four explosive offsets dp ¼ f0:004;

0:006; 0:008; 0:010g: In all cases, the FPR of the CUSUMV procedure is seen to be unaffect-

ed by the presence of these explosive episodes in the training period. This is because the

local cross-validation procedure in Equation (9) used to select the bandwidth entails that

these explosive observations from the training period receive zero weight in the construc-

tion of the spot variance estimator used in the CUSUMV monitoring statistics. By contrast,

the empirical FPRs of both the CUSUM and MAX10 procedures are very significantly

deflated when a training period explosive episode is present, as is clear from a comparison

of Figure 7 with Figure 1(a). The impact of an explosive episode in the training period is

seen to be greater the longer the length of that training period episode and the larger the ex-

plosive offset driving this episode.

Figure 8 reports the TPRs of the three procedures to detect an explosive episode in the

monitoring period in the case where an explosive episode occurred during the training

period. We report results for a single setting for the training period episode for lp ¼ 15 and

dp ¼ 0:007; qualitatively similar patterns emerge for other settings. The explosive episode

generated in the monitoring period for this setting are set to be identical to those reported

in Figure 4. A comparison of the results in Figure 8 with those in Figure 4 shows that the

Astill et al. j CUSUM-Based Monitoring for Explosive Episodes 21

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbab009/6268988 by guest on 10 M

ay 2021



�τ1T � = 220, a = 0 �τ1T � = 220, a =
√

2 − 1

�τ1T � = 220, a =
√

3 − 1 �τ1T � = 220, a =
√

4 − 1

�τ1T � = 230, a = 0 �τ1T � = 230, a =
√

2 − 1

�τ1T � = 230, a =
√

3 − 1 �τ1T � = 230, a =
√

4 − 1

MAX10:——, CUSUM:—— , CUSUMV :——

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Figure 6. TPR—smooth downward volatility shift. (a) bs1T c ¼ 220, a ¼ 0. (b) bs1T c ¼ 220; a ¼
ffiffiffi
2
p
� 1.

(c) bs1T c ¼ 220; a ¼
ffiffiffi
3
p
� 1. (d) bs1T c ¼ 220; a ¼

ffiffiffi
4
p
� 1. (e) bs1T c ¼ 230, a ¼ 0. (f) bs1T c ¼ 230;

a ¼
ffiffiffi
2
p
� 1. (g) bs1T c ¼ 230; a ¼

ffiffiffi
3
p
� 1. (h) bs1T c ¼ 230; a ¼

ffiffiffi
4
p
� 1.
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lp = 10, δp = 0.004 lp = 10, δp = 0.006

lp = 10, δp = 0.008 lp = 10, δp = 0.010

lp = 15, δp = 0.004 lp = 15, δp = 0.006

lp = 15, δp = 0.008 lp = 15, δp = 0.010

MAX10:——, CUSUM:—— , CUSUMV :——

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Figure 7. FPR—past bubble. (a) lp ¼ 10, dp ¼ 0:004. (b) lp ¼ 10, dp ¼ 0:006. (c) lp ¼ 10, dp ¼ 0:008. (d) lp
¼ 10, dp ¼ 0:010. (e) lp ¼ 15, dp ¼ 0:004. (f) lp ¼ 15, dp ¼ 0:006. (g) lp ¼ 15, dp ¼ 0:008. (h) lp ¼ 15,

dp ¼ 0:010.
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�τ1T � = 220, δ = 0.004 �τ1T � = 220, δ = 0.006

�τ1T � = 220, δ = 0.008 �τ1T � = 220, δ = 0.010

�τ1T � = 230, δ = 0.004 �τ1T � = 230, δ = 0.006

�τ1T � = 230, δ = 0.008 �τ1T � = 230, δ = 0.010

MAX10:——, CUSUM:—— , CUSUMV :——

(a) (b)

(c) (d)

(e) (f)

(h)(g)

Figure 8. TPR—past bubble. (a) bs1T c ¼ 220; d ¼ 0:004. (b) bs1T c ¼ 220; d ¼ 0:006. (c) bs1T c ¼ 220;

d ¼ 0:008. (d) bs1T c ¼ 220; d ¼ 0:010. (e) bs1T c ¼ 230; d ¼ 0:004. (f) bs1T c ¼ 230; d ¼ 0:006. (g) bs1T c ¼
230; d ¼ 0:008. (h) bs1T c ¼ 230; d ¼ 0:010.
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TPR of the CUSUMV procedure is unchanged relative to the case where no training period

episode is present, for the same reasons discussed above in the context of the robustness of

its empirical FPR to training period explosive episodes. Contrastingly, the TPRs of both the

CUSUM and MAX10 procedures are significantly negatively impacted by the presence of a

training period explosive episode, so that the CUSUMV procedure easily offers the best

TPR profile of the three procedures considered in such cases.

3.4 Additional Simulations

In addition to the simulation results discussed in Sections 3.1–3.3 we also performed a large

number of further experiments which we do not report in detail here, but which are avail-

able on request. We now summarize these findings:

i. The simulations reported in Sections 3.1–3.3 all set et to be an NIID(0, 1) process. We

repeated the experiments for a number of other distributions for et, including highly

skewed distributions such as ðv2
1 � 1Þ, and found these all to yield very similar results

to those reported.

ii. We also examined the impact of other forms of time-varying volatility on the finite

sample properties of the CUSUM, CUSUMV, and MAX10 procedures. In particular, we

considered linearly trending volatility paths, abrupt shifts in volatility, and multiple

smooth or abrupt volatility shifts. Upward (downward) trending volatility paths lead

to FPR inflation (deflation) for the CUSUM procedure but had little impact on the FPR

of the CUSUMV procedure. Abrupt upward (downward) shifts in volatility again lead

to significant FPR inflation (deflation) for the CUSUM procedure but only had a mod-

est impact on the FPR of the CUSUMV procedure, in spite of such abrupt volatility

shifts not being permitted by Assumption 2. With multiple smooth or abrupt volatility

shifts, the FPR of the CUSUM monitoring procedures was governed by the relative

average volatility in the training and monitoring periods implied by each volatility

path. For scenarios where the average volatility in the monitoring period exceeded that

in the training period the CUSUM procedures exhibited FPR inflation, whereas if the

average volatility in the monitoring period was less than that in the training period the

CUSUM procedures exhibited FPR deflation. In all instances, the inflation or deflation

exhibited by the CUSUM procedure was far more severe than for the CUSUMV proced-

ure. The FPR of the MAX10 was unaffected by trending volatility paths, abrupt shifts

in volatility, or multiple volatility shifts.

iii. When allowing for trending volatility under the alternative, the TPRs of the CUSUMV

and MAX10 procedures were little different to those obtained in the homoskedastic

baseline. In line with the distortions in the FPR outlined above, under upward (down-

ward) trending volatility the TPR of the CUSUM procedure was relatively higher

(lower) than the other two procedures. In the case of abrupt upward variance shifts the

power ordering of the three test procedures was unchanged relative to the homoskedas-

tic baseline, albeit with the difference in power between the test procedures being

amplified somewhat due to the modest FPR inflation displayed by the CUSUMV pro-

cedure and the severe FPR inflation exhibited by the CUSUM procedure. For abrupt

downward variance shifts under the alternative, the TPR of the MAX10 procedure was

largely unchanged, whereas the powers of the CUSUM and CUSUMV procedures were
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deflated relative to the homoskedastic baseline, modestly so in the case of the CUSUMV

procedure and severely so in the case of the CUSUM procedure.

4 Empirical Application

In this section, we illustrate the methods discussed in this paper using empirical data on

Bitcoin. Bitcoin is a digital cryptocurrency that, much like government-backed currencies,

is envisaged as a medium of exchange. The price of Bitcoin has, however, been subject to a

great deal of volatility since its inception and, as such, is regarded as a speculative asset. We

apply our procedures directly to the Bitcoin price with no adjustment for fundamentals

since there is no consensus as to what would be the appropriate fundamental for the price

of Bitcoin or if indeed it could even be measured (e.g., the cost of mining has been sug-

gested). Consequently, what we are doing is examining the Bitcoin data for an emerging ex-

plosive episode. While formally this doesn’t allow us to determine if a bubble is present, it

does nonetheless provide some evidence that a bubble might be present.

We obtained daily data on the price of Bitcoin from https://finance.yahoo.com/quote/

BTC-GBP. We will concentrate attention on monitoring for explosive episodes in the year

2017 as the price of Bitcoin rose markedly over the course of this year and also appears sub-

ject to time-varying volatility.

We apply both the CUSUM and CUSUMV monitoring procedures to this dataset.

Results for the MAX10 procedure are omitted as this procedure fails to find evidence of

explosivity in either of the two example monitoring exercises we consider. To account for

potential serial correlation in the data, we apply pre-whitening to the first differences of

Dyt as discussed in Remark 11, selecting the lag order, p, using BIC with a maximum lag

order of 4.

Before considering the results of our monitoring exercises we first plot in Figure 9 the

price and estimated volatility path of the Bitcoin series for the period January 1, 2017–

November 30, 2017. The estimated volatility path is computed using the kernel smoothing

estimator in Equation (7) using the same choices for the kernel function and H as in the

Monte Carlo exercise reported in Section 3. It can be seen from Figure 9 that the Bitcoin

price series rose a great deal over 2017, beginning the year at £809 and rising to £7,565 by

November 30, 2017, leading to widespread belief that the series may have been subject to

one or more explosive episodes over the period in question. Figure 9 also highlights the

presence of considerable time-variation in the estimated volatility path of the Bitcoin price

series. It is therefore seen to be of considerable importance to allow for the presence of

time-varying volatility in the data when investigating whether or not the general upward

movement in the Bitcoin price series is due to explosive episodes.

We report results for two monitoring exercises performed on the Bitcoin data. In each

case, the length of the training period is set to be the same value as in the Monte Carlo sim-

ulations in Section 3. We first consider how a real-time monitoring exercise that began on

July 15, 2017 and ended on August 19, 2017 would have played out, with the training

period for this monitoring exercise given by data from December 8, 2016 to July 14, 2017.

This monitoring period is identified by the first shaded area in Figure 9, with the solid and

dashed black lines plotted within this period identifying the first point at which the

CUSUMV and CUSUM monitoring procedures signal a rejection, respectively. The price of

Bitcoin increases slightly from July 15–July 20 and is then relatively flat until the end of
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July, at which point it begins to increase again until the end of the monitoring period. The

estimated volatility path of the series shows a marked increase at the start of the monitoring

period, before gradually declining over the remainder of the monitoring period. In this ex-

ample, both the CUSUM and CUSUMV monitoring procedures signal an explosive episode,

with the CUSUM procedure first rejecting on July 20 and CUSUMV first rejecting on

August 11. In Section 3.1, we saw that upward volatility shifts can significantly increase the

FPR of the standard CUSUM procedure relative to CUSUMV. It is also worth noting that

the spike in the volatility estimate on July 21 implies that the volatility of the series

increased a great deal on July 20 which is precisely the date where the CUSUM procedure

first rejects.3 It therefore seems likely that in this example the CUSUM procedure signals an

explosive episode much earlier than the CUSUMV procedure because the former is running

off a much higher FPR than the latter due to an increase in volatility at the start of the mon-

itoring period. That it signals an explosive episode at exactly the point where a large spike

in volatility is observed while CUSUMV does not is further suggestive that this may be a

spurious detection.

For our second illustration, we investigate how a real-time monitoring exercise that

began on August 30, 2017 and ended on November 8, 2017 would have played out, with

the training period for this monitoring exercise given by data from January 23, 2017 to
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2017
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Figure 9. Application to daily Bitcoin prices.

3 The kernel smoothing estimator in Equation (7) imposes leave-one-out so that any increases in

volatility have a 1-period lag in entering the volatility estimator.
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August 29, 2017. This monitoring period is identified by the second shaded area in Figure 9

with, again, the solid and dashed black lines plotted within this period identifying the first

point at which the CUSUMV and CUSUM monitoring procedures signal a rejection, re-

spectively. The price of Bitcoin declines slightly at the start of the monitoring period, but

then increases from September 14 until the end of the monitoring period. The estimated

volatility path of the series first increases up until September 15 before then dropping rapid-

ly up until October 9. At this point, volatility then increases again up until October 13 be-

fore stabilizing for the remainder of the monitoring period. In contrast to our first

monitoring exercise, the CUSUMV procedure is the first to signal an explosive episode on

October 14, with the CUSUM procedure not rejecting until October 29. So, while in our

first example an upward movement in volatility coincided with the CUSUM procedure

rejecting first, here we observe the opposite outcome. In this scenario, the decline in volatil-

ity seen from mid-September until early October seems likely to have effected a lower rejec-

tion probability for the CUSUM procedure relative to CUSUMV, consistent with the

simulation results in Section 3.1 for the case of downward shifts in volatility, allowing the

latter to deliver a far earlier rejection of the null. We also note that the results of the first

monitoring exercise indicate that there may be an explosive episode present in the training

period for this second monitoring exercise, which may also be contributing to the signifi-

cant delay in CUSUM rejecting relative to CUSUMV and would again be consistent with

the simulation results reported in Figures 7 and 8.

5 Conclusions

We have generalized the CUSUM-based real-time explosive episode detection procedure of

Homm and Breitung (2012) to allow for the presence of time-varying volatility in the inno-

vations. Such patterns were shown to cause potentially severe inflation in the true FPR of

the CUSUM procedure. Our proposed modification involves replacing the first-difference

estimator of the variance used in the CUSUM statistics by a Nadaraya–Watson-type non-

parametric estimator. The resulting sequence of modified CUSUM statistics was shown to

have a pivotal joint limiting null distribution coinciding with that of the sequence of stand-

ard CUSUM statistics under homoskedasticity with the result that the theoretical FPR of

the procedure is controlled. A discussion of the bandwidth and kernel choices associated

with the nonparametric variance estimator was also provided with a cross validation choice

recommended for the former, whereby it is selected to minimize the estimation error of the

spot variance over the most recent observations. Simulation evidence, for a variety of time-

varying volatility processes, suggested that the FPR of the modified procedure is well con-

trolled in finite samples. Where the innovations were homoskedastic the potency of the

modified procedure to detect an emergent explosive episode was shown to be only slightly

lower than the standard procedure. In contrast to both the standard CUSUM procedure

and the procedure of Astill et al. (2018), the modified CUSUM procedure was also shown

to be robust to the presence of explosive episodes in the training period. An application to a

Bitcoin price data series was used to illustrate the possible advantages of our proposed pro-

cedure relative to the standard CUSUM procedure, with our proposed procedure signaling

the presence of an explosive episode sooner than the standard CUSUM procedure in a

period of downward transitioning volatility and avoiding a potential early false rejection in

a period of upward transitioning volatility.
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APPENDIX A: MATHEMATICAL PROOFS

Throughout the proofs, unless otherwise stated, we use maxj as shorthand notation for

maxTþ1 6 j 6 bkTc. We also denote ðr2Þ0ð:Þ as the derivative of r2ð:Þ.

A.1 Preparatory Lemmas

Lemma A1. Let the conditions of Theorem 1 hold. Then, under H0,

max
j

XN
s¼0

wsr
2
j�sðe2

j�s � 1Þ
�����

����� ¼ opð1Þ:

Proof of Lemma A1. This lemma is proved using the Fourier transformation-based method

as in Theorem 2.8 of Pagan and Ullah (1999). Notice that

XN
s¼0

wsr
2
j�sðe2

j�s � 1Þ ¼
PN

s¼0 Kðs=NÞr2
j�sðe2

j�s � 1ÞPN
s¼0 Kðs=NÞ

¼
PbkTc

l¼1 Kððj� lÞ=NÞr2
l ðe2

l � 1ÞPbkTc
l¼1 Kððj� lÞ=NÞ

;

(A.1)

where we have used the change of variable l ¼ j� s. In fact we know that there are zero

terms in the sum as K is only non-zero on (0, 1), but we keep the sum free of the index j as a

mechanism to derive the max rate.

Consider first the numerator of (A.1). For this, we have that

XbkTc

l¼1

Kððj� lÞ=NÞr2
l ðe2

l � 1Þ ¼
XbkTc

l¼1

1

2p

ð
exp �is

j� l

N

� �� �
r2

l ðe2
l � 1Þ/ðsÞds

¼ 1

2p

ð XbkTc

l¼1

exp is
l

N

� �
r2

l ðe2
l � 1Þ

0
@

1
A exp �is

j

N

� �
/ðsÞds

¼ N

2p

ð �XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þ
	

expð�ijÞ/ðtNÞdt;

where we have used the change of variable s ¼ tN. Thus, we have
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max
j
j
XbkTc

l¼1

Kððj� lÞ=NÞr2
l ðe2

l � 1Þj

6 max
j
j N
2p

ð �XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þ
	

expð�ijÞ/ðtNÞdtj

6
N

2p

ð
j
XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þjmax
j
j expð�ijÞjj/ðtNÞjdt

6
N

2p

ð
j
XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þjj/ðtNÞjdt;

where we have used the fact that maxjj expð�ijÞj ¼ 1 identically, by definition. Thus, the

right-hand side now is free of the index j. Taking expectations on both sides, we then have

that

E max
j

XbkTc

l¼1

Kððj� lÞ=NÞr2
l ðe2

l � 1Þ
�����

����� 6 N

2p

ð
E

XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þ
�����

�����
2
4

3
5j/ðtNÞjdt: (A.2)

Next, we evaluate the expectation in the integral in the right member of Equation (A.2)

Ej
XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þj

¼ Ej
XbkTc

l¼1

ðcosðtlÞr2
l ðe2

l � 1Þ þ i sinðtlÞr2
l ðe2

l � 1ÞÞj

¼ E
��XbkTc

l¼1

cos ðtlÞr2
l ðe2

l � 1Þ
	2

þ
�XbkTc

l¼1

sin ðtlÞr2
l ðe2

l � 1Þ
	2	1=2

6

�
E
�XbkTc

l¼1

cos ðtlÞr2
l ðe2

l � 1Þ
	2

þ E
�XbkTc

l¼1

sin ðtlÞr2
l ðe2

l � 1Þ
	2	1=2

;

using Jensen’s inequality which gives us that EZ1=2
6 ðEZÞ1=2 for Z> 0. As fe2

l � 1g is a

martingale difference sequence indexed by l, it follows using Burkholder’s inequality (e.g.,

Shiryaev, 1996, p. 499) that, for a positive constant C,

E
�XbkTc

l¼1

cos ðtlÞr2
l ðe2

l � 1Þ
	2

6 CE
XbkTc

l¼1

cos 2ðtlÞr4
l ðe2

l � 1Þ2 ¼ OðTÞ;

by the uniform boundedness of volatility function and the existence of fourth moment of el.

Similarly, we have
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E
�XbkTc

l¼1

sin ðtlÞr2
l ðe2

l � 1Þ
	2

¼ OðTÞ:

Consequently,

E
XbkTc

l¼1

exp ðitlÞr2
l ðe2

l � 1Þ
�����

�����
2
4

3
5 ¼ Oð

ffiffiffiffi
T
p
Þ:

Plugging this result into Equation (A.2), we therefore have that

E max
j
j
XbkTc

l¼1

Kððj� lÞ=NÞr2
l ðe2

l � 1Þj 6 N

2p
Oð

ffiffiffiffi
T
p
Þ
ð
j/ðtNÞjdt

¼ 1

2p
Oð

ffiffiffiffi
T
p
Þ
ð
j/ðsÞjds

¼ Oð
ffiffiffiffi
T
p
Þ:

Then by Markov’s inequality, it follows straightforwardly that

max
j
j
XbkTc

l¼1

Kððj� lÞ=NÞr2
l ðe2

l � 1Þj ¼ Opð
ffiffiffiffi
T
p
Þ:

Turning to the denominator of Equation (A.1),
PbkTc

l¼1

Kððj� lÞ=NÞ clearly has order O(N),

uniformly for all j. Combining the results for the numerator and denominator of Equation

(A.1), we therefore have that

max
j
j
XN
s¼0

wsr
2
j�sðe2

j�s � 1Þj ¼ Opð
ffiffiffiffi
T
p
Þ

OðNÞ ¼ opð1Þ;

by the bandwidth assumption that N2=T !1. h

Lemma A2. Under H1, when bs1Tc þ 1 6 j 6 bs2Tc, with / ¼ 1þ d,

max
bs1Tcþ1 6 j 6 bs2Tc

jNT�1/�2ðj�1�bs1TcÞr̂2
j;Nj ¼ Opð1Þ:

We also have minbs1Tcþ1 6 j 6 bs2TcjNT�1/�2ðj�1�bs1TcÞr̂2
j;N j is nondegenerate to 0.

Proof of Lemma A2. First, by repeated backward substitution, for bs1Tc þ 1

6 j 6 bs2Tc,

uj ¼ ej þ /ej�1 þ � � � þ /j�bs1Tc�1ebs1Tcþ1 þ /j�bs1Tcubs1Tc (A.3)
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and ubs1Tc is the last observation in the unit root regime (and also serves as the initial value

for the explosive regime). Since fejg is a m.d.s., using Burkholder’s inequality, we have

E/�2ðj�bs1TcÞjej þ /ej�1 þ � � � þ /j�bs1Tc�1ebs1Tcþ1j2 ¼ Oð1Þ;

and it follows that /�ðj�bs1TcÞðej þ /ej�1 þ � � � þ /j�bs1Tc�1ebs1Tcþ1Þ ¼ Opð1Þ for any

bs1Tc þ 1 6 j 6 bs2Tc. Then by Doob’s maximal inequality for martingales, we also

have

max
bs1Tcþ1 6 j 6 bs2Tc

j/�ðj�bs1TcÞðej þ /ej�1 þ � � � þ /j�bs1Tc�1ebs1Tcþ1Þj ¼ Opð1Þ:

For the initial value of the explosive regime, it is satisfied that

max
bs1Tcþ16j6bs2Tc

j/�ðj�bs1TcÞ/j�bs1Tcubs1Tcj ¼ jubs1Tcj ¼ Opð
ffiffiffiffi
T
p
Þ:

So the effect of the initial point is dominant in Equation (A.3), and we have

max
bs1Tcþ1 6 j 6 bs2Tc

jT�1=2/�ðj�1�bs1TcÞuj�1j ¼ Opð1Þ: (A.4)

We first prove the result for bs1Tc þN þ 1 6 j 6 bs2Tc. When bs1Tc
þN þ 1 6 j 6 bs2Tc,

r̂2
j;N ¼

XN
s¼0

wsDy2
j�s

¼
XN
s¼0

wsðduj�s�1 þ ej�sÞ2

¼ d2
XN
s¼0

wsu
2
j�s�1 þ

XN
s¼0

wse
2
j�s þ 2d

XN
s¼0

wsuj�s�1ej�s:

¼ D1 þD2 þD3:

Notice that D1 satisfies

max
bs1TcþNþ1 6 j 6 bs2Tc

NT�1/�2ðj�1�bs1TcÞD1

¼ max
bs1TcþNþ1 6 j 6 bs2Tc

d2N/�2ðj�1�bs1TcÞ
XN
s¼0

wsðT�1/�2ðj�s�1�bs1TcÞu2
j�s�1Þ/

2ðj�s�1�bs1TcÞ

6 d2 max
bs1TcþNþ1 6 j 6 bs2Tc;0 6 s 6 N

jT�1/�2ðj�s�1�bs1TcÞu2
j�s�1jÞðN

XN
s¼0

ws/
�2sÞ

¼ Opð1Þ;
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where we have used Equation (A.4) and that N
PN
s¼0

ws/
�2s
6 Nmax0

6 s 6 Njwsj
PN
s¼0

/�2s ¼ Oð1Þ. D2 is clearly dominated by D1 and D3 is the cross product

term which cannot be the largest term of the three. Thus, D1 is dominant and we have

max
bs1TcþNþ1 6 j 6 bs2Tc

jNT�1/�2ðj�1�bs1TcÞr̂2
j;N j ¼ Opð1Þ:

Notice that D1 also satisfies

min
bs1TcþNþ1 6 j 6 bs2Tc

NT�1/�2ðj�1�bs1TcÞD1

P d2 	 min
bs1TcþNþ1 6 j 6 bs2Tc;0 6 s 6 N

jT�1/�2ðj�s�1�bs1TcÞu2
j�s�1jÞðN

XN
s¼0

ws/
�2sÞ;

which is also Opð1Þ and clearly nondegenerate to opð1Þ, so the claimed result for bs1Tc þ
N þ 1 6 j 6 bs2Tc is proved.

Now for bs1Tc þ 1 6 j 6 bs1Tc þN, we have

r̂2
j;N ¼

Xj�bs1Tc�1

s¼0

wsðduj�s�1 þ ej�sÞ2 þ
XN

s¼j�bs1Tc
wse

2
j�s

¼ d2
Xj�bs1Tc�1

s¼0

wsu
2
j�s�1 þ

XN
s¼0

wse
2
j�s þ 2d

Xj�bs1Tc�1

s¼0

wsuj�s�1ej�s


 D01 þD02 þD03:

As with D1, D01 is a weighted average of preceding u2
j but with less than N terms. D02 is the

same as D2 while D03 is the cross-product term with less terms to sum than D3. Using the

same argument for analyzing D1;D2, and D3, it can still be shown that D01 is the dominant

term, and we still have the claimed lower bound and upper bound results for bs1Tc þ
1 6 j 6 bs1Tc þN proved. Intuitively, this is because although in this regime there are

less terms in D01 than D1, the order of D01 is still determined by the last observation uj�1.

The previous derived lower bound for D1 also holds for D01. Taken together, the lemma is

proved. h

Lemma A3. Under H1, when bs1Tc þ 1 6 t 6 bs2Tc, with / ¼ 1þ d,

Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j � Opðt � bs1Tc � 1Þ:
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Proof of Lemma A3. Using Equation (A.4), we have

Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j 6 max
bs1Tcþ1 6 j 6 t

jT�1=2/�ðj�1�bs1TcÞuj�1j
Xt

j¼bs1Tcþ1

1

¼ Opðt � bs1Tc � 1Þ:

For the lower bound part of the proof, notice that

Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j P min
bs1Tcþ1 6 j 6 t

jT�1=2/�ðj�1�bs1TcÞuj�1j
Xt

j¼bs1Tcþ1

1:

From Equation (A.4), it is known that jT�1=2/�ðj�1�bs1TcÞuj�1j ¼ Opð1Þ for any bs1Tc þ
N þ 1 6 j 6 t and is nondegenerate to 0. Therefore, Opðt � bs1Tc � 1Þ is also a lower

bound rate and the proof of the lemma is finished.

A.2 Proof of Lemma 1

First consider the decomposition

r̂2
j � r2

j ¼
XN
s¼0

wse
2
j�s � r2

j

¼
XN
s¼0

wsr
2
j�se

2
j�s � r2

j

¼
XN
s¼0

wsr
2
j�sðe2

j�s � 1Þ þ
XN
s¼0

wsr
2
j�s � r2

j

¼: A1;j þ A2;j;

(A.5)

where A1;j and A2;j are defined implicitly. By Lemma A1, we have maxjjA1;jj ¼ opð1Þ. Next

consider A2;j,

max
j
j
XN
s¼0

wsr
2
j�s � r2

j j ¼ max
j
j

PN
s¼0 K

s

N

� �
r2

j�s

PN
s¼0 K

s

N

� � � r2
j j

¼ max
j
j

PN
s¼0 K

s

N

� �
ðr2

j�s � r2
j Þ

PN
s¼0 K

s

N

� � j

¼ max
j
j

Ð 1
0 KðuÞ r2 j� uN

T

� �
� r2 j

T

� � !
duþ oð1Þ

Ð 1
0 KðuÞduþ oð1Þ

j;
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where we have used the approximation given by the convergence to the Riemann integral.

The approximation error is clearly dependent on N and independent of j. Using the con-

tinuous differentiability of the rð:Þ function, we have that

max
j

Ð 1
0 KðuÞ r2 j�uN

T

� 	
� r2 j

T

� 	� �
duþ oð1ÞÐ 1

0 KðuÞduþ oð1Þ

��������

��������
6 C max

j

Ð 1
0 jKðuÞujdu

j
Ð 1
0 KðuÞduj

N

T

� �
! 0;

by our assumption that N=T ! 0.

Taken together these results establish that maxjjr̂2
j � r2

j j ¼ opð1Þ.

A.3 Proof of Lemma 2

Using the decomposition in Equation (A.5), we have

r̂2
j � r2

j ¼ A1;j þ A2;j:

The object of interest can therefore be written as

jðr̂2
j�1 � r2

j�1Þ � ðr̂2
j � r2

j Þj ¼ jðA1;j�1 � A1;jÞ þ ðA2;j�1 � A2;jÞj:

Consider first the difference A1;j � A1;j�1,

A1;j � A1;j�1

¼
PN

s¼0 wsr2
j�sðe2

j�s � 1Þ �
PN

s¼0 wsr2
j�1�sðe2

j�1�s � 1Þ

¼

PN
s¼0 K

s

N

� �
r2

j�sðe2
j�s � 1Þ �

PN
s¼0 K

s

N

� �
r2

j�1�sðe2
j�1�s � 1Þ

PN
s¼0 K

s

N

� �

¼

PN
s¼0 K

s

N

� �
r2

j�sðe2
j�s � 1Þ �

PNþ1
s¼1 K

s� 1

N

� �
r2

j�sðe2
j�s � 1Þ

PN
s¼0 K

s

N

� �

¼

PN
s¼1 K

s

N

� �
� K

s� 1

N

� � !
r2

j�sðe2
j�s � 1Þ þ Kð0Þr2

j ðe2
j � 1Þ � Kð1Þr2

j�1�Nðe2
j�1�N � 1Þ

PN
s¼0 K

s

N

� �

¼

PN
s¼1 K

s

N

� �
� K

s� 1

N

� � !
r2

j�sðe2
j�s � 1Þ

PN
s¼0 K

s

N

� � ;

where we have used the fact that Kð0Þ ¼ Kð1Þ ¼ 0. Because K is continuously differentiable

over (0, 1), we can employ the mean value theorem to show that the foregoing expression

becomes
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1

N

PN
s¼1 K0ðssÞr2

j�sðe2
j�s � 1ÞPN

s¼0 K s
N

� � ;

where ss 2 ððs� 1Þ=N; s=NÞ. Using the same strategy as used in Lemma A1, coupled with

the absolute integrability assumption placed on the characteristic function of K0ð:Þ in

Assumption 1, we can obtain that maxjj
PN
s¼1

K0ðssÞr2
j�sðe2

j�s � 1Þj ¼ Opð
ffiffiffiffiffi
N
p
Þ, and thus that

max
j
jA1;j � A1;j�1j ¼ max

j

1
N

PN
s¼1

K0ðssÞr2
j�sðe2

j�s � 1Þ

PN
s¼0

K s
N

� �
���������

���������
¼ Op

ffiffiffiffiffi
N
p

N2

� �
¼ OpðN�3=2Þ;

which is clearly opð1=TÞ under our bandwidth assumption N3=2=T !1.

Next notice that

A2;j ¼
PN

s¼0 wsr2
j�s � r2

j

¼

PN
s¼0 K

s

N

� �
r2

j�s

PN
s¼0 K

s

N

� � � r2
j

¼

PN
s¼0 K

s

N

� �
ðr2

j�s � r2
j Þ

PN
s¼0 K

s

N

� � ;

so that the difference A2;j � A2;j�1 can be written as

A2;j � A2;j�1 ¼

PN
s¼0 K

s

N

� �
ðr2

j�s � r2
j Þ �

PN
s¼0 K

s

N

� �
ðr2

j�1�s � r2
j�1Þ

PN
s¼0 K

s

N

� �

¼

PN
s¼0 K

s

N

� �
ððr2

j�s � r2
j�1�sÞ � ðr2

j � r2
j�1ÞÞ

PN
s¼0 K

s

N

� �

¼

1

T

XN

s¼0
K

s

N

� �
ððr2Þ0ðsj�1�sÞ � ðr2Þ0ðsj�1ÞÞ

PN
s¼0 K

s

N

� � ;

where sj�1�s 2 ððj� 1� sÞ=T; ðj� sÞ=TÞ; sj�1 2 ððj� 1Þ=T; j=TÞ, where we have used the

mean value theorem based on the differentiability of the r2ð:Þ function. By the Lipschitz as-

sumption made on the ðr2Þ0ð:Þ function, we have that
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max
j
jA2;j � A2;j�1j 6

1

T

XN

s¼0
K

s

N

� �
max

j
jðr2Þ0ðsj�1�sÞ � ðr2Þ0ðsj�1Þj

PN
s¼0 K

s

N

� �

6

C
1

T

XN

s¼0
K

s

N

� �
s

TPN
s¼0 K

s

N

� �

¼
C

1

T2

XN

s¼0
K

s

N

� �
s

PN
s¼0 K

s

N

� � :

Using the Riemann integral approximation, we have that 1
N

PN
s¼0

K s
N

� �
¼
Ð

Kþ oð1Þ, and that

1
N2

PN
s¼0

K s
N

� �
s ¼ Oð1Þ because of our assumption that

Ð
jKðxÞxjdx < 1. We thus have that

max
j
jA2;j � A2;j�1j ¼ O

1

T2

N2

N

� �
¼ O

N

T2

� �
;

which is clearly oð1=TÞ because of our assumption that N=T ! 0.

Finally, because

max
j
jðr̂2

j�1 � r2
j�1Þ � ðr̂2

j � r2
j Þj 6 max

j
jA1;j � A1;j�1j þmax

j
jA2;j � A2;j�1j;

the stated result then follows straightforwardly.

A.4 Proof of Theorem 1

Notice first that

1ffiffiffiffi
T
p

XbTrc

j¼Tþ1

ej

r̂ j
¼ 1ffiffiffiffi

T
p

XbTrc

j¼Tþ1

rjej

r̂ j
:

Now,

1ffiffiffiffi
T
p

XbTrc

j¼Tþ1

rj

r̂j

� �
ej ¼

1ffiffiffiffi
T
p

XbTrc

j¼1

rj

r̂j

� �
ej �

1ffiffiffiffi
T
p

XT

j¼1

rj

r̂ j

� �
ej

¼
rbTrc
r̂bTrc

1ffiffiffiffi
T
p

XbTrc

j¼1

ej

0
@

1
A� rT

r̂T

1ffiffiffiffi
T
p

XT

j¼1

ej

0
@

1
A

þ
XbTrc

j¼Tþ1

rj

r̂j
� rj�1

r̂j�1

� �
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
A;

(A.6)

where we have used the summation by parts formula in the second step. For the first term,

observe first that

Astill et al. j CUSUM-Based Monitoring for Explosive Episodes 37

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbab009/6268988 by guest on 10 M

ay 2021



r̂ j � rj ¼
r̂2

j � r2
j

r̂ j þ rj
:

Now since maxjðr̂j þ rjÞ�1 ¼ Opð1Þ, using the definition of r̂j and Lemma 1, it is

straightforwardly seen that

max
j
jr̂ j � rjj ¼ opð1Þ:

Next, by the FCLT for martingale difference sequences and an application of Slutsky’s

theorem, we have that the first term in Equation (A.6) satisfies

rbTrc
r̂bTrc

1ffiffiffiffi
T
p

XbTrc

j¼1

ej

0
@

1
A)WðrÞ:

By the same argument, the second term in Equation (A.6) satisfies

rT

r̂T

1ffiffiffiffi
T
p

XT

j¼1

ej

0
@

1
A)Wð1Þ:

The stated result in Theorem 1 then follows if the third term in Equation (A.6) can be

shown to be of opð1Þ. This we will now demonstrate. To that end, notice that

j
XbTrc

j¼Tþ1

rj

r̂j
� rj�1

r̂j�1

� �
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj ¼ jXbTrc

j¼Tþ1

r2
j

r̂2
j

�
r2

j�1

r̂2
j�1

rj

r̂j
þ rj�1

r̂j�1

1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj

6 max
j
j 1
rj

r̂ j
þ rj�1

r̂ j�1

jj
XbTrc

j¼Tþ1

r2
j

r̂2
j

�
r2

j�1

r̂2
j�1

 !
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj:

In large samples,
rj

r̂ j
þ rj�1

r̂ j�1
is clearly positive and bounded away from 0, and so it follows

that maxjj 1
rj
r̂ j
þ

rj�1
r̂ j�1

j ¼ Opð1Þ. Let us now look at the other term involved:

j
XbTrc

j¼Tþ1

r2
j

r̂2
j

�
r2

j�1

r̂2
j�1

 !
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj

¼ j
XbTrc

j¼Tþ1

r2
j r̂

2
j�1 � r2

j�1r̂
2
j

r̂2
j r̂

2
j�1

 !
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj

¼ j
XbTrc

j¼Tþ1

r2
j ðr̂2

j�1 � r2
j�1Þ � r2

j�1ðr̂2
j � r2

j Þ
r̂2

j r̂
2
j�1

 !
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj

¼ j
XbTrc

j¼Tþ1

r2
j ½ðr̂2

j�1 � r2
j�1Þ � ðr̂2

j � r2
j Þ� þ ðr2

j � r2
j�1Þðr̂2

j � r2
j Þ

r̂2
j r̂

2
j�1

 !
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
Aj

6 maxj j
r2

j ½ðr̂2
j�1 � r2

j�1Þ � ðr̂2
j � r2

j Þ�
r̂2

j r̂
2
j�1

j þmax
j
j
ðr2

j � r2
j�1Þðr̂2

j � r2
j Þ

r̂2
j r̂

2
j�1

j
 !XbTrc

j¼1

j 1ffiffiffiffi
T
p

Xj�1

s¼1

esj:

(A.7)

From Lemma 2, we have that
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max
j
jðr̂2

j�1 � r2
j�1Þ � ðr̂2

j � r2
j Þj ¼ op

1

T

� �
:

From Lemma 1 and the path continuity of the r2ð:Þ function, we also have that

max
j
jðr2

j � r2
j�1Þðr̂2

j � r2
j Þj ¼ Oð1=TÞopð1Þ ¼ op

1

T

� �
:

Combining these results with the following, each of which follows straightforwardly from

results given previously,

max
j

1

r̂2
j

�����
����� ¼ Opð1Þ; max

j

r2
j�1

r̂2
j r̂

2
j�1

�����
����� ¼ Opð1Þ;max

j

1ffiffiffiffi
T
p

Xj�1

s¼1

es

�����
����� ¼ Opð1Þ;

we have that

XbTrc

j¼Tþ1

r2
j

r̂2
j

�
r2

j�1

r̂2
j�1

 !
1ffiffiffiffi
T
p

Xj�1

s¼1

es

0
@

1
A

������
������ ¼ opð1Þ;

as required to establish the stated result in Theorem 1.

A.5 Proof of Theorem 2

Under H1, and when bs1Tc þ 1 6 t 6 bs2Tc,

SVt
T ¼

Xt

j¼Tþ1

Dyj

r̂j;N
¼

Xbs1Tc

j¼Tþ1

þ
Xt

j¼bs1Tcþ1

0
@

1
A Dyj

r̂ j;N

 AT þ Bt:

We first look at Bt. When bs1Tc þ 1 6 j 6 bs2Tc, we have

Dyj ¼ duj�1 þ ej:

Substituting this into Bt we have

Bt ¼ d
Xt

j¼bs1Tcþ1

uj�1

r̂ j;N
þ

Xt

j¼bs1Tcþ1

ej

r̂ j;N

 Bt1 þ Bt2: (A.8)

For Bt1, notice with / ¼ 1þ d,

jBt1j ¼ dN1=2j
Xt

j¼bs1Tcþ1

T�1=2/�ðj�1�bs1TcÞuj�1

N1=2T�1=2/�ðj�1�bs1TcÞr̂ j;N

j

6 d max
bs1Tcþ1 6 j 6 t

j 1

N1=2T�1=2/�ðj�1�bs1TcÞr̂ j;N

jN1=2
Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j

¼ d

minbs1Tcþ1 6 j 6 t jN1=2T�1=2/�ðj�1�bs1TcÞr̂j;Nj
N1=2

Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j

¼ OpðN1=2ðt � bs1Tc � 1ÞÞ;

Astill et al. j CUSUM-Based Monitoring for Explosive Episodes 39

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbab009/6268988 by guest on 10 M

ay 2021



where we have used the result minbs1Tcþ1 6 j 6 tjN1=2T�1=2/�ðj�1�bs1TcÞr̂ j;Nj is nondegen-

erate to 0 in Lemma A2 and the result of Lemma A3. Using the same argument, we can

show that Bt2 is dominated by Bt1 in order, so the order of Bt is determined by Bt1.

Next we derive a lower bound for the divergence rate of Bt1. Notice jBt1j also satisfies

jBt1j P d min
bs1Tcþ1 6 j 6 t

j 1

N1=2T�1=2/�ðj�1�bs1TcÞr̂ j;N

jN1=2
Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j

¼ d

maxbs1Tcþ1 6 j 6 t jN1=2T�1=2/�ðj�1�bs1TcÞr̂j;N j
N1=2

Xt

j¼bs1Tcþ1

jT�1=2/�ðj�1�bs1TcÞuj�1j:

From Lemma A2, we have maxbs1Tcþ1 6 j 6 tjN1=2T�1=2/�ðj�1�bs1TcÞr̂ j;Nj ¼ Opð1Þ,
and using the result of Lemma A3, it follows that Bt diverges at a rate at least as fast as

OpðN1=2ðt � bs1Tc � 1ÞÞ.
Now, since AT ¼ OpðT1=2Þ and clearly does not grow with t, Bt dominates under the al-

ternative, and the derived divergence rate N1=2ðt � bs1Tc � 1Þ is clearly higher than the

boundary function ct

ffiffi
t
p

and the claim of the proposition follows.
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